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1 Introduction
The nonlinear PDE’s describing the motion of a fluid make a long list, among
which are the Boltzmann equation, the Navier-Stokes and Euler equations,
compressible and incompressible, to mention a few. Newton’s equation of
motion must be also included in this list as an equation for the microscopic
description of the inotion where the fluid is considered as a system of many
small particles. The compressible and incompressible Navier-Stokes and Eu-
ler equations look at the fluid at the macroscopic level as a continuum while
the Boltzmann equation is inbetween, at the mesoscopic level. Different non-
linear equations of different types come according to which levels are adopted
for the description of the motion and to which properties of the fluid are to
be investigated.

Apart from Newton’s equation, however, they are derived more or less
on physical intuition. Thus one of the main issues in the fluid dynamics is
to reveal how these nonlinear equations are interrelated to each other and
to find out the regimes of their validity which are not quite clear from their
derivations. In physics, the diagram depicted in Fig. 1 has been widely known,
which says that, starting from Newton’s equation of motion, one equation can
be obtained form another at the limit value of a certain physical parameter
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Newton

$Narrow\infty$

Boltzmann

$\epsilon<<_{A}1/^{/}/$ $\backslash \epsilonarrow 0$

C.NS $arrow^{\nuarrow 0}$ C. $E$

$Marrow 0$ $\downarrow Marrow 0$

IC.NS
$arrow^{\nuarrow 0}$ IC. $E$

$C$ : Compressible IC: Incompressible
NS: Navier-Stokes $E$ : Euler

Pig. 1

contained in the latter equation. The parameters in Fig.1 are $N$ (the number
of fluid particles), $\epsilon$ (the mean free path), $\nu$ (the viscosity coefficient) and $M$

(the Mach number).
Much has been done in the last two decades to confirm this diagram with

mathematical rigor. To prove the convergence

$A_{\mu}arrow B$ as $\muarrow\mu^{*}$

needs to prove that solutions exist to the equations $A_{\mu}$ uniformly for all $\mu$

near $\mu^{*}$ , that they converge to some limit as $\muarrow\mu^{*}$ and that the limit solves
the equation $B$ . Thus the diagram in Fig.1 provides numerous challenging
mathematical problems. They are nice examples of problems in the theory
of singular perturbation. At present, this diagram is mathematically com-
pleted, though not fully, for the Cauchy problems and the mechanism for
the development of the initial layer is well revealed, whereas almost nothing
is known for the initial boundary value problems where the boundary layer
prevails. Some remarks and references for the case of the Cauchy problems
are given in \S 5.

According to the above diagram, the compressible Euler equation is con-
nected with the Boltmann equation, a fact established rather formally by
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Hilbert [15], $1)ut$ the $1\supset roken$ line, coming from the Chapmann-Enskog ex-
pansion (see, e.g.,[9]), does not give an asymptotic expansion in the normal
sensc.

The objective of this article is to show that both the incompressible
Navier-Stokes and Euler equations can also be connected directly with the
Boltzmann equation, not via the corresponding compressible equations, by
means of suitable scalings of variables. This adds new links in the classical
diagram given in Fig. 1 and implies the special role the Boltzmann equation
plays in the fluid dynamics. This new observation was initiated by Sone [26]
(see also Sone-Aoki [27]) for the stationary case and then by Bardos-Golse-
Leverinore [4] and De Masi-Esposito-Lebowitz [10] for the time dependent
case. The proof of convergence was given by Bardos-UKai [5].

2 The Boltzmann Equation
The (normalized) number density $f=f(t, x, v)$ of gas particles at time $t\geq 0$

having position $x\in R^{3}$ and velocity $v\in R^{3}$ is govemed by the Boltzmapn
equation,

(2.1) $\frac{\partial f}{\partial t}+v\cdot\nabla_{x}f=\frac{1}{\epsilon}Q[f, g]$ ,

where $\epsilon>0$ denotes the mean free path, regarded as a parameter in the
sequel, while $Q$ , describing collisions of particles, is a bilinear symmetric
integral operator in $v$ only. The reader is referred to [8] or [9] for the explicit
form of $Qa\mathfrak{Z}$ well as the derivation of (2.1). If $f$ is normalized suitably
(e.g. devided by the total number $N$ of the gas particles), then $Q$ becomes
independent of $\epsilon$ after factorized out as in (2.1).

(2.1) is an equation of motion in the mesoscopic regime and the moments
of $f$ with respect to $v$ give the macroscopic density $\rho$ , flow velocity $u$ and
temperature $T$ by

$\rho=<1,$ $f>$ , $pu=<v,$ $f>$ ,
(2.2)

$\rho T=\frac{1}{2}<|v-u|^{2},$ $f>$ ,

where
$<f,$ $g>= \int_{R^{3}}f(v)g(v)dv$ .

The following properties of $Q$ are found in [8], [9], and essential in the sequel.
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[Ql] Let $\varphi=1,$ $v,$ $|\iota)|^{2}$ . Then for any $f,$ $g>0$ ,

$<\varphi,$ $Q[f, g]>=0$ .

[Q2] For any $f>0$ ,
$<\log f,$ $Q[f, f]>\leq 0$ .

[Q3] The followings are equivalent.

(a) $Q[f, f]=0$ .

(b) $<\log f,$ $Q[f, f]>=0$ .

(c) $f=M(v)$ where

(2.3) $M(v)=M[p, u,T](v)= \frac{\rho}{(2\pi T)^{3/2}}\exp(-\frac{|v-u|^{2}}{2T}l$ ,

Utth some constants $p>0,$ $u\in R_{f}^{3}T>0$ independent of $v$ .

The functions $\varphi$ in [Ql] are called collision invariants while $M$ in $[Q3](c)$ a
Maxwellian which represents an equilibrium state of the gas with the density
$p$ , the flow velocity $u$ and the temperature $T$ , or more precisely, it is called
a local Maxwellian if $p,$ $u,$ $T$ depends on $t$ and $x$ , and an abolute or global
Maxwellian otherwise.

Miich has been done on the globlal existence of solutions to the Cauchy
and initial-boundary value problems for (2.1). The first global solutions are
due to Ukai [29] for initials near an absolute Maxwellian and to Diperna-
Lions [11] for arbitrary $L^{1}$ initials. See also [30], $[$ 11 $]$ and references therein.

3 The Compressible Limit
The gas is expected to behave like a fluid if it is dense, namely, if $\epsilon$ is suffi-
ciently small. In fact, the compressible Euler equation is obtained from (2.1)
in the limit $\epsilonarrow 0$ . The following theorm is adopted from [4] and goes back
to Hilbert [15].
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Theorem 3.1. $Wr^{r}it\prime^{J}thr^{J}$ solution of (2.1) as $f^{\epsilon}$ . Suppose that as $\epsilonarrow 0$ ,

(a)
$f^{\epsilon}arrow f^{()}in\mathcal{D}_{\ell,x,\iota}withsomel\prime imitf^{0}$

,
(distribution sense),

(b) $<\psi$” $f^{\epsilon}>arrow<\psi,$ $f^{0}>$ in $\mathcal{D}_{t,x}$ ,
(3.1) for any test function $\psi(v)$ such that $|\psi(v)|\leq C(1+|v|^{2})$ ,

(c) $<\psi\log f^{\epsilon},$ $f^{\epsilon}>arrow<\psi\log f^{0},$ $f^{0}>$ in $\mathcal{D}_{t,x}$ ,

for any test function $\psi(v)$ such that $|\psi(v)|\leq C(1+|v|)$ ,
(d) $\lim\sup_{\epsilon-0}<\log f^{\epsilon},$ $Q[f^{\epsilon}, f^{\epsilon}]>\leq<\log f^{0},$ $Q[f^{0}, f^{0}]>$ .

Then, the limit $f^{0}$ must be a Maxwellian $M$ given by (2.3) and $p,$ $u=$
$(u_{1}, u_{2}, u_{3}),$ $T$ involved in this $M_{f}$ being functions of $t$ and $x$ , must solve the
compressible Euler equation,

(3.2) $\{\begin{array}{l}p_{t}+\nabla. (pu)=0,(pu)_{t}+\nabla\cdot(pu\otimes u)+\nabla p=0,(\rho E)_{t}+\nabla\cdot(pEu+pu)=0,\end{array}$

where $u\otimes u=(u_{i}u_{j})$ , and

$p=pT$, $E= \frac{1}{2}|u|^{2}+\frac{3}{2}T$,

are the pressure and energy per unit mass respectively.

It should be noted that (3.1), combined with (2.2), implies

$p^{\epsilon}=<1,$ $f^{\epsilon}>arrow p=<1,$ $f^{0}>$ ,

and so on.

Proof of Theorem 3.1. Take the limits of the inner products $<\phi,$ $(2.1)>$ to
deduce
(3.3) $<\phi,$ $f^{0}>t+\nabla<v\phi,$ $f^{0}>=0$ ,

by the aid of [Ql] and (3.1)(b), and of $\epsilon<\log f^{\epsilon},$ $(2.1)>$ to deduce

$<\log f^{0},$ $Q[f^{0}, f^{0}]>\geq 0$ ,
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by (3.1)(c)(d). The latter then holds with equality due to [Q2], and so $f^{0}$

must ]$)e$ a Maxwellian due to [Q3](b). Now (3.3), together with (2.2), reduces
to (3.2).

The convergence hypothesis (3.1) was substantiated first by Nishida [25] for
the Cauchy problein, using the abstract Cauchy Kowalevskaya theorem devel-
oped in [24]. Roughly speaking, he showed that if the initial data is analytic
and near an absolute Maxwellian, then (3.1)(a) takes place in a norm strong
enough to assure the rest of (3.1), locally in time. In general the convergence
is not uniform near $t=0$ due to the development of the initial layer. A
necessary and sufficient condition for the uniform convergence up to $t=0$
was found later by Ukai-Asano [32] to be that the initial data is itself to
be a local Maxwellian. Caflisch [7] solved a reversed problem, proving that
if (3.2) has a sufficiently smooth (but not necessarily analytic) solution on
some time interval and if $M^{E}$ is the Maxellian corresponding to this solution,
then solutions to (2.1) with the initial data $M^{E}|_{t=0}$ exist for all small $\epsilon>0$

and converge to $M^{E}$ as $\epsilonarrow 0$ , both uniformly on the same time interval.

4 The Incompressible Limits
The incompressible Navier-Stokes and Euler equation can be also obtained
as the limit of the Boltzmann equation. Transform (2.1) with the scalings

(4.1) $t= \frac{t’}{\epsilon^{\alpha}}$ , $f=NI_{0}+\epsilon^{\beta}M_{0}^{1/2}g$ ,

where $\alpha,\beta>0$ and $\Lambda/I_{0}$ is any absolute Maxwellian. It turns out that we
are looking at how a nearly equilibrium fluid behaves after transient effects
diminish. It was shown in [4], [10] that differnt choices of the scaling powers
$\alpha$ and $\beta$ result in different incompressible limits.

After (4.1), (2.1) reduces, dropping ‘ for $t$ , to

(4.2) $\frac{1}{\epsilon^{\alpha}}\frac{\partial g}{\partial t}+v\cdot\nabla_{x}g=\frac{1}{\epsilon}Lg+\frac{1}{\epsilon^{1-\beta}}\Gamma[f, f]$,

where $L$ is a linear operator and $\Gamma$ a symmetric bilinear operator, given by

(4.3) $Lg=2\Lambda’I_{0}^{-1/2}Q[\Lambda^{\gamma}l_{0}, M_{0}^{1/2}g]$ , $\Gamma[f, g]=NI_{0}^{-1/2}Q[M_{0}^{1/2}f, \Lambda’I_{0}^{1/2}g]$ ,
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respectively. In the below we choose $M_{0}=M[1,0,1](v)$ , without loss of gen-
erality, which is possible by a suitable scaling and translation of $v$ . Moreover,
we assume Grad $sc\cdot utoff$ hard potential [14] for the operator $Q$ .

Theorem 4.1. ([4], [10]). Let $\alpha,$ $\beta>0$ and write the solution of $(4\cdot 2)$ as
$g^{\epsilon}$ . Suppose that as $\epsilonarrow 0_{f}$

(a) $g^{\epsilon}arrow g^{0}$ in $\mathcal{D}_{t,a\cdot,v}$ (distribution sense),
with some limit $g^{0_{f}}$

(b) $<\psi,$ $g^{\epsilon}>arrow<\psi,$ $g^{0}>$ in $\mathcal{D}_{t,x}$ ,(4.4) (c) $<\psi,$ $\Gamma[g^{\epsilon}, g^{\epsilon}]>arrow<\psi,$ $\Gamma[g^{0}, g^{0}]>$ $in$ $\mathcal{D}_{t_{1}x}$ ,
both for any test function $\psi(v)$ such that
$|\psi(v)|\leq C(1+|v|^{3})$ ,

Then, the limit $g^{0}$ must be of the form

(4.5) $g^{0}= \{\eta+u\cdot v+\frac{1}{2}\theta(|v|^{2}-3)\}M_{0}(v)^{1/2}$ .

Here the coefficients $\eta\in R,$ $u\in R^{3},$ $\theta\in R$ are functions of $t$ and $x$ and
satisfy
(4.6) $\nabla(\eta+\theta)=0$ , $\nabla\cdot u=0$ .

They satisfy $furhte\uparrow$ equations which differ according to the choice of $\alpha$ and
$\beta$ .
(1) $\alpha=\beta=1$ .

$u_{t}-\nu\triangle u+u\cdot\nabla u+\nabla p=0$,
(4.7)

$\theta_{t}-\kappa\triangle\theta+u\cdot\nabla\theta=0$ .

(2) $\alpha=1$ and $\beta>1$ .

(4.8) $u_{t}-\nu\triangle u+\nabla p=0$ , $\theta_{t}-\kappa\triangle\theta=0$ .

(3) $0<\alpha=\beta<1$ .

(4.9) $u_{t}+u\cdot\nabla u+\nabla p=0$ , $\theta_{t}+u\cdot\nabla\theta=0$ .

(4) $0<a<1$ and $\alpha<\beta$ ,

(4.10) $u_{t}+\nabla p=0$ , $\theta_{t}=0$ .
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$L$ : Linear
$C$ : Compressible IC: Incompressible

NS: Navier-Stokes $E$ : Euler

Fig. 2

(5) No more equations for other choices of $\alpha,$
$\beta$ .

In the above, $p$ is a suitable function while $\nu_{f}\kappa$ are positive constants given
$by$

(4.11) $\nu=-\frac{1}{3}<\Psi,$ $L^{-1}\Psi>$ , $\kappa=-\frac{1}{10}<\Phi,$ $L^{-1}\Phi>$ ,

with
(4.12) $\Psi=v\otimes v-\frac{1}{3}|v|^{2}I$ , $\Phi=(\frac{1}{2}|v|^{2}-\frac{5}{2})v$ .

Notice that the case $\alpha=\beta=0$ reduces to Theorem 3.1. The first
equation in (4.6) is the Bousinessq equation. The first equation of (4.7) with
the second of (4.6) is the incompressible Navier-Stokes equation and the
second equation of (4.7) is the heat convection equation. The constants $\nu$

and $\kappa$ are the viscosity coefficient and heat diffusitivity respectively, and the
functions $\Phi,$ $\Psi$ are Barnett functions. Also, the first equation of (4.9) with
the second of (4.6) is the incompressible Euler equation, and (4.8) and (4.10)
are the linearized versions of (4.7) and (4.9) respectively. Fig.2 summerizes
the conclusions of Theorem 4.1.

Since $p=1$ for $M_{0}$ of our choice, we have, $\rho^{\epsilon}=<1,$ $f^{\epsilon}>=1+\epsilon^{\beta}\eta^{\epsilon}$ with

$\eta^{\epsilon}=<1,$ $M_{0}^{1/2}g^{\epsilon}>arrow\eta$ ,

and similarly, $T^{\epsilon}=1+\epsilon^{\beta}\theta^{\epsilon}$ and $\theta^{\epsilon}arrow\theta$ , both by (4.4)(b).
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The convergence hypothesis (4.4) is to be verified. We state the result
for the case (1) but similar results can be obtained for other cases. We shall
consider the Cauchy problem to (4.2) with the initial condition

(4.13) $g^{\epsilon}|_{t=0}=g_{0}$ ,

in rvhich $g_{0}$ does not depend on $\epsilon$ . Roughly speaking, $g^{\epsilon}$ converges globally
in time and strongly if $g_{0}$ is small. Also, the initial layer is found to exist.
Define the space

(4.14) $X= \{g(x, v)|\sup_{v\in R^{3}}(1+|v|^{3})||g(\cdot, v)||_{H^{3}(R_{x}^{3})}<\infty\}$ ,

and denote its norm by $||\cdot||$ . The following three theorenis are found in
Bardos-Ukai [5].

Theorem 4.2. Let $\alpha=\beta=1$ . There exists a positive number $c_{0}$ and the
following holds for all $g_{0}\in X$ with $||g_{0}||\leq c_{0}$ .
(1) For each $\epsilon\in(0,1]$ , there exists a unique global solution $g^{\epsilon}\in C([0, \infty);X)$

satisfying
(4.15) $||g^{\epsilon}(t)||\leq C$ ,

with a constant $C>0$ independent of both $\epsilon$ and $t$ .
(2) As $\epsilonarrow 0$ ,

$weakly^{*}in$ $L^{\infty}(0, \infty;X)$ , and,
(4.16) $g^{\epsilon}arrow g^{0}$ uniformly for $(t, x, v)\in[\delta_{0}, T_{0}]\cross K\cross R^{3}$

for any $T_{0}>\delta_{0}>0$ and for any compact $K\subset R^{3}$ .

(3) $90\in C([0, \infty);X)$ .

The convergence (2) is strong enough to assure all of (4.4), and (3) means,
in particular, the continuity of $g^{0}$ up to $t=0$ , which does not come from (2)
since $\delta_{0}>0$ , and entrains that for the coefficients in (4.5),

(4.17) $(\eta, u, \theta)\in C([0, \infty);H^{3}(R_{x}^{3}))$ .

Put
$( \eta_{0}, u_{0}, \theta_{0})=<(1, v, \frac{1}{2}(|v|^{2}-3)),$ $M_{0}^{\iota/2}g_{0}>$ .
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and define the projection $P_{0}$ by

(4.18) $P_{0}g_{0}= \{a+b\cdot\iota)-\frac{a}{2}(|v|^{2}-3)\}M_{0}^{1/2}$

with
(4.19) $a= \frac{1}{2}(\eta_{0}-\theta_{0})$ , $b=Pu_{0}$ ,

where $P$ is the projection to the divergence-free subspace.

Theorem 4.3. (1) $g^{0}|_{t=0}=P_{0}g_{0}$ .
(2) $(u, \theta)$ is a unique strong global solution to the Cauchy problem for $(4\cdot 7)$

coupled with the second equation of $(4\cdot 6)$ and with the initial condition,

(4.20) $(u, \theta)|_{t=0}=(b, -a)$ .

In (2) of Theorem 4.2, $\delta_{0}>0$ for general initials, that is, the uniform
convergence breaks down near $t=0$ and the initial layer develops. However,

Theorem 4.4. $\delta_{0}=0$ if and only if $g_{0}=P_{0}g_{0}$ .

5 Remarks concerning the diagram
1. Newton to Boltzmann.

The idea goes back to $Grad[13]$ , which is now called the Boltzmann-
$Grad$ limit. The first convergence proof was given by Lanford III, [22],
on a short time interval of several mean free times. The global in time
convergence was discussed by Illner-Pluvireti [16].

2. Boltzmann to Compressible Euler. See \S 3 for the references.

3. Boltzmann to Compressible Navier-Stokes.
This follows formally by the so-called Chapmann-Enskog expansion
(see [9]), which, thought, is not the asymptotic expansion in the nor-
mal sense. $I\backslash ^{r}awashima$-Matsumura-Nishida [19] proved that for ini-
tials near an absolute Msxwellian, $f^{\epsilon}arrow M[p, u, T]$ as $tarrow\infty,$ $(p, u, T)$

solving the compressible Navier-Stokes equation with the viscosity co-
efficient and heat diffusivity propotional to $\epsilon$ .
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4. Compressible Navier-Stokes to Incompressible Navier-Stokes.
The time local convergence is discussed for divergence free initials in
Klainermann-Majda [20].

5. Compressible Navier-Stokes to Compressible Euler.
For the time local convergence, see Kawashima [18]. No initial layer
develops.

6. Compressible Euler to Incompressible Euler.
For the divergence free initials, the time local convergence is discussed
on the Cauchy problem by Klainerman-Majda [21] and on the initial
boundary value problem by Agemi [1], Ebin [12], see also da Veiga
[6]. Since the boundary conditions are the same for both csses, no
boundary layer appears. The initial layer appears, on the other hand,
for non-divergence initials, see Ukai [31], Asano [2].

7. Incompressible Navier-Stokes to Incompressible Euler.
For the Cauchy problem, see Kato [17]. The boundary layer problem
for the incompressible Navier-Stokes equation is one of the most im-
portant issues in the fluid dynamics, in connection to the nature of the
turbulance, but almost nothing is known about this. See Asano [3] for
the treatment in the space of analytic functions, and Matsui [23] for
an example of the boundary layer. See Tani [28] for the slip boundary
condition for which the boundary layer does not develop.
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