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A mathematical analysis of motions of
viscous incompressible fluid

under leak or slip boundary conditions

Hiroshi FUJITA $*$

May 31, 1994

Abstract

A mathematical analysis of the boundary value problem for stationaiy solutions
of the Stokes and Navier-Stokes equations under leak or slip boundary conditions of
the friction type is made through variational inequalities. As for the Stokes equation,
the velocity fields exist uniquely. The accompanying pressure is determined uniquely
up to an aibitrary additive constant under the slip boundary condition, while the
additive constant in the pressure is restiicted in a certam way for the leak boundaiy
condition. In particular, if a leak actually takes place somewhere, then the pressure
is completely unique. The results can be extended to the Navier-Stokes flow to a
reasonable extent.

1 Introduction
The present paper is concerned with the boundary value problem for steady motions of
viscous incompressible fluid under some slip or leak boundary conditions which are to be
described below and which we call the slip or leak boundary conditions of friction type.

This work is based on the author’s lectures [3] delivered at Coll\‘ege de France in October
1993, and is an elaborated version of parts of the forthcoming notes [4], [5] on the same
topics by the author and collaborators.

In this paper, our method of analysis is that of variational inequalities where the
admissible vector functions are taken from solenoidal (divergence-free) functions, and
the functional contains a kind of barrier terms to resist against free slip or free leak,
while some further study by use of another type of variational inequality with general
(not necessarily solenoidal) admissible functions, a saddle-point formulation, and some
numerical approaches are treated in [6] and [9].

$*$ Department of Mathematics, School of Science and Technology, Meiji University, Tama-ku, Kawasaki,
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1.1 motivations
So far almost exclusively, the Dirichlet boundary condition (adhesion to solid surfaces)
has been considered for motions of viscous incompressible fluids in hydrodynamics as $w\overline{e}ll$

as in mathematics.
However, there exist some flow phenomena, modeling of which might require intro-

duction of slip and/or leak boundary conditions in reality or apparently. As examples, we
can refer to the foilowing. (1)$flow$ through a drain or canal with its bottom covered by
sherbet of mud and pebbles. (2) flow of melted iron coming out from a smelting furnace.
(3) avalanche of water and rocks. (4) blood flow in a vein of an arterial sclerosis patient.
(4) polymer-polymer welding and sliding phenomena as studied by P.G.de Gennes.

Furthermore, with some of these examples one observes that some fragile state of the
surface or existence of sherbet zone allows for the fluid to slip on the surface, and that as
long as the “force of stream” is below a threshold the fluid does not slip. In order to form
a mathematical model of such slip phenomena, introduction of slip boundary conditions
of friction type, which we describe below, seem to be suitable.

Similarly, leak boundary conditions would be an important concepts when we want to
model flow problems involving leak of the fluid through the surface or penetration into
the adjacent media. For instance when we deal with the flow problem such as (1) flow
through a net or sieve, e.g., a butterfly net. (2) flow through filter, e.g., a vacuum cleaner,
diapers, a coffee maker. (3) water flow in a purffication plant, ffitration of rain to form
underground water, (4) oil flow over or beneath sand layers. Indeed, some filters prevent
the leak if the “pushing force” is below a threshold, which might suggest to adopt the
leak boundary conditions of friction type to be discussed below.

1.2 description of the problem; slip boundary condition
Some specific description of the problem, particularly, the slip and leak boundary condi-
tions of our concern is in order. In this paper we shall consider only stationary motions of
viscous incompressible fluid in a bounded domain $\Omega$ in $R^{2}$ or $R^{3}$ , while we intend to deal
with the time-dependent problem in a forthcoming paper. Thus, inside $\Omega$ , the motion of
the fluid is governed by the Stokes system (1) or the Navier-Stokes system (2)$below$ .

(1) $\{$

$-\nu\triangle u+\nabla p=$ $f$,

(2) $\{$

$-\nu\triangle u+\nabla p+(u\cdot\nabla)u$ $=$ $f$ ,

$divu=$ $0$ .

$divu$ $=$ $0$ .

Here, the vector function $u$ is the velocity, the scalar function $p$ represents the pressure
and the given vector function $f$ stands for the external force. The positive constant $\nu$ is
the kinetic viscosity.

As for the shape of the spatial domain $\Omega$ we assume, simply to fix the idea, that $\Omega$

is bounded by smooth boundary $\Gamma$ which is composed of two smooth components (inner
wall and outer wall) as below;
(3) $\Gamma=\Gamma_{0}\cup\Gamma_{1}$
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Unless otherwise stated, throughout the present paper we impose the usual Dirich-
let boundary condition on $\Gamma_{0}$ , in order to avoid irrelevant difficulties concerning the
solvability of the problem. Namely,

(4) $u|_{\Gamma_{0}}=\beta$,

where the boundary value $\beta$ is assumed to satisfy the out-flow condition that

(5) $\int_{\Gamma_{0}}\beta_{n}=0$ .

Here and in what follows, the unit outer normal to the boundary is denoted by $n$ and if $b$

$isavectordefinedontheboundar,$
$b_{n} isthenormalcomponento.fbtangentialcomponentofb.A1so,\frac{y\partial}{\partial n}isthedifferentiationalongn$

’ while $b_{t}$ means the

Assuming that $u$ is smooth up to the boundary, we set

(6) $\sigma_{t}=\sigma_{t}(u)=\nu\frac{\partial u_{t}}{\partial n}$

and can write the slip boundary condition in question, which is to be imposed on $\Gamma_{1}$ ;
Namely, we require at each point $s\in\Gamma_{1}$

(7) $|\sigma_{t}(u)|\leq g_{t}$

and

(8) $\{\begin{array}{l}|\sigma_{t}(u)|<g_{t} \Rightarrow u_{t}=0,|\sigma_{t}(u)|=g_{t} \Rightarrow [Case]\end{array}$

Here $g_{t}$ is a positive function given on $\Gamma_{1}$ . Furthermore, again for simplicity, we impose
the following non-leak boundary conditions on $\Gamma_{1}$ .

(9) $u_{n}|_{\Gamma_{1}}=0$ .

Now we can state our boundary value problem for the Stokes equation with the slip
boundary condition of the friction type.

Problem 1 $(BVP-Sp-S)$ Find $u$ and $p$ such that the equations (1) and boundary con-
ditions (4) (7)$,(8)$ and (9).

It is easily seen that under (7), the system of conditions (8) can be equivalently replaced
by
(10) $\sigma_{t}\cdot u_{t}+g_{t}|u_{t}|=0$ ,

and the whole slip boundary condition can be written as

(11) $\{\begin{array}{ll}|\sigma_{t}(u)| \leq g_{t},\sigma_{t}\cdot u_{t}+g_{t}|u_{t}| = 0,\end{array}$

which is the most convenient for our analysis below.
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1.3 description of the problem; leak boundary condition

Quite similarly, we can formulate the leak boundary condition. Actuffiy, putting

(12) $\sigma_{n}=\sigma_{n}(u)=-p+\nu\frac{\partial u_{n}}{\partial n}$

we impose on $\Gamma_{1}$

(13) $|\sigma_{n}(u)|\leq g_{n}$

and

(14) $\{\begin{array}{l}|\sigma_{n}(u)|<g_{n} \Rightarrow u_{n}=0,|\sigma_{n}(u)|=g_{n} \Rightarrow [Case]\end{array}$

When we consider this leak condition, let us require the following non-slip boundary
condition instead of (9);
(15) $u_{t}|_{\Gamma_{1}}=0$ .

Then our boundary value problem for the Stokes equation with the leak boundary
condition of the friction type reads,

Problem 2 $(BVP-Lk-S)$ Find $u$ and $p$ such that the equations (1) and boundary con-
ditions (4) (13) $(14)$ and (15).

At this point, we should note that as is obvious from (13), the pressure $p$ which solves
BVP-Lk-S together with $u$ cannot contain a free additive constant. Indeed, this is a
remarkable character of BVP-Lk-S which makes the existence proof of the solution more
interesting and so more sophisticated. On the other hand, however, we see again that
under (13), the condition (14) can equivalently be replaced by

(16) $\sigma_{n}\cdot u_{n}+g_{n}|u_{n}|=0$ .

Actually, for our later analysis, it is convenient to write the whole leak boundary condition
as
(17) $\{\begin{array}{ll}|\sigma_{n}(u)| \leq g_{n},\sigma_{n}u_{n}+g_{n}|u_{n}| = 0.\end{array}$

1.4 Plan of $t$ he paper
The rest of the paper is composed of the following sections.

\S 2. Slip boundary conditions of friction type for
the Stokes equation.

\S 3. Leak boundary conditions of friction type for
the Stokes equation.

\S 4. Slip and leak boundary conditions of friction type for
the $N$ avier-Stokes equation.

\S 5. Comments and remarks.
References
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2 Slip boundary conditions of friction type for the
Stokes equation

2.1 Weak formulation of the problem

Now we are going to formulate our problem for the Stokes flow under the slip boundary
condition in a somewhat weaker form. As standing assumptions, let us suppose that

(18) $f\in L^{2}(\Omega)$ , $\beta\in H^{1/2}(\Gamma_{1})$ , $g_{t}\in L^{2}(\Gamma_{1})$ .

Then we seek the velocity (a vector function) $u\in H^{1}(\Omega)$ , and the pressure (a scalar
function) $p\in L^{2}(\Omega)$ . We need the following function spaces and notations. Incidentally,
we shall use one and the same symbol to denote a Sobolev space of vector functions and
that of scalar functions, when there is no fear of confusion.

(19) $H^{1}(\Omega)=\{v\in L^{2}(\Omega); \nabla v\in L^{2}(\Omega)\}$

(20) $(u, v)=(u, v)_{L^{2}}$ ,

(21) $a(u, v)=(\nabla u, \nabla v)_{L^{2}}$ ,
(22) $H_{0}^{1}(\Omega)=\{v\in H^{1}(\Omega);v=0 on \Gamma\}$,

(23) $H_{0,\sigma}^{1}(\Omega)=\{v\in H_{0}^{1}(\Omega);divv=0\}$ .
Particularly, in dealing with the slip boundary condition, we use

(24) $K_{\beta}^{S}=\{v\in H^{1}(\Omega); v=\beta on \Gamma_{0}, v_{n}=0 on \Gamma_{1}\}$

and
(25) $K_{0}^{S}=\{v\in H^{1}(\Omega); v=0 on \Gamma_{0}, v_{n}=0 on \Gamma_{1}\}$

Obviously, if $u,$ $v$ are in $K_{\beta}^{S}$ , then their difference belongs to $K_{0}^{s}$ . The solenoidal subspaces
of these are denoted respectively by $K_{\sigma,\beta}^{S}$ and $K_{\sigma,0}^{S}$ . Namely,

(26) $K_{\sigma,\beta}^{S}=\{v\in H^{1}(\Omega)$ ; $divv=$ Oin $\Omega,$ $v=\beta$ on $\Gamma_{0},$ $v_{n}=0$ on $\Gamma_{1}\}$

and $K_{\sigma,0}^{S}$ .
For $u\in H^{1}(\Omega)$ and $p\in L^{2}(\Omega)$ , the weak form of the Stokes equation is written as

(27) $\nu a(u, \phi)-(p, div\phi)=(f, \phi)$ $(\forall\phi\in H_{0}^{1}(\Omega)$ .

As for the slip boundary condition, we must note that if $u$ is sufficiently smooth up to
the boundary, $\sigma_{t}$ is given by (6). However, under the general circumstances and from
the rigorous view point, $\sigma_{t}$ is defined as a functional from $H^{1/2}(\Gamma_{1})$ through the following
identity;
(28) $\int_{\Gamma_{1}}\sigma_{t}\cdot\psi_{t}d\Gamma=\nu a(u, \psi)-(p, div\psi)-(f, \psi)$ $(\forall\psi\in K_{0}^{S})$ .

Let $\eta\in H^{1/2}(\Gamma_{1})$ . Then there exists $\psi\in K_{\sigma_{1}0}^{S}$ such that $\psi_{t}=\eta$ on $\Gamma_{1}$ (e.g., see [12]).
The value of the right-hand side of (28) does not depend on the way of extension by virtue
of (27).

Now we can state our p.d. $e$ . formulation (PDEF-Sp-S) of our slip problem BVP-Sp-S
for the Stokes equation in a more reasonable manner.
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Problem 3 (PDEF-Sp-S) .
Find a vector function $u\in K_{\sigma,\beta}^{S}$ and $p\in L^{2}(\Omega)$ such that the Stokes equation in the form
of (27) holds true and the slip boundary condition, say; (11) is satisfied.

Remark 2.1 It is a consequence of a well-known fact (e.g., see [11], [12]), that if $u\in K_{\sigma_{t}\beta}^{S}$

alone satisfies

(29) $\nu a(u, \phi)=(f, \phi)$ $(\forall\phi\in H_{0,\sigma}^{1}(\Omega))$ ,

then there exists $p\in L^{2}(\Omega)$ which satisfies the weak Stokes equation (27) jointly with $u$ .
We call such $p$ the pressure associated with $u$ and note that this $p$ contains an arbitrary
additive constant.

The solvability of PDEF-Sp-S is obtained through the method of variational inequal-
ities below.

2.2 VI formulation of the problem

First of all we introduce the following barrier term against slip on $\Gamma_{1}$ ;

(30) $j_{t}= \int_{\Gamma_{1}}g_{t}|v_{t}|d\Gamma$.

Then we state our variational inequalities which involves $u$ only.

Problem 4 $(VIF- Sp- S)$

Find $u\in K_{\sigma,\beta}^{S}$ such that the inequality

(31) $\nu a(u, v-u)-(f, v-u)+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\sigma,\beta}^{S})$ ,

holds true,

Let $u$ be a solution of VIF-Sp-S. Then taking a arbitrary $\phi\in K_{\sigma,0}^{s}$ and substituting
$v=u+\phi$ and $v=u-\phi$ into (31), we notice that the weak form of the Stokes equation
(29) is satisfied. Therefore, the exists $p\in L^{2}(\Omega)$ associated with $u$ . Moreover, in terms
of $\sigma_{t}$ we can equivalently rewrite (31) to

(32) $\int_{\Gamma_{1}}\sigma_{t}\cdot(v_{t}-u_{t})d\Gamma+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\sigma)\beta}^{S})$ .

We claim

Theorem 2.1 The problem VIF-Sp-S has a unique solution.

Proof. In view of the $H^{1}(\Omega)$ -ellipticity of $a(,$ $)$ in $K_{\sigma,0}^{S}$ , and the convexity and lower-
simicontinuity (actually, continuity) of the functional $j_{t}$ from $K_{\sigma,\beta}^{S}$with the weak topology
of $H^{1}(\Omega)$ , the theorem is immediate from a well-known theory (e.g., see ([1]), ([7]), or
([8]) $)$ . q.e. $d$ .

Theorem 2.2 The two problems PDEF-Sp-S and VIF-Sp-S are equivalent.
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Proof. $PDEF- S_{I}\succ S\Rightarrow VIF- Sp- S$ .
Let $\{u,p\}$ be a solution of PDEF$- S_{I}\succ S$ . Then (32) can be easily verified as

$\int_{\Gamma_{1}}\sigma_{t}\cdot(v-u)_{t}d\Gamma$ $+j_{t}(v)-j_{t}(u)$

(33) $=$ $\int_{\Gamma_{1}}(\sigma_{t}\cdot v_{t}+g_{t}|v_{t}|)d\Gamma-\int_{\Gamma_{1}}(\sigma_{t}\cdot u_{t}+g_{t}|u_{t}|)d\Gamma$

$=$ $\int_{\Gamma_{1}}(\sigma_{t}\cdot v_{t}+g_{t}|v_{t}|)d\Gamma\geq 0$ ,

where on the last line use has been made of (11).
VIF$- Sp- S\Rightarrow$ PDEF-Sp-S.
Let $u$ be a solution of VIF-Sp-S and $p$ be any pressure associated with $u$ . Then they
jointly satisfy (27) and we have (32), from which follows

(34) $- \int_{\Gamma_{1}}\sigma_{t}\cdot(v_{t}-u_{t})d\Gamma\leq\int_{\Gamma_{1}}g_{t}|v_{t}-u_{t}|d\Gamma$ $(\forall v\in K_{\sigma,\beta}^{S})$ ,

by means of the obvious inequality $|v_{t}|-|u_{t}|\leq|v_{t}-u_{t}|$ . Taking any $\psi\in K_{\sigma_{1}0}^{S}$ and
substituting $v=u+\psi$ and $v=u-\psi$ into (34), we get

(35) $| \int_{\Gamma_{1}}\sigma_{t}\cdot\psi_{t}d\Gamma|\leq\int_{\Gamma_{1}}g_{t}|\psi_{t}|d\Gamma$ $(\forall\psi\in K_{\sigma,0}^{s})$ .

From (35) follows (7) by means of a duality argument and in view of the arbitrariness of
$\psi_{t}$ on $\Gamma_{1}$ . In fact, we can apply the following lemma, which is a slight modificatin of the
well-known theorem that $(L^{1}(\Omega))^{*}=L^{\infty}(\Omega)$ .

Lemma 2.1 Suppose that $g=g(s)$ is a positive function on $\Gamma_{1}$ Then the dual space
of the Banach space

(36) $L_{g}^{1}( \Gamma_{1})=\{\eta;\Vert\eta||=\int_{\Gamma_{1}}g(s)|\eta(s)|d\Gamma<+\infty\}$

is the Banach space

(37) $L_{g}^{\infty}(\Gamma_{1})=\{\zeta;||\zeta||=$ ess $\sup_{s\in\Gamma_{1}}\frac{|\zeta(s)|}{g(s)}<+\infty\}$.

Having obtained $|\sigma_{t}|\leq g_{t}$ , we take $v\in K_{\sigma,\beta}^{S}$ with $v_{t}=0$ on $\Gamma_{1}$ and substitute it into (32).
Then we have
(38) $- \int_{\Gamma_{1}}\sigma_{t}\cdot u_{t}d\Gamma-\int_{\Gamma_{1}}g_{t}|u_{t}|d\Gamma\geq 0$,

which yields firstly
$\int_{\Gamma_{1}}(\sigma_{t}\cdot u_{t}+\int_{\Gamma_{1}}g_{t}|u_{t}|)d\Gamma=0$ ,

with the aid of (7), and hence (10). Thus we have shown that the solution $\{u,p\}$ solves
PDEF-Sp-S. q.e. $d$ .

Combining the preceding theorems we have

Theorem 2.3 The problem PDEF-Sp-S has a solution $\{u,p\}$ . The velocity $u$ is $unique_{f}$

while the pressure $p$ is unique except for an arbitrary additive constant.

205



3Leak boundary conditions of friction type for the
Stokes equation

3.1 Weak formulation of the problem

In parallel to the study of the slip boundary condition, we are going to formulate the
problem BVP-Lk-S in a weaker form. Here, concerning the positive function $g_{n}$ we assume

(39) $g_{n}\in L^{2}(\Gamma_{1})$ .

In dealing with the leak boundary conditions, we use

(40) $K_{\beta}^{L}=\{v\in H^{1}(\Omega); v=\beta on \Gamma_{0}, v_{t}=0 on \Gamma_{1}\}$

and
(41) $K_{0}^{L}=\{v\in H^{1}(\Omega)$ ; $v=0$ $on$ $\Gamma_{0},$ $v_{t}=0$ $on$ $\Gamma_{1}\}$

If $u,$ $v$ are in $I\zeta_{\beta}^{L}$ , their difference belongs to $K_{0}^{L}$ . Furthermore, we put

(42) $K_{\sigma,\beta}^{L}=\{v\in H^{1}(\Omega)$ ; $divv=$ Oin $\Omega,$ $v=\beta$ on $\Gamma_{0},$ $v_{t}=0$ on $\Gamma_{1}\}$

and
(43) $K_{\sigma,0}^{L}=\{v\in H^{1}(\Omega)$ ; $divv=$ Oin $\Omega,$ $v=$ Oon $\Gamma_{0},$ $v_{t}=0$ on $\Gamma_{1}\}$

As for $\sigma_{n}$ , we note that if $u,p$ are sufficiently smooth up to the boundary, $\sigma_{n}$ is by
(12). However, under the general circumstances and from the rigorous view point, $\sigma_{n}$

should be regarded to be defined as a functional from a subspace of $H^{1/2}(\Gamma_{1})$ through the
following identity;

(44) $\int_{\Gamma_{1}}\sigma_{n}\psi_{n}d\Gamma=\nu a(u, \psi)-(p, div\psi)-(f, \psi)$ $(\forall\psi\in K_{0}^{L})$ .

Remark 3.1 Let $\eta\in H^{1/2}(\Gamma_{1})$ . Then there exists $\psi\in K_{\sigma,0}^{L}$ with $\psi_{n}=\eta$ on $\Gamma_{1}$ , if and
only if
(45) $\int_{\Gamma_{1}}\eta d\Gamma=0$ .

Provided (45), the value of the right-hand side of (44) does not depend on the way of
extension by virtue of (27).

Now we can state properly the p.d. $e$ . formulation (PDEF-Lk-S) of our leak problem
for the Stokes equation.

Problem 5 (PDEF-Lk-S) .
Find a vector function $u\in K_{\sigma,\beta}^{L}$ and $p\in L^{2}(\Omega)$ such that the weak Stokes equation (27)
holds true and the leak boundary condition, say, (17) is satisfied.

Again, the solvability of PDEF-Lk-S is shown with resort to the variational inequality
below.
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3.2 VI formulation of the problem
Now we introduce the following barrier term against leak on $\Gamma_{1}$ ;

(46) $j_{n}= \int_{\Gamma_{1}}g_{n}|v_{n}|d\Gamma$ .

Then we state a version of our problem in terms of variational inequalities and comple-
mentary conditions.

Problem 6 $(VIF- Lk-S)$ .
Find $u\in K_{\sigma)\beta}^{L}$ and $p\in L^{2}(\Omega)$ with the following properties;

1. $u$ satisfies the inequality

(47) $\nu a(u, v-u)-(f, v-u)+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\sigma,\beta}^{L})$ .

2. $p$ is a pressure associated with $u$ such that (13) holds true.

In the same way as before, we can verify that any solution of (47) and any of its
associated pressure jointly satisfy the weak Stokes equation (27). Therefore, as to $\sigma_{n}$ , the
identity (44) can be used. Moreover, if $\psi$ is restricted to the solenoidal space $K_{\sigma,0}^{L}$ , the
identity (44) $is$ reduced to

(48) $\int_{\Gamma_{1}}\sigma_{n}\psi_{n}=\nu a(u, \psi)-(f, \psi)$ $(\forall\psi\in K_{\sigma,0}^{L})$ .

Consequently, the variational inequality (47) can be rewritten as

(49) $\int_{\Gamma_{1}}\sigma_{n}(v_{n}-u_{n})d\Gamma+j_{n}(v)-j_{n}(u)\geq 0$ $(\forall v\in K_{\sigma,\beta}^{L})$ .

We claim

Theorem 3.1 The problem VIF-Lk-S has a solution $\{u,p\}$ .

Proof. By means of standard arguments, it is easy to see that $u$ which solves the variational
inequality (47) does exist uniquely. Also it is easy to verify that $u$ satisfies (29) and hence
admits of an associated pressure. For the time being, let us take any associated pressure
$p$ and fix it. Then we note (49), whence follows by the same argument as before

(50) $| \int_{\Gamma_{1}}\sigma_{n}(v-u)_{n}d\Gamma|\leq\int_{\Gamma_{1}}|(v-u)_{n}|d\Gamma$, $(\forall v\in K_{\sigma,\beta}^{L})$ .

This implies
(51) $| \int_{\Gamma_{1}}\sigma_{n}\eta d\Gamma|\leq\int_{\Gamma_{1}}g_{n}|\eta|d\Gamma$ $(\forall\eta\in Y_{0})$ ,

where
(52) $Y_{0}= \{\eta\in H^{1/2}(\Gamma_{1}); \int_{\Gamma_{1}}\eta d\Gamma=0\}$.
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It should be noted that since $Y_{0}$ is not dense in $L_{9}^{1}(\Gamma_{1})$ , we cannot directly apply Lemma
2.1. However, by virtue of the Hahn-Banach theorem and of Lemma 2.1, we can show
that there exists a function $\lambda\in L_{g}^{\infty}(\Gamma_{1})$ with the property that

(53) $|\lambda|\leq g_{n}$ $a$ . $e$ . in $\Gamma_{1}$ ,

and
(54) $\int_{\Gamma_{1}}\sigma_{n}\eta d\Gamma=\int_{\Gamma_{1}}\lambda\eta d\Gamma$ , $(\forall\eta\in Y_{0})$ .

The last identity implies that with some constant $c$ we have

(55) $\lambda=\sigma_{n}+c$ .

Therefore, if we put

(56) $p^{*}=p-c$ , and $\sigma_{n}^{*}=\sigma_{n}$with $p$ replaced by $p^{*}$ ,

then we have $\sigma_{n}^{*}=\lambda$ and hence the first inequality of the leak boundary condition,
namely, $|\sigma_{n}^{*}|\leq g_{n}$ . Also, noting (54) and $(v_{n}-u_{n})\in Y_{0}$ , we see that (49) holds true with
$\sigma_{n}$ replaced by $\sigma_{n}^{*}$ . Thus we have shown that $\{u, p^{*}\}$ solves VIF-Lk-S. q.e.d.

Theorem 3.2 The two problems PDEF-Lk-S and VIF-Lk-S are equivalent.

Proof. $PDEF- Lk- S\Rightarrow VIF- Lk- S$ .
Let $\{u,p\}$ be a solution of PDEF-Lk-S. Then (49) can be easily verified as

$\int_{\Gamma_{1}}\sigma_{n}(v-u)_{n}d\Gamma$ $+j_{n}(v)-j_{n}(u)$

(57) $=$ $\int_{\Gamma_{1}}(\sigma_{n}v_{n}+g_{t}|v_{n}|)d\Gamma-\int_{\Gamma_{1}}(\sigma_{n}u_{n}+g_{n}|u_{n}|)d\Gamma$

$=$ $\int_{\Gamma_{1}}(\sigma_{n}v_{n}+g_{t}|v_{n}|)d\Gamma\geq 0$ ,

where on the last line use has been made of (17).
$VIF- Lk- S\Rightarrow PDEF- Lk- S$ .
Let $u,p$ be a solution of VIF-Lk-S. In view of the proof of the preceding theorem, it
remains only to prove (16). To this end, we take $v\in K_{\sigma,\beta}^{L}$ with $v_{n}=0$ on $\Gamma_{1}$ and
substitute it into (49). Then we have

(58) $- \int_{\Gamma_{1}}\sigma_{n}u_{n}d\Gamma-\int_{\Gamma_{1}}g_{n}|u_{n}|d\Gamma\geq 0$ ,

which yields (10) with the aid of (13). q.e. $d$ .
As a consequence we have

Theorem 3.3 The problem PDEF-Lk-S is solvable. The velocity is unique, while the
additive constant in the pressure is restricted through (13).

Remark 3.2 On the choice of the associated pressure; In the proof of Theorem 3.1, it was
necessary to choose the additive constant in the original pressure $p$ so that the resulting
$p^{*}$ satisfies (13), and in order to show this re-choice is possible, we have employed the
Hahn-Banach theorem concerning extension of bounded linear functionals defined on a
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subspace. However, a more intuitive argument is possible as we describe below. Suppose
we have reached (51). Then we claim that from (51) follows

(59) $|\sigma_{n}(t)-\sigma_{n}(s)|\leq g(t)+g(s)(\forall t, s\in\Gamma_{1})$ .

Proof of (59). Preferring clearness of the essential idea) let us here assume that functions
are sufficiently smooth, for justification can be carried out in a standard way. For $s=t$ ,
(59) is trivial. For different $t,$ $s$ , we introduce non-negative functions $e_{\epsilon,t}$ and $e_{e,s}$ which
approximate delta functions on $\Gamma_{1}$ with singularities at $t,$ $s$ , respectively and which are
normalized as

$\int_{\Gamma_{1}}e_{\epsilon,t}d\Gamma=1$ and $\int_{\Gamma_{1}}e_{\epsilon,s}d\Gamma=1$ .

Then we form $\zeta=e_{e,t}-e_{\epsilon s,)}$ and note that $\zeta\in Y_{0}$ . Thus we can substitute $\eta=\zeta$ into
(51) and go to the limit. Then we have (59). (59) means

$\sigma_{n}(t)-\sigma_{n}(s)\leq g(t)+g(s)$ ,

and hence
$\sigma_{n}(t)-g(t)\leq\sigma_{n}(s)+g(s)$ ,

where $t$ and $s$ are separated to each side. Consequently,

(60)
$k_{1} \equiv\sup_{t\in\Gamma_{1}}(\sigma_{n}(t)-g(t))\leq\inf_{s\in\Gamma_{1}}(\sigma_{n}(s)+g(s))\equiv k_{2}$

.

Therefore, we can choose a constant $k^{*}$ such that

(61) $k_{1}\leq k^{*}\leq k_{2}$ .
Then

$\sigma_{n}(t)-g(t)\leq k^{*}\leq\sigma_{n}(s)+g(s)$ $(\forall t, s\in\Gamma_{1})$ ,

and we have $\sigma_{n}(s)-k^{*}\geq-g(s)(\forall s)$ as well as $\sigma_{n}(t)-k^{*}\leq g(t)(\forall t)$ . Namely, putting

(62) $\sigma_{n}^{*}\equiv\sigma_{n}-k^{*}$ , or equivalently $p*=p+k^{*}$

we have

(63) $-g(t)\leq\sigma_{n}^{*}(t)\leq g(t)$ .
Thus we have derived (13) with $\sigma_{n}$ replaced by $\sigma_{n}^{*}$ .

Incidentally, the admissible range of $k^{*}$ is given by (61). From physical view point, it
is interesting to note that if some leak actually takes place, then the $\sigma_{n}$ and so the the
admissible associated pressure $p$ is uniquely determined by the leak boundary condition.
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4 Slip and leak boundary conditions of friction type
for the Navier-Stokes equation

4.1 Slip boundary conditions
formulations and preliminary considerations
The weak p.d. $e$ . formulation (PDEF-Sp-NS) of the problem with the slip boundary con-
dition for the Navier-Stokes equation is now stated.

Problem 7 $(PDEF-Sp- NS)$
Find a vector function $u\in K_{\sigma,\beta}^{S}$ and $p\in L^{2}(\Omega)$ such that

1. the weak form of the Navier-Stokes equation

(64) $\nu a(u)\phi)-(p, div\phi)+((u\cdot\nabla)u, \phi)-(f, \phi)=0$ $(\forall\phi\in H_{0}^{1}(\Omega))$

holds true,

2. the slip boundary condition (11) is satisfied.
Obviously, (64) is reduced to the following identity which involves $u$ only;

(65) $\nu a(u, \phi)+((u\cdot\nabla)u, \phi)-(f, \phi)=0$ $(\forall\phi\in H_{0,\sigma}^{1}(\Omega))$

We give some preliminary remarks which are well-known or, at least, essentially well-
known.

We put
(66) $b(u, v, w)=((u\cdot\nabla)v, w)$

for $u,$ $v,$ $w\in K_{\sigma,\beta}^{S}$ . Since our domain $\Omega$ is bounded in $R^{2}$ or $R^{3}$ , the $tri$-linear form $b(u, v, w)$

is continuous from $H^{1}(\Omega)\cross H^{1}(\Omega)\cross H^{1}(\Omega)$ . Furthermore, if $u_{n}\cross v\cdot w$ vanishes on the
boundary $\Gamma$ , then we have

(67) $b(u, v, w)=-b(u, w, v)$ , in particular, $b(u, v, v)=0$ .

This is the case, for instance, if $u\in K_{\sigma,\beta}^{S}$ and $v\in K_{\sigma 0,)}^{S}$. We take a solenoidal extension $\tilde{\beta}\in$

$K_{\sigma)\beta}^{S}$ whose support is confined in a sufficiently narrow boundary strip adjacent to $\Gamma_{0}$ .
Such an extension does exists by virtue of the outflow condition

(68) $\int_{\Gamma_{0}}\beta_{n}d\Gamma=0$ .

Furthermore, the following lemma which might be traced back to an early paper by J.
Leray is true (e.g., see [2], [11]).

Lemma 4.1 For any $\epsilon>0$ , there exists a solenoidal extension of $\tilde{\beta}=\tilde{\beta}_{\epsilon}$ such that

(69) $|b(\psi,\tilde{\beta}, \psi)|\leq\epsilon||\nabla\psi||^{2}$ $(\forall\psi\in K_{\sigma,0}^{S})$ .

$Furthermore_{f}$ we may require that $\tilde{\beta}$ is supported by a narrow strip adjacent to $\Gamma_{0}$ ,

$Particularly_{f}\tilde{\beta}$ vanishes on $\Gamma_{1}$
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Now we state the corresponding variational inequality which involves only $u$ .

Problem 8 (VIF-Sp-NS) .
Find $u\in K_{\sigma 1\beta}^{S}$ such that the inequality

(70) $\nu a(u, v-u)+b(u, u, v-u)-(f, v-u)+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\sigma,\beta}^{S})$ ,

is satisfied.
Again in terms of $\sigma_{t}$ , the variational inequality above can be written as

(71) $\int_{\Gamma_{1}}\sigma_{t}\cdot(v_{t}-u_{t})d\Gamma+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\sigma,\beta}^{S})$ .

Consequently, we can apply the same argument as for the Stokes equation and obtain

Theorem 4.1 The two problems PDEF-Sp-NS and VIF-Sp-NS are equivalent.

existence of solution
We proceed to the existence proof of the solution of VIF-Sp-NS, for which we make

use of the Galerkin method and the Leray-Schauder fixed point theorem. We begin with
derivation of an a priori estimate for the solution of VIF-Sp-NS. To this end, we firstly
choose and fix the solenoidal extension $\tilde{\beta}in$ Lemma 4.1 so that

(72) $|b( \psi,\tilde{\beta}, \psi)|\leq\frac{\nu}{2}||\nabla\psi||^{2}$ ,

and seek the solution in the form

(73) $u=\tilde{\beta}+U$ $(U\in K_{\sigma,0}^{S})$ .

Lemma 4.2 (a priori estimate) There exists a positive constant $C^{*}=C^{*}(\nu, \Omega,\tilde{\beta}, \Vert f\Vert_{L^{2}(\Omega)})$

such that any solution $u$ of VIF-Sp-NS is bounded as

(74) $||u-\tilde{\beta}||_{H^{1}}\leq C^{*}$ , and so $||u||_{H^{1}}\leq||\tilde{\beta}||_{H^{1}}+C^{*}$ .

Proof of the lemma. Substitution of $u=\tilde{\beta}+U$, $(U\in K_{\sigma,0}^{S})$ into (70) yields

(75) $\nu a(\tilde{\beta}+U, \psi)+b(\tilde{\beta}+U,\tilde{\beta}+U, \psi)-(f, \psi)+j_{t}(\tilde{\beta}+U+\psi)-j_{t}(\tilde{\beta}+U)\geq 0$ ,

where we have put $\psi=v-u$ . Since $\tilde{\beta}=0$ on $\Gamma_{1}$ , we note

$j_{t}(\tilde{\beta}+U+\psi)=j_{t}(U+\psi),$ $j_{t}(\tilde{\beta}+U)=j_{t}(U)$ .

Then we put $\psi=-U$ in (75), obtaining

(76) $-\nu a(U, U)-\nu a(\tilde{\beta}, U)+(f, U)-b(U,\tilde{\beta}, U)-b(\tilde{\beta},\tilde{\beta}, U)\geq 0$ ,

in consideration of

(77) $b(U+\tilde{\beta}, U, U)=0$ , $j_{t}(0)=0$ , $j_{t}(U)\geq 0$ .
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Hence

(78)
$\nu a(U, U)-|b(U,\tilde{\beta}, U)|$ $\leq$ $\nu a(U, U)+b(U,\tilde{\beta}, U)$

$\leq$ $-\nu a(\tilde{\beta}, U)+(f, U)-b(\tilde{\beta},\tilde{\beta}, U)$ ,

whence follows
(79) $\frac{\nu}{2}||\nabla U||^{2}\leq C_{1}||\nabla U||$

for a positive constant $C_{1}$ depending on $\Omega,\tilde{\beta}$ and $||f||$ . Thus we have $|| \nabla U||\leq\frac{2}{\nu}C_{1}$ , and
hence
(80) $||U||_{H^{1}}\leq C_{2}$

for another positive constant $C_{2}$ depending on $\Omega,\tilde{\beta}$ and $||f||$ . With $C^{*}=C_{2}$ , we obtain
the lemma. q.e. $d$ .

In order to construct a sequence of approximate solutions, we introduce a series of
finite-dimensional subspace $\mathcal{M}_{N}$ of $K_{\sigma,0}^{S}(N=1,2,3, \ldots)$ in the following way. Let $\{e_{k}\in$

$K_{\sigma,0}^{S}\}_{k=1}^{\infty}$ be a basis of $K_{\sigma,0}^{S}$ in the sense that they are linear independent and their linear
hull is dense in $K_{\sigma,0}^{S}$ under the $H^{1}(\Omega)$-topology. We may assume that each $e_{k}$ is smooth.
Then we set
(81) $\mathcal{M}_{N}=$ linear span of $\{e_{1}, e_{2}, \ldots, e_{N}\}$ .

We want to obtain the N-th approximate solution $u_{N}$ in $\mathcal{M}_{N}$ as the solution of the
following variational inequality;
Problem; $VIF_{N}- Sp- NS$

Find $u_{N}=\tilde{\beta}+U_{N}$ with $U_{N}\in \mathcal{M}_{N}$ , such that

$\nu a(u_{N}, v-u_{N})+b(u_{N}, u_{N}, v-u_{N})$ $-$

(82)
$+$

$(f, v-u_{N})$

$j_{t}(v)-j_{t}(u_{N})\geq 0$ $(\forall v\in\tilde{\beta}+\mathcal{M}_{N})$ .

Since the nature of this approximate problem is the same as (or simpler that) the VIF-
Sp-NS, we have the following

Lemma 4.3 (a priori estimate of approximate solutions) The solution $u_{N}$ of $VIF_{N}$ -Sp-
$NS$ admits of the estimate

(83) $||u_{N}-\tilde{\beta}||_{H^{1}}\leq C^{*}$ , and so $||u_{N}||_{H^{1}}\leq||\tilde{\beta}\Vert_{H^{1}}+C^{*}$ .

with the same constant $C^{*}$ as in (74),

As to the existence of the approximate solution $u_{N}$ , we have

Lemma 4.4 For each $N_{f}$ the solution $u_{N}=\tilde{\beta}+U_{N}$ of $VIF_{N}$ -Sp-NS exists.

Proof. With intention to apply the Leray-Schauder fixed-point theorem, we introduce a
real parameter $\tau\in[0,1]$ , and for any given $U_{N}\in \mathcal{M}_{N}$ we define $W_{N}\in \mathcal{M}_{N}$ through the
following variational inequality in $\mathcal{M}_{N}$ stated in terms of $u_{N}=\tilde{\beta}+U_{N}$ and $w_{N}=\tilde{\beta}+W_{N}$ ;

$\nu a(w_{N}, \psi_{N})+\tau b(u_{N}, u_{N}, \psi_{N})$ $-$ $(f, \psi_{N})$

(84)
$+j_{t}(w_{N}+\psi_{N})-j_{t}(w_{N})\geq 0$ $(\forall\psi_{N}\in \mathcal{M}_{N})$ .

Since for the given $u_{N}$ the form $b(u_{N}, u_{N}, \psi_{N})$ defines a bounded linear functional on $\mathcal{M}_{N}$ ,
the existence and uniqueness of $W_{N}=w_{N}-\tilde{\beta}$ follows by a standard argument (which
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is actuaily the same as for VIF-Sp-S). We denote the mapping which carries $U_{N}$ to $W_{N}$

by $\Phi=\Phi(\tau, \cdot)$ : $\mathcal{M}_{N}arrow \mathcal{M}_{N}$ . It is easily shown that this finite dimensional mapping
$\Phi(\tau, U_{N})$ is continuous in $\tau$ and $U_{N}$ .

Suppose now that $U_{N}=\Phi U_{N}$ , namely, $U_{N}$ is a fixed-point of $\Phi$ . Then in the same
way as in the derivation of (74),(83), we obtain following a priori estimate;

(85) $\Vert U_{N}||_{H^{1}}\leq C^{*}$ ,

where $C^{*}$ is the same positive constant as in (74) and (83).
Finally, we take any positive number $R>C^{*}$ and fix it. Then we define a closed ball

$K_{N}$ in $\mathcal{M}_{N}$ by
(86) $K_{N}=\{V_{N}\in \mathcal{M}_{N} ; ||V_{N}||_{H^{1}}\leq R\}$ .
For $\tau=0$ , we see that the fixed point $U_{N}$ of $\Phi$ exists in $K_{N}$ and is unique. For $0<\tau\leq 1$ ,
any possible fixed point $U_{N}$ of $\Phi$ is subject to the estimate (85) and, therefore, can not
reach the boundary of $K_{N}$ . Thus we can apply the Leray-Schauder theorem and obtain
the lemma. q.e. $d$ .

Now we claim

Theorem 4.2 The problem VIF-Sp-NS has a solution.

Proof. Let $u_{N}=\tilde{\beta}+U_{N}$ be the solution of VIF$N^{-S_{I}\succ}$NS. Since they are bounded as

$||u_{N}||_{H^{1}}\leq||\tilde{\beta}||_{H^{1}}+C^{*}$ ,

we can select a subsequence $u_{n}=u_{n(N)}$ which converges to $u^{*}\in K_{\sigma,\beta}^{s}$ weakly in $H^{1}(\Omega)$ .
Verification that $u^{*}$ is the required solution is as follows. Take any $\psi\in \mathcal{M}_{N}$ and fix it.
Then for sufficiently large $n$ , it holds that

(87) $\nu a(u_{n}, \psi)+b(u_{n}, u_{n}, \psi)-(f, \psi)+j_{t}(u_{n}+\psi)-j_{t}(u_{n})\geq 0$.
Noting that $u_{n}$ converges strongly in $L^{2}(\Omega)$ as well as in $L^{4}(\Omega)$ , and that $(u_{n})_{t}=$

tangential component of $u_{n}$ on $\Gamma_{1}$ converges strongly in $L^{2}(\Gamma_{1})$ , we can go to the limit
in (87 and get

(88) $\nu a(u^{*}, \psi)+b(u^{*}, u^{*}, \psi)-(f, \psi)+j_{t}(u^{*}+\psi)-j_{t}(u^{*})\geq 0$

Since $\bigcup_{N=1}^{\infty}\mathcal{M}_{N}$ is dense in $K_{\sigma,0}^{S}$ , and since each term of (88) is continuous in $\psi$ with
$H^{1}(\Omega)$ -strong topology, we have

(89) $\nu a(u^{*}, \psi)+b(u^{*}, u^{*}, \psi)-(f, \psi)+j_{t}(u^{*}+\psi)-j_{t}(u^{*})\geq 0$, $(\forall\psi\in K_{\sigma,0}^{S})$ ,

which means that $u^{*}$ is a solution of $VIF- S_{I}\succ$NS. q.e.d.
As a corollary we have

Theorem 4.3 The problem PDEF-Sp-NS has a solution.

Remark 4.1 Uniqueness of solutions of PDEF-Sp-NS and $VIF- S_{I}\succ$NS can be shown if
the Reynolds number is sufficiently large.

213



4.2 Leak boundary conditions
As for the leak boundary conditions for the Navier-Stokes equation, the formulation of
PDEF-Lk-NS and VIF-Lk-NS is quite parallel to that for the slip boundary condition.
Their equivalence is obtained also similarly. However, existence of solutions becomes more
difficult. This is because we now only have

(90) $b(u, v, v)= \frac{1}{2}\int_{\Gamma_{1}}u_{n}|v|^{2}d\Gamma$ $(\forall u, v\in K_{\sigma,0}^{L})$

instead of $b(u, v, v)=0$ which is the case with $K_{\sigma,0}^{S}$ . Still we can show, as will be given
elsewhere in detail,

Theorem 4.4 If the Reynolds number is sufficiently small; then the problem VIF-Lk-NS
has a solution.

5 Comments and remarks
I. shp and leak boundary conditions and sub-differentials

The slip boundary condition, say, in the form of (11) can be compactly written by use
of the sub-differential of . . In fact, the multi-valued sub-differential $\partial|\cdot|$ of . $|$ : $\lambdaarrow$

$|\lambda|$ $(\lambda\in R^{1})$ is given by

(91) $\partial|\lambda|=\{\begin{array}{ll}1 (\lambda>0)the-l interval [-1, 1] (\lambda(\lambda=<0)0)\end{array}$

We can easily verify that the slip boundary condition (11) is equivalent to

(92) $-\sigma_{t}(u)\in\partial(g_{t}(s)|u_{t}|)$ (a.e. on $\Gamma_{1}$ ).

Therefore if $\delta$ is a smffi positive number, the boundary condition

(93) $- \sigma_{t}(u)=g_{t}(s)\tanh(\frac{u_{t}}{\delta})$ (a.e. on $\Gamma_{1}$ )

would be a good approximation of the slip boundary condition. Similarly, the leak bound-
ary condition (17) can be written as

(94) $-\sigma_{n}(u,p)\in\partial(g_{t}(s)|u_{n}|)$ (a.e. on $\Gamma_{1}$ ).

co-existence of slip and leak
We can deal with the boundary conditions under which leak and slip may take place

at at the same time, by taking the admissible set

(95) $K_{\sigma,\beta}=\{v\in H^{1}(\Omega) ; divv=0 in \Omega, v=\beta on \Gamma_{0}\}$

and considering variational inequalities involving the barrier term

(96) $j(v)=j_{t}(v)+j_{n}(v)= \int_{\Gamma_{1}}(g_{t}(s)|v_{t}|+g_{n}(s)|v_{n}|)d\Gamma$ .
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The analysis goes through without any increased difficulty.

alternative choice of $a(,$ $)$

From the view point of hydrodynamics, we might have to use as the $H^{1}(\Omega)$-ellipticity
form $a(u, v)$ the following ‘deformation integral form’ $E(u, v)$ instead of the Dirichlet form
$(\nabla u, \nabla v)_{L^{2}(\Omega);}$

(97) $E(u, v)= \frac{1}{2}\int_{\Omega})$

where
(98) $e_{i,j}(u)= \frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}$ .

This replacement does not affect the form of the equations in $\Omega$ , namely, the Stokes or the
Navier-Stokes equations remain the same, while $\sigma_{t}$ and $\sigma_{n}$ in the slip and leak boundary
conditions must be changed duly, since these boundary conditions are a kind of the natural
boundary conditions. Details will be given in [6] and elsewhere.

alternative formulations with non-solenoidal admissible set
As mentioned in Introduction, we can formulate variational inequality with admissible

functions which are not necessarily solenoidal. For instance, in order to deal with VIF-
Sp-S, we adopt as the admissible set

(99) $I\zeta_{\beta}^{L}=\{v\in H^{1}(\Omega);v=\beta on \Gamma_{0}, v_{t}=0 on \Gamma_{1}\}$

and pose the following problem

Problem 9 Find $u\in K_{\beta}^{L}$ and $p\in L^{2}(\Omega)such$ that

(100) $\nu a(u, v-u)-(p, div(v-u))-(f, v-u)+j_{t}(v)-j_{t}(u)\geq 0$ $(\forall v\in K_{\beta}^{L}),$ .

and
(101) $(divu, q)=0$ $(\forall q\in L^{2}(\Omega))$ .

It is interesting to note that any solution $u,p$ of this new variational inequality solves
PDEF-Sp-S automatically. However, its solvability is obtained by means of the previous
argument in Section 3. Furthermore, such formulation with the non-solenoidal admissible
set enable us to formulate a kind of saddle-point search method, and a certain numerical
approaches. Again, details will be given in [6] and elsewhere.
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