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K; OF A FERMAT QUOTIENT AND
THE VALUE OF ITS L FUNCTION

HAHEMNEWEF AtHe—B8 ( KEN-ICHIRO KIMURA )

Introduction. In 1984, Beilinson[Be| formulated a beautiful conjecture which re-
lates the values at each integer of Hasse-Weil L functions of a proper smooth variety
X over a number field to the covolume of the image of the regulator map

erg : H3(X,Q(j)) - Hp(Xc,R(j))

where HY(X,Q(j)) = Kg)_i(X)Q is called absolute cohomology group which is a
certain eager space of the K-group of X under the action of Adams operator, and -

Hjy(Xc,R(j)) = H'(0 — R(j) = Oxc — D, — ... = Q' — 0[-1]).

is the Deligne cohomology group. The regulator map is defined by Chern class map
of K-theory. There are several affirmative examples for this conjecture. (cf.[Ram],
[Schal). '

In this article we treat a motive which is a factor of a certain Fermat curve. It
is a curve of genus 2, and so dimgH%(Xc,R(2))t = 2. Beilinson conjecture tells
that there should be two linearly independent elements in the absolute cohomology
which corresponds to such a motive, and the main point of this article is to describe
such two elements in an explicit manner. Let C be the Fermat curve of exponent 5:
z%+y% = 1. Ross [Ross] found in K;C an element which has nontrivial image under
the regulator map. Define the action of Z/5Z on C in such a way that k € Z/5Z
acts on C by (z,y) — (¢¥z,(*y) where ( is a fixed nontrivial fifth root of unity.
Let X be the quotient of C' by this action.The equation of this curve as an affine

curve is:

w® = u(l — u).

Here w = zy and u = z°. Ross’ element comes from K, of this quotient by
pulling back. In this case L(H(X),s) equals L function of a Jacobi sum Hecke
character, so we have good understanding of the value of it at s = 0. Moreover, the
recipient of the regulator map is H*(X(C), R(1)) so the image of regulator map can
be described as a 1-form on X. Since ord,—oL(H(X), s) = 2, Beilinson conjecture
asserts the existence of another element of K3 X which has an independent image of
Ross’ element under the regulator map. We first exhibit an element of K;C which
by the projection provides an element of K3 X. Our main result is that this projected
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element of K,X is the very element which is asserted to exist by the conjecture.
10nce the elements are exhibited, the linear independence of the regulator images
of those can be proved by showing nonvanishing of the determinant of the matrix
which is given by integrals of those jmages along two homologically independent
1-cycles on C. We compute the determinant numerically.

We also compute numerically the value of L function which by the conjecture is
prospected to differ from the determinant of the image of the regulator only by a
rational number. The ratio of these two computed values nearly equals a simple
rational number. The author believes that this is the first example for a motif of
rank 2 associated to a curve of genus 2.

§1 Regulator map and the Beilinson’s conjecture in the case of a
curve/Q. Let X be a projective smooth curve/Q.
The localization sequence of K theory provides with the exact sequence

[I K:Q0p) — K:X — K.QX) 5[] Q@)

PEX(Q) PEX(Q

Here Q(p) denotes the residue field of a point p, and Q(X) denotes the function

field of X with coefficients in Q. 7= ][] 7, is tame symbol given by
PEX(Q)

1:9) f
gor Df

p{f,9} = (-1)(rd»Ploxd (P)

Since K, of a number field is torsion, K3 X agrees with Kerr up to torsion.

Let X be a proper flat model of X over Z. The natural map induces the pullback
K;% — K, X. Conjecturally the image of this is independent of the choice of X.
Bloch([Bl] defined the regulator for K; X

regx : K. X — H'(X(C),2miR)*.

the superscript + denotes the invariant subspace under the action of complex
conjugate on both X (C) and the coefficient 2miR. dimgH'(X(C),27iR)* equals

the genus of X. Let g be the genus of X. The Beilinson conjecture in this case is:

Conjecture. 1. regx(K,X) is a lattice in H*(X(C),27iR)*.
2. Define ¢ € R*/Q* by

Ad(regx K2%) ® Q] = c.AYH! (X(C) 2miQ)*.

then ¢ = L(9(X,0) modQ*.

An explicit description of the regulator is given as follows. Since Q(X) is a
field, K;Q(X) is generated by symbols. And so is the elements of K3(X). Let
{f,9} € Ko(X) where f,g € Q(X). regx({f,9}) as a 1- form mod. exact forms on
X is represented by



regx({f,9}) = Im2(log |f|@log |g| — log |g|01og | f])

Let v be a cycle on X(C) and suppose that both f and ¢g are holomorphic and
nonzero on v . Then as is stated in [Ram],

an [ restlfiop = m ( [ 1 fattogg ~ g la(e)| | ao f)

where we take a fixed branch of log f beginning in py € 7 .

Let C be the Fermat curve of exponent 5: X°+Y® = 1. Let ( = exp(2i) in the

following.Define the action of Z/5Z on C in such a way that k € Z/5Z acts on C
by (z,y) = (¢¥z,("Fy). Let X be the quotient of C by this action.The equation
of this curve as an affine curve is:

w® = u(l —u)

where w = zy and u = z°. The genus of this curve is 2.
From now on, We consider on certain two elements of K3X.

§2 Integration of the regulator images of certain elements of K, X.
Ross[Ross] found that a := {1 — w,u} € K2X has a nontrivial image under the
regulator map.* g
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According to the Beilinson conjecture, there should be another element of K, X -

which is independent of Ross’ element. One of our main results is that the projec-
tion of a certain element of K;C on K3 X is such an element. We prove this by
numerical integral of the regulator image of these elements along two homologically
independent cycles on C. »

Let 8 € K; X be given by

11—z
ﬂ:= 7r*{$+y, iy }

where 7, : K2C — K3 X denotes the projection of K theory.

Our main result is that @ and @ have linearly independent images under the
regulator map. We prove this by showing non vanishing of the determinant of the
matrix given by integrals of m*rega and 7*regf along two homologically indepen-
dent 1 cycles on C.

1— (ke
(*y

4
8= {¢*z+(ty, }
k=0

as a symbol.

*In fact,Ross exhibited for each Fermat curve an element of the K2 with nonzero image under
the regulater map.
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Let Ap, . denote the automorphism of C given by (z,y) — ((™z,("y) and let
4 : [0,1] = C denote the path from (1,0) to (0,1) given by t — ((1 — t)*/3,1/%),
For m,n € Z let v,, , denote the cycle on C given by

Tmn =79 — Am,07 + Am,n')’ - AO,n’Y-

We want to integrate regc(m*a) and rege(n*f) along 71,1 and along ;1. Since
functions which appear in #*a and 7*f have poles and zeros on these cycles, a
slight modification is necessary. The following paths are needed. Let 0 < € < 1.

Yil-(1-¢€1-]-C
£ s ((1— )15, $1/5)
Yi1-(1-¢P1->C
£ ((1 = )15, 41/%)
Cy:0,1] - C
8 — (eexp( —25717ri0), (1-¢ exp(2n7ri9))1/5)
C¢n :[0,1] - C
8 — (C™(1 — eexp(27ih)), (1 — (1 — eexp(27if))3)!/5)

=(¢"(1 — eexp(2716)), (56)1/5 exp(gm'ﬂ)(l + F(e, 9))1/5)

(1 — (1 — eexp(27i6))®)
= eexp(2n16)(5 — 10e exp(2716)
+10€2 exp(4mi8) — 5e3 exp(67i0) + €t exp(8ni)

and we let
(e,

= —2eexp(27if) + 2¢? exp(4mif) — €* exp(6mif) + 1€ exp(8mih).
We define the cycles 7] ;(n = 1,2) to be
7'3,1 =2+ Cf — A1 07 + Cen + Anyy? = CF — A0 172 = Cy
Here is one of our main results.

Theorem 1. regx(n*a) and regx(r*f) are independent in H'(X(C), 2miR). i.e.

[z, rege(n*a) [, rego(r*a)

L, regc(n*6) [;. rege(r*8)|

remark. Let C, be the Fermat curve of exponent 5n : X5 4+ Y5" = 1, and X,
be a quotient of Cp : w*™ = u(l — u). Let an := ({1 — w,u}) € K;X, and
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T = {z + vy, 1;”}6 K,;C, and B, = 7Jyn € KX, and for m | n let ppm :

(z,y) — (z=,y= ) be the canonical projection. Then it is seen by a straightforward
calculation that '

(Pr,mPr,ms(T an)) = (Ph m(T*am)) and pj, .. Pn,ma(Yn) = Pp m(Ym)-
We see from this that
(pn,m*ﬂ-*an) = (ﬂ-*am) and PamxTn = Tm in Kz(Cm)Q

because pp m+py, m=multiplication by deg pn m and since 7 0 pp.m = pnm o T, it
follows that

(pn,m*ﬂ'*?r*an) = (W*W*am)
PnmxQn = Qp
and pn,m*ﬂn = ,Bm-

Consequently, a, and 3, are norm compatible system in K3X,. So we get the
following

Corollary. reg(a,) and ;'eg(ﬂn) are also linearly independent in H'(X,,R(1)).
We now explain how to perform the numerical integral.
Integration of regc(n*a) (due to Ross). As is stated before,

[, et

n,1

e ( / log(1 — zy)dlog 2 — log |=(po)| /
2 a

n,1 711,1

dlog(1 — :cy))
Since |¢y| < 1 both on 77 ; and 43 ,, fﬂ{z X dlog(1 — zy) = 0 for n=1,2. Let py be

(1-e6(1-1-ep))en.
Calculation of fC‘,’, log(1 — zy)dlogz (k =1,2). By the definition of C§,

1
k
/ log(1 — zy)dlogz = / log(1 — eexp(%m’é’)(l — € exp(2kmif)))2kmidé.
ct 0

We see from this that

lim log(1 — zy)dlogz = 0.
e—0 C‘l;

Putting ¢/ — 0, we get

/ log(1 — zy)dlogz
Ck for ¢

(0,1)
(2.2) = / log(1 — zy)dlogz (integration on )
(e,(1—€%)1/®)

(,(1=¢*)*'®)
+ / log(1 — zy)dlogz (integration on Ag ¢7)
(0,1)
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Calculation of fc(k log(1 — zy)dlogz(n = 0,1,2). Since log(l — zy),logz are

holomorphic and nonzero in the neighborhoods of (¢*,0),

/ log(1 — zy)dlogz
Cei

(Ck,o) "

=/ log(1 — zy)dlogz
(¢k(1—¢€),(1—(1—€)5)1/5)

(2'3) integration on Ak,o"}’

(€a-e)¢(1-(1-9%)/%)
+/ log(1 — zy)dlog z
(

¢k,0)
integration on Ay 1y

From (2.2) and (2.3) we see that

(2.4) / log(1 — zy)dlogz = / log(1 — zy)dlogz (n=1,2).
72

n,1 In,1

) - log(1 — zy)dlog z is easily calculated, and we have

/ rege(n*a)
“/12,1
=Im/ log(1 — zy)dlogx
7,1
1 4 2 \1_k k
_1 o ogn 2 1, % k
0 =l(sm57r 251n51rk)kB(5,5
(2.5) and

=Im/ log(1 — zy)dlog
72,1 -

=ilb- z; (sin —gwk — sin gwk —sin %rk) %B(g, g)

3
1

Numerical computation of these values is easily doue.
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Integration of regc(w*3). We have

(2.6)

e 1—(ke
/7,.1?2%({“%“ =)

- (Z ., 1o8(cte ¢ Hualon(a = )~ dlogtc™))

-3 Cog1 — o)~ ol Hutan)) [, dos(cF +¢H).
k=0

711,1
We start in pp = (1 — ¢ (1 — (1 - €)®)%) and continue log(¢*z + ¢~*y) along Y21
n=1,2.

e
Calculation of [, log(¢Fz + C‘ky){ ZiogEZ"kC) )(n =1,2).
° og(¢ 'y

Since (*z + ¢(~*y,y,1 — ¥z are holomorphic and nonzero in the neighborhoods

of (0,1), if we let v, ; (n =1,2) be

Yop ="' — An,o‘Y1 4+ Cen + Ap17' — Ag 7' — Ci(n=1,2)

1

we see, by the same argument as in (2.2), that

/2 regc(m*f)

n,1

(2.7)
=/1 rege(n*f)
n,1
Let
1 n=1
2 n=2
A =
(n) -2 n=3
-1 n=4.

We first take the branches of log(¢¥z + (~*y) so that log(¢¥1 + ¢(~%0) = 2w A(k):
at (1,0) € 7, and continue this on 7,1,71. Let log ¥*™ be the continued value of
log(¢*z + (~*y) at the junction of A, ¢y and A, 7(= (¢",0)). We exhibit tables
of the values log ¢*+™.

The value in the third column (with (1,0) on the top) means the value of
log(¢*z 4+ ¢(~*y) when it is continued along 7, ; and comes back to (1,0).
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k (1.0) (¢.0) (10)  fy dlog(Crz+C¢ry
0 0 i 0 0
1 %m —Gg 7r.z —4%7::1 —2m
2 gzrz 3;”. g;m. | 0
3 —g*trz. —5m ——sgﬂrz 0'
4 —Em 0 Fm 2m1
10 (0 (1L0) [, dlog(¢te +¢*y)
0 %m’ 0 0
%m ——%m' %m' 0
%m %m %m' 0
——%m —2m —1—;-71'1 —271
—%m %m’ -g-m' 2me

We call the values in the first column(with (1,0) on the top) log(¢*)(1), the values
in the second column (with (¢™,0) on the top) log({ k+n) and the values in the third
column(with (1,0) on the top) log(¢*)(2). Then we have following proposition.

Proposition. Let

dlog(¢~*y)
dlog(1 — ¢*z)
dlog(¢*y)
dlog(1 — ¢*z)
dlog(¢™*y)
dlog(1 — ¢*z)
dlog(¢™*y)
dlog(1 — ¢Fz)
dlog(¢™*y)
dlog(1 — ¢Fz)
dlog(¢~*y)
dlog(1 — ¢*z)
dlog(¢™*y).

[’: 1 {log(C"x +(Fy) - log(C"+")}{ g1 ¢*2)
=Ll {log(¢¥z + ¢~*y) —log ¢*(1)} {
_ /A (et ) - log(¢¥+™)) {
+ /C " {log(¢*z + ¢ *y) — log(¢**™)} {
+/A"v”l {log(¢C*a + (*y) —log(¢*+™)} {
_ /Ao . {log(¢*z + ¢"*y) —log ¢*(2)} {

—/C {log(¢¥z +¢*y) —log ¢*(2)} {



35

Then

— (k2
el fee s 26)

Im/
T

1

dlog(1 — ¢*zx)

M- 1M 14

= og(¢¥z + ¢7*y) — log(¢*t"

dlog(1 — ¢*x) |
_ k.’l: —k, N\ __ o k+n =
= Im /7”’1 i {log(C +C y) 1 g(( )} { dlog(C_ky) (n 1’2)

We actually compute the last member of this equality.

§3 Numerical computation of the value of the L function. We will explain
how to compute numerically the value of L(H(X),2) which the determinant of
the regulator should represent. A general reference for this paragraph is [G-R].

By Weil [W2], L(H*(X),s) for Res > 3/2 can be written as an Euler product

LEH' (X),s)= [[ 2@
| primel#5
where P(T) = [J(1 - r()T/)

1

and [ denotes a prime ideal of Q(¢) and f is the order of {(mod 5). We denote Q(¢)
by K in the sequel.

==Y  x(@x(1-a

a€EOk [1a7#0,1

is the Jacobi sum. xy:(Ox/l)* — us is a character defined by

Ni-1

xi(a) = ¢¥ & a™F = ¢¥(modl).

We denote the character of the ideal group of K which is induced by 7 also by 7.
If we let o be the automorphism of K over Q given by

an(¢) = ¢*,
the Stickelberger relation gives
() = ((”3. (as ideals ofK)
in our case, and we have the congruence

() E 1(mod(1 — ¢)?).
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7([) can be determined from these conditions. Let xoo : K* — C* and ¢ : K* — pus
be the characters given by
Xool@) = aa??

and
7(a)
Xoo(@) '

We use the following theta series for computation.

p(a) =

O(p, Xoor¥) = Y T(()) exp(—2m(adys + a”*ay;)).
a€0k

We can get the value of L(H!(X),s) by the Mellin transform of this.
Let us denote the fundamental unit of Q(v/5)(= 1—‘%@) by u. Since the norm
from K to Q(v/5) of the group of units of K is generated by u?, we have

/ O(¥, Xoo, ¥)(Ny)’d*y
Ry xRy /(u?)

=f{root of unity in K}((27)™*T'(s))2L(H(C), s)

We denote by w the character Iy /K* — C* induced by 7. w = [1 wyisas
v place of K

follows. For finite v {5, if 7, € K is a generator of v, wy(m,) = 7((7)).

For v = (1 = {),wv(a) = p(a) for a € K*.

For v infinite, w(z) = 271,

Now we consider the standard function ® = [[®, on Ag attached to 7 in the
sense of Weil[W1], and its Fourier transform.

For finite v,we denote the maximal compact subringlof K, by r,. The local
factors @, for each v is:

For finite v { 5, ®, is the characteristic function of r,.

For v = (1 - (), ®, = ¢ on r} and zero outside r}.

For v infinite, ®,(z) = z exp(—27zT).

Let ®' be the Fourier transform of @ for some basic character x of Ax and by
the self dual Haar measure associated to it. Then by Weil[W1]

'(y) = x|8]}/*@x(by)

where & is a complex number with |k] = 1, and b = (b,) € Ik is such that
ord,(b,) = ord,a, + fy
Here (a,) is a differental idele of x and f is the conductor of w. We choose x so
that (b,) = 1 at all finite places (we can do this since the class number of K = 1).
Poisson’s summation formula gives

(3.1) B(0)+ Y 8(z8) = |21 (2'(0)+ Y ¥'(€7Y)).

£EK* £EK*®



37

for z € Ik. For i=1 and 3, let v; mean the infinite places of K which is given by
imbedding K to C by o;. Let y = (y,) € Ik be such that

for v finite, y, =1, and y,, = \/¥;.

Let b, € K* be such that Nk/Q(bl) = IDKI lNK/Q(f) ! and b3 = b7®. By [G-R]
Theorem3.1, IDKI 1N]{/0(f) =57%

When (3.1) is applied to z =y, we have the following equality.

> 0®) T che, ()€ furvs exp(—2m(I€|2y1 + 1672 |*ys))

EEK™ v finite ‘
=wby2 3" o(€) [ che. (€)0:5:EE(iiws) "
§EK* v finite

x exp(—27(|€by|* [y + [€72bs|* /y3))(ays) "
Dividing both sides by /y1y3, we get
(3.2)

Y 0@ [I che(€)E€™ exp(—2n (1612w + 167 %ys))

éEK* v finite

=k|b]3 28105 (y13) 2 Y 0€) TI che.(©)EET exp(—2n(IEb11* /2 + |€72b3 1% /ys))

¢EK* v finite

=k blag (y135) "2 Y 0(€) ] che, (E)EE7 exp(—2m([6bs]2/ys + IE7bs ]2 /ys)).

(EK* v finite

Here ' = byb3/ Ibllla\/‘,(2 and k«' equals to the root number associated to L(H'(X ), s).
By [G-R](loc. cit), '
k' =1

So (3.2) means

bi[? |bs)?
G(CP, Xoos Y1, y3) - 5(!/1!/3) 26(()07 Xoos Iylll 3 |;3I )‘

Byvthis formula the problem of convergence of the theta series for y near zero is
* settled, and the value of L(H(X),2) can be computed quite accurately.

Ratio of the determinant of the regulator and the value of L func-
tion. H1(X,27iR) has a natural Q structure given by H(X,27iQ), and from
what we have proved so far,it has another Q structure given by the image of the
regulator. The Beilinson conjecture predicts that determinant of the matrix of the
base change of these two Q structures coincides with L(?) (H 1(X ), 0) up to a rational
multiple. The author computed numerically

Jy2 rege(m*a) [ rego(na)
J, 2 crego(n*f) [ regc(?f*ﬂ)
(27 )2 LA (H I(X ),0)
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and verified that it coincides Wlth 5 up to 12 decimal place. We put here the value
of entries of the matrix and of L functlon.

2
1,1

/ rego(n*a) = —1.49583966208347069
A .

/ rego(n*a) = —1.784705124594349710
.

2
2,1

/ rege(n*B) = —0.6645758775848033518
5. .

1,1

/ rege(n* ) = —22.2610909571881774599
,.’2

2,1

L(H'(X),2) = 0.0006247146595905
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