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Abstract Recently, Rogers‘ dilogarithm identities have attracted much attention in the
setting of $confo al$ field theory as well as lattice model calculations. One of the connecting
threads is an identity of Richmond-Szekeres that appeared in the computation of central
charges in conformal field theory. We show that . the Richmond-Szekeres identity and its
extension by Kirillov-Reshetikhin can be interpreted as a lift of a generator of the third integral
homology of a finite cyclic $sub_{\Leftrightarrow}roup$ sitting inside the projective special linear $\circ roup$ of all
2 $x2$ real matrices viewed as a discrete group. This connection allows us to clarify a few of
the assertions and conjectures stated in the work of Nahm-Recknagel-Terhoven concerning the
role of algebraic K-theory and Thurston ‘

$s$ program on hyperbolic 3-manifolds. Specifically, it
is not related to hyperbolic 3-manifolds as suggested but is more appropriately related to the
group manifold of the universal covering group of the projective special linear $\circ roup$ of all
2 $x2$ real matrices viewed as a topological group. This also resolves the weaker $version’ of$ the
conjecture as formulated by Kirillov. We end with a summary of a number of open
conjectures on the mathematical side.
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\S 0. Introduction.

Very recently, much has been written about the Rogers’ dilogarithm identities and its

role in conformal field theory, see [BR], [KKMM], [FS] [K], [KR], [KP], [KN], [KNS],

[NRT]. For an excellent general survey for mathematicians concerning $hypergeome\sigma ic$

functions, algebraic K-theory, algebraic geometry and conformal field theory, see [V] and its

extensive section of references. For a recent review from the physics side, see [DKKMM]. In

the present work, we limit our attention to the special case of dilogarithm identities. In spirit,

it fits into the program surveyed by Varchenko [V]. Some, though not all, of the relevant

calculations have been carried out on both sides of the fence. Conjectures abound even in this

case. Most of our task consists of pulling together items that are scattered in the literature in

various forms. The new ingredient is to give a direct interpretation in terms of $\circ roup$

homology to account for the Richmond-Szekeres identity, see [RS], and its extension by

Kirillov-Reshetikhin, see [KR, II, (2.33) and Appendix 2]. What we show is that the basic

identities are those found by Rogers in [R]. Rogers‘ dilogarithm function then leads to a real

valued cohomology class defined on the third integral homology of the universal covering

group of $PSL(2,R)$ , viewed as a discrete group. The Richmond-Szekeres identity, see [RS],

and the Kinllov-Reshetikhin identities, see [KR II, (2.33) and Appendix 2], are the results of

restricting the evaluation of this cohomology class (the real part of the second

Cheeger-Chern-Simons class) to the inverse image of a suitable homology class that covered

the generator of suitable finite cyclic subgroup. This will then provide panial clarifications of

some of the assertions and conjectures made by Nahm-Recknagel-Terhoven [NRT] related to

algebraic K-theory [B1] and Thurston’ $s$ program on hyoerbolic 3-manifolds, [Th].

Specifically, we show that it is more appropriately related to the $\epsilon’ roup$ manifold underlying

the universal covering group of $PSL(2,R)$ .
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\S 1. Rogers’ Dilogarithm.

Rogers‘ dilogarithm (also called Rogers‘ L-function) was defined in [R]:

$L(x)=-\underline{17}t\int_{0}^{x}\frac{\log x}{l- x}dx+\int_{0}^{x}\frac{\log(1- x)}{x}$ dx}

tl.l) $= \sum_{n>0}\frac{x^{n}}{n^{2}}+7\sim 1.(\log x)\cdot(\log(1- x)),$ $0<x<1$ .

$L(x)$ is real analytic, strictly increasing and $\lim_{xarrow 1}L(x)=\pi^{2}/6$ .

Rogers showed that $L$ satisfied the following two basic identities:

(1.2) $L(x)+L(1- x)=\pi^{2}/6,0<x<1$ .

(1.3) $L(x)+L(y)=L(xy)+L(\frac{x- xy}{1- xy})+L(\frac{y- xy}{1- xy}),$ $0<x,$ $y<1$ .

lf we use $(\prime 1.\underline{)})$ , take $s_{1}=(1- x)/(1- xy)$ and $s_{2}=y(1- x)/(1- xy)$ so that $y=s_{2}/s_{1}$ and

$x=t1- s_{1})/(1- s_{2})$ with $0<s_{2}<s_{1}<1$ , then (1.3) is seen to be equivalent to:

(1.4) $L(s_{1})- L(s_{2})+L(\frac{s_{2}}{s_{1}})- L(\frac{1- s_{1}^{- 1}}{1- s_{2^{1}}^{-}})+L(\frac{1- s_{1}}{1- s_{2}})=_{T^{\pi_{-}^{2}}},0<s_{2}<s_{1}<1$ .

$- 1$ $- 1$

If we set $r_{i}=s_{i}$ , and define $L(r)=- L(r )$ for $r>1$ , then (1.4) can be rewritten in the form:

$- 1$

(1.5) $L(r_{1})- L(r_{2})+L(\frac{r_{2}}{r_{1}})- L(\frac{r_{2}- 1}{r_{1}- 1})+L(\frac{1- r_{2}}{1- r_{1}^{- 1}})=_{T^{2}’}^{\pi}-- 1<r_{1}<r_{2}$.
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Motivated by [DS1], Rogers ‘ dilogarithm was shifted in [PS] to:

(1.6) $L^{PS}(x)=L(x)arrow\pi^{2}/6=- L(1- x),$ $0<x<1$ .

PSIf we replace $L$ by $L$ throughout, then (1.2) and (1.4) become:

(1.7) $L^{PS}(x)+L^{PS}(1- x)=-\pi^{2}/6$,

(1.8) $L^{PS}(x)$ . $L^{PS}(y)+L^{PS}(\frac{y}{x})- L^{PS}(\frac{1- x^{- 1}}{1- y^{- 1}})+L^{PS}(\frac{1- x}{1- y})=0,0<y<x<1$ .

A huge number of identities have been found in connection with Rogers’ dilogarithm. The

situation is somewhat similar, and is often, related to trigonometry, where the basic identities

are the two additional formulae for the sine and cosine function, which are just the coordinate

description of the group law for SO(2) or $U(1)$ . This analogy can be made more precise.

Namely, $U(1)$ , more appropriately, GL(I,C) $\cong C^{x}$ is just the first Cheeger-Chem-Simons

characteristic class in disguise. This is well-known and tends to be overlooked.

Richmond-Szekeres [RS] obtained the following identity (in a slightly different form)

from evaluating the coefficients of certain Rogers-Ramanujan partition identities as

generalized by Andrews-Gordon:

(1.9) $\sum_{1\leq i<}\lrcorner L(d_{i})=T^{\pi^{2}}-$
$\cdot$ $\frac{2r}{2r+3},$ $d_{j}=\frac{sin^{2}\theta}{\sin^{2}(j+1)\theta},$ $\theta=\frac{\pi}{2r+3}$ .

This has been extended by Kirillov-Reshetikhin [KR] to:

(1.10) $\sum_{1\leq j\leq n- 2^{L(d}j^{)=-}B^{\pi^{2}}}-$
$\cdot$ $\frac{3(n- 2)}{n}$. $d_{j}=\frac{sin^{2}\theta}{\sin^{2}(j+1)\theta},$ $\theta=\frac{\pi}{n}$.
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Apparently, identity (1.9) arose in the study of low-temperature asymptotics of entropy in the

RSOS-models, see [ABF], [BR], and [KP] while (1.10) arose in the calculation of $ma_{a}netic$

susceptibility in the XXZ model at small magnetic field, see [KR]. They are connected to

conformal theory in terms of the identification of the right hand sides as the central charges of

the non-unitary Virasoro minimal model and with the level $\ell A_{1}^{(1)}$ WZW model respectively,

see [BPZ], [Z2], [K], [KN], [KNS], [DKKMM], [KKMM], [Te], $\cdots$ . Our goal is to show that

these identities can be $unders\iota\infty d$ in terms of the evaluation of a Cheeger-Chem-Simons

characteristic class on a generator of the third integral homology of a finite cyclic group of

order $2r+3$ and $n$ respectively.

\S 2. Geomeuy and algebra of volume calculations.

In any sort of volume computation, the volume is additive with respect to division of

the domain into a finite number of admissible pieces. Depending on the coordinates used to

describe the domain the volume function must then satisfy some sort of “functional equationtt.

This is the geometric content behind the Rogers ‘ dilogarithm identity. The geometric aspect

was described in [D1] while some of the relevant algebraic manipulations were canied out in

[PS] (up -to some sign factors that only became important in [D1]). To get a $prec\ddagger se$

description, it is necessary to examine [DS1], [DPS] and [Sa3]. These involved use of

algebraic K-theory. We review the ideas and results but omit the technical details.

To begin the review, we recall the definition of some commutative groups (called the

”scissors congruence groups“, cf. [DPS]). Let $F$ denote a division ring (we are only interested

in three classical cases: $R=$ real number, $C=$ complex numbers, $H=$ quatemions.). The

abelian group $P_{F}$ is generated by symbols: $[x],$ $x$ in $F,$ $x\neq 0,1$ and satisfies the following

identity for $x\neq y$ :
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$- 1$

(2.1a) [xyx ] $=[y]$ , (this is automatic for fields)

$- 1$ $- 1$ $- 1$ $- 1$ $- 1$

(2.1b) $[x]-[y]+[x y]-[(x- 1) (y- 1)]+[(x - 1) (y- 1)]=0$

This group was studied in [DS1] for the case of $F=$ C. It is closely related to, but not

identical to, the Bloch group that was studied in [B1]. A second abelian group $P\Theta$ is defined

by using generating symbols $[[x]],$ $x$ in F- {0,1}, with defining relations:

(2.2) same as $(2.1)withf[z]]inplaceof[z]$
$- 1$

(2.3) $[[x]]+[[x J]=0$

(2.4) $[[x]]+[[1- x]]=cons\Theta$ (depending on F).

The following result can be found in [DPS]:

(2.5) $0arrow\#/(P)^{2}-P_{F}-P(F)arrow 0$ is exact for $F=R,$ $C$, H.

$- 1$

The first map in (2.5) is defined by sending $x$ in F- {0,1} to $[x]+[x ]$ . The second map then

sends $[x]$ to $[[x]]$ . In particular, when $F=C$, we may set $[x]=0$ for $x=\infty,$ $0,1$ and remove

the restriction $x\neq y$ in (2.1) by adopting the convention: meaningless symbols are taken to be

zero, see [DS1]. For the division ring $H$, we observe that every element of $H$ is conjugate to

an element of C, thus P(H)isaquotient of P(C).

The geometric content of (2.1b) is best seen by thinking in terms of a Euclidean

picture. Suppose we have 5 points in Euclidean 3-space so that $p_{1},$ $p_{2},$ $p_{3}$ form a horizontal

triangle while $p_{0},$ $p_{4}$ are respectively above and below the triangle. The convex closure is

divided by the triangle into two tetrahedra and also divided into three tetrahedra by the line

joining $p_{0}$ and $p_{4}$ , see (Fig.1)
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(Fig. 1)

Thus, if any function of a tetrahedron is additive with respect to finite decompositions, it

would follow from (Fig. 1) that there should be a 5 term identity to be satisfied by such a

function.

We examine the special case of $F=$ C. Here $P_{C}=P(C)$ is known to be a Q-vector

space of continuum dimension, see [DS1]. It is best to consider the (-l)-eigenspace $P(C)^{-}$ of

$P(C)$ under the action of complex conjugation. It is classically known that the projective line

$P^{1}(C)$ can be viewed as the boundary of the hyperbolic 3-space. An ordered set of 4

non-coplanar roints on $P^{1}(C)$ (in terms of the extended hyperbolic 3-space) determines a

unique ideal (or totally asymptotic) tetrahedron of finite invariant volume (by using the

constant negative curvature of hyperbolic 3-space). Since the orientation preserving $isome\sigma y$

group is $PSL(2,C)$ , we can take 3 of the 4 vertices to be $\infty,$ $0,1$ , the 4-th point is then defined

to be the $\prime\prime c^{P_{\backslash }\bigcap,\cdot,\backslash }l\backslash$-ratio” of the 4 distinct points (which may determine a degenerate tetrahedron

when they are coplanar). (2.1b) is the result of taking 5 distinct points: $\infty 0,1,$ $x$ and $y$ as

pictured in (Fig. 1). For a general division ring $F,$ $P_{F}$ merely formalizes the discussion. The

difference between $P(F)$ and $P_{F}$ amounts to permitting some of the vertices to be duplicated.

(2.3) $and\neg(2.4)$ express the fact that oriented volume changes sign when the exchange of two

vertices reverses the orientation. The equality $P_{C}=P(C)$ simply means that the introduction

of degenerate tetrahedra with duplicated vertices does not make any difference (it does make a

difference in the case of $F=R$). With (2.3) in place, it is now evident that (1.7) and (1.8) are

directly related to(2.4)and(2.1b). The problem is that our explanation so far is based onF $=$

PS
$C$ while $L$ dealt with $F=R$. This will be reviewed in the next section. It should be noted

that the volume calculation makes perfectly good sense for tetrahedra with venices in the finite

part of the hyperbolic 3-space. It is known that any such tetrahedron can be written in many

different ways as a sum and difference of ideal tetrahedra, see [DS1]. A general volume
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formula for a tetrahedron is quite complicated. However, the volume of an ideal tetrahedron is

quite simple. It is given by the imaginary part of the complexified Rogers dilogarithm

function (up to normalization) evaluated at the cross-ratio.

We end the present section by giving the $s\sigma uc\iota ures$ and inter-relations of the groups

$P\Theta,$ $F=R,$ $C,$ $H$, with $R\subset C\subset H$ . The details can be found in [DPS] and $\int Sa3$ ].

(2.6) $P(C)=P(C)^{+}\oplus P(C)^{-}$.

This is a Qvector space direct sum in terms of $itS\pm 1$ eigenspaces under the action of complex

conjugation. Both summands have continuum dimension.

(2.7) $0-Q1Zarrow P(R)-P(C)^{+}-\Lambda_{Z}^{2}(R1Z)-0$ is exact.

$P(R)$ is the direct sum of $Q\not\subset$ and a Q-vector space of continuum dimension.

(2.8) $P(C)^{+}-P(H)arrow 0$ is exact and $P(H)\cong\Lambda_{Z}^{2}(R^{+})$ .

The group $P(C)^{-}$ is the “scissors congruence group” in hyperbolic 3-space, see $\lfloor DS1$ ]. The

kemel of the homomorphism in (2.8) is related to the “scissors $con_{\Leftrightarrow}ruence$ group modulo

decomposables” in spherical 3-space and is conjecturally equal to it, see $|DPS|$ . These results

depend on algebraic K-theory and use, in particular, a special case of Suslin ‘
$s$ celebrated

solution of the conjecture of Lichtenbaum-Quillen, see [Su2].
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\S 3. Rogers‘ Dilogarithm and Characteristic Classes.

As reviewed in the preceding sections, there is a formal resemblance between the

Rogers‘ dilogarithm identities and volume calculation in hyperbolic 3-space. However, the

underlying space is quite different. The explanations were carried out in [D1]. For the

convenience of the reader, we review the results. The relevant characteristic class is that of

the Cheeger-Chern-Simons characteristic class $\hat{c}_{2}$ which lies in the third cohomology of

$SL(2,C)$ viewed as a discrete group and where the coefficients lie in $CZ$ In general, one has

$\hat{c}_{n}$ which lies in the $(2n- 1)- th$ cohomology group of GL(m,C), $m\geq n$ , viewed as a discrete

group, where the coefficients lie in $\mathfrak{X}$. The standard mathematical notation for this

cohomology group is $H^{2n- 1_{(BGL(m,C)}\delta_{(y_{Z)}}},$ , this is the group cohomology where $GL(m,Q$ is

given the discrete topology (the superscript $\delta$ emphasizes this fact). $\hat{c}_{1}$ is nothing more than

the determinant map $w_{1}th$ kernel SL(m,C). With the replacement of GL by SL, $\hat{c}_{1}$ becomes $0$ .

The replacement of GL(m,C) by GL(n,C) arises from homological stability theorems, see [Sul]

(a simplified version can be found in [Sa2]). In general, $\hat{c}_{n}$ is conjectured to be connected to

the n-polylogarithm, see [D2 and D3]. Although we are only interested in $\hat{c}_{2}$ , we will state the

results for general $n$ . The construction arises by starting with the Chem form $c_{n}$ (a $2n$-form)

which represents an integral cohomology class of the classifying space BGL(n,C) where

GL(n,C) is now given the usual topology. Since we have replaced the usual topology by.the

discrete topology (this amounts to “zero curvature condition”), it follows $f\infty m$ Chem-Weil

theory (where closed forms are viewed as complex cohomology classes) that $c_{n}$ can be written

as the differential of a (2n-i)-form, (for $n=2$ this is the Chem-Simons form that appears

ubiquitously in physics). When the coefficients are taken in $C/Z$, this (2n-l)-form is closed

and leads to the class $\hat{c}_{n}$ in $H^{2n- 1_{(BGL(n,C)^{\delta},C/Z)}}$ through the exact sequence:

(3.1) $0-Zarrow Carrow C\mathfrak{X}-0$.
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We now concentrate on $n=2$. If we take the coefficients to be $ca$, then the characteristic

class $\hat{c}_{2}$ has a purely imaginary pan and a real pan. The purely imaginary pan has values in

$R$ and is related to volume calculation in hyperbolic 3 space while the real part lies in $R/Z$ and

is related to volume calculation in spherical 3-space. These volume calculations are classically

known to involve the dilogarithm function. See [C] for the details related to the work of

Lobatchevskii and Schlafli respectively. The integer ambiguity in the spherical case arises

from the fact that a large tetrahedron can be viewed as a small tetrahedron on the “back side“

of the sphere with a reversed orientation. Thus its volume is only unique up to an integer

multiple of the total volume of the spherical 3-space.

For the Rogers’ dilogarithm, the space is actually the group-space $\overline{S}$ of the universal

covering group $PSL(2,R)^{\sim}$ The task of defining a tetrahedron and calculating its volume

becomes more delicate. If we selecta base pointp in S, then any point can be written as g(p)

for a uniquely determined group element $g$ of $PSL(2,R)^{\sim}$ We first define a left invariant

”geodesic” in the group that joins 1 to $g$ (this definition is asymmetric). This can be

accomplished by exponentiating a Cartan decomposition of the Lie algebra of $PSL(2,R)^{\sim}$ In

essence, we coordinatize $PSL(2,R)^{\sim}$ by $RxH^{2}$ whele $H^{2}$ denotes the hyperbolic plane.

Inductively, we can then define a “geodesic cone“ for any ordered set of $n+1$ points, $n\geq 0$ , see

(Fig. 2). This is similar to [GM] where Rogers dilogarithm appeared in terms of yolumes in

Grassmann manifolds of 2-planes in $R^{4}$ . Our interpretation is dual to [GM] since the transpose

of a 4 $x2$ matrix is a 2 $x4$ matrix. Namely, for the ordered set $(p_{0}, \cdots,p_{n})$ , the cone is the

collection of all points on the “geodesics“ from $p_{0}$ to the “geodesic cone“ inductively defined

for $(p_{1}, \cdots,p_{n})$ . For the definition of volume $(n=3)$ , the next step is to show that it is enough

to consider the case where the 4 vertices are close to each other. In fact, in terms of the

Cartan coordinates of the group elements, one may assume that the $\theta$-coordinates are strictly

positive and small (this involves changing by a boundary which causes no problem because the

volume is obtained by evaluating a 3-cocycle on the chain, in essence we invoke Stoke’s
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Theorem). We next form the boundary $Rx\partial H^{2}$ where $\partial H^{2}=P^{1}(R)$ is the projective line

over the real numbers (which can be identified with $t-\infty$ } $\cup R$ by using the slopes in the right

half plane as in [$PS|$ ). At this point, we begin to mimic the hyperbolic 3-space and move $p$

continuously towards $\{0\}xP^{1}(R)$ (this amounts to right multiplication). When $p$ lands on
$\{0\}xP^{]}(R)$ , so will all four vertices so that we have the analog of an ideal hyperbolic

tetrahedron. The volume (up to a normalizing factor) is just the value of the Rogers

dilogarithm evaluated on the ”cross ratio” of the ordered set of vertices viewed as points of

$P^{1}(R)$ (adjustments are needed for the degenerate cases). The situation now resembles the case

of spherical 3-space. Namely, the final volume will involve an integer (after normalization)

ambiguity which depends on the path of $p$ . We ignore the question of representing the original

tetrahedron as $c_{dms}$ and differences of these “ideal tetrahedra“ since our concem is to interpret

the value of the Rogers‘ dilogarithm as a volume.

(Fig. 2).

We summarize this discussion in the form, cf. [Dl, Th. 111]:

Theorem 3.2. The restriction of the second Cheeger-Chem-Simons characteristic class

$\hat{c}_{2}$ to $PSL(2,R)$ can be lifted to the universal covering group $PSL(2,R)^{\sim}$ and is then given by

the Rogers $diloga\Pi thm$ (more precisely, by $L^{PS}$ through L).

A more detailed discussion will be given in the following sections.
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\S 4. Homology of Abstract Groups.

The basic reference is [Br]. Let $G$ be an abstract group. We consider the

non-homogeneous fornulation of the integral homology of $G$ with integer coefficients Z The

j-th chain group $C_{j}(G)$ is the free abelian group generated by all j-tuples [ $g_{1j^{1}}^{|\cdots|_{o}}\sigma$ with $g_{i}$

ranging over G, j $\geq 1$ . $C_{0}(G)$ is the infinite $cyclic_{o}roup$ generated by [ $\cdot|$ . Such aj-cell should

be identified with each of the formal j-simplices $(g_{0},g_{0}g_{1},g_{0}g_{1}g_{2}, \cdots,g_{0}g_{1}\cdots g_{j})$ as $g_{0}$ ranges

over G. The boundary homomorphism: $\partial_{j}:C_{j}(G)-C_{j- 1}(G)$ is defined by translating the

usual boundary of the formal j-simplex. For example, $\partial_{3^{[g}1^{lg}2^{1g}3^{]}}=[g_{2}lg_{3}|-|g_{1}g_{2}Ig_{3}]+$

$[g_{1}lg_{2}g_{3}]-[g_{1}lg_{2}]$ . The j-th integral homology group of $G,$
$H_{j}(G,Z)$ , or simply $H_{j}(G)$ . is

defined to be $ker\partial_{j}/im\partial_{j+1}$ . $H_{0}(G)$ is just $Z$ while $H_{1}(G)$ is canonically the commutator

quotient group of $G$ with the class of $[g]$ mapped onto the coset of $g$ in the commutator

quotient group. We note that homology groups can also be defined for any G-moduleM(e.g.

any vector space on which $G$ acts by means of linear transformations). This generalization is

often needed for computational purposes and requires more care.

In general, the procedure described in the preceding paragraph is not very revealing.

Somewhat more revealing is to use the action of $G$ of a suitably selected set X. Typically, we

end up describing the homology groups through a spectral sequence that reveals a composition

series. If X is the underlying set of $G$ under the left multiplication action and the spectral

sequence $degenerates^{\prime 1}$ . In the case of $PSL(2,R)^{\sim}$, we can take the space X to be that of $P^{1}(R)$

$=\{0\}xP^{1}(R)$ which is viewed as pan of the boundary of the group space S. The spectral

sequence is the algebraic procedure to keep track of the geometry. If $p$ is a base point in the

group space $\tilde{S}$ , the 3-cell $[g_{1}lg_{2}lg_{3}]$ is an abstraction of the “geodesic“ 3-simplex

$(p,g_{1}(p),g_{1}g_{2}(p),g_{1}g_{2}g_{3}(p))inthegroupspace\tilde{S}$ . $Ifpismovedto\infty=R()inP(R),$$thenwe01l$
have an “ideal” 3-simplex. Although the action of $PSL(2,R)^{\sim}$ on $\tilde{S}$ is faithful, its action on
$P^{1}(R)$ is not. In fact, it factors through $PSL(2,R)$ by way of the following exact sequence:
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(4.1) $0-Z\cdot carrow PSL(2,R)^{\sim}-PSL(2,R)arrow 1$ .

The results in [PS] and [DPS] can be recast and summed up by the $follow\dot{u}lg$ commutative

$dia_{\Leftrightarrow}ram$ of maps where the rows and columns are exact:

$0$ $0$

$\downarrow$
$\downarrow$

$Z$ $=$ $Z\cdot c$

$\downarrow$ $\downarrow$

(4.2) $0$ $arrow H_{3}(\tilde{S},Z)-$ PS(R)

$\downarrow$ $\downarrow\eta$

$d^{2}$ 2 $+$
$\underline{\sigma}$

$0arrow$ $Z_{2}arrow H_{3}(S,Z)$ $P(R)$ – $\Lambda_{Z}(R)$

$\downarrow$ $\downarrow$

$0$ $0$

In (4.2), we abuse the notation and set $S=PSL(2,R)$ . PS(R) is the abelian group generated by

all cross-ratio symbols $\{r\}=(\infty,0,1,r),$ $r\in R^{x}\cup\{\infty\}$ , and subjected to the defining relations, cf.

(1.5), (1.8):

$- 1$

(4.3) $\{r_{1}\}-\{r_{2}\}+\iota\frac{r_{\underline{7}}}{r_{1}}\}-t\frac{r_{2}- 1}{r_{1}- 1}\}+t\frac{1- r_{2}}{1- r_{1}^{- 1}}\}=0,1<r_{1}<r_{2}$,

$- 1$

(4.4) $\{r\}+\{r \}=0,$ $r>1$ ,

(4.5) $\{\infty\}=2\{2\}=- 2\{1/2\}$ and $\{1\}=0$ ,

$- 1$

(4.6) {-r} $=\{1+r \}+\{\infty\},$ $r>0$ .
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These involve slight modifications of the results in [PS]. The group PS(R) is isomorphic to the

group $H_{3}(W/S)$ of [PS] if we simply view (4.4) through (4.6) as the definition of $\{s\}$ for

$0<s<1,$ $s=\infty$ or 1 and $s<0$ respectively. More precisely, we take as j-cells the ordered

(j+l)-tuples of elements of the universal covering group $R$ of $PSO(2,R)$ so that the convex

closure of these points cover an interval of length less than $\pi$ (length of $PSO(2,R)$ ). Moreover,

we also enlarge the action to the “universal covering group“ of $PGL(2,R)$ . We note that in

general, the universal covering group of a disconnected Lie group is not well defined. In the

present case, it is well defined and happens to be a semi-direct product of the universal

covering group of $PSL(2,R)$ by an element of order 2 that inverts its infinite cyclic center. The

later results in [DPS] and [Sa3] showed that $H_{3}W/S$ ) is a Q-vector space In [PS], it was

shown that $H_{3}W/S$ )$/Z\cdot 48\{2\}$ $\supset H_{3}(SL(2,R),Z)$ and that $H_{3}(W/S)/Z\cdot 12\{2\}$ $\cong P_{R}\supset$

$H_{3}(PSL(2,R),Z)$ . The first arose by showing that a certain element $c(- 1,- 1)=8c$ is mapped

on$to\pm 48\{2\}$ (with a little care, the image is $- 48\{2\}$ ). The second $invol\backslash \prime es$ a direct argument.

We note that $H_{3}(SL(2,R),Z)$ maps surjectively to $H_{3}(PSL(2,R),Z)$ with kemel $Z_{4}$ . This

accounts for various $Z_{2}s$ . $(4.2)$ now results from (2.5) with $c$ mapped by $\eta$ onto -\’o[[2]] in

$P(R)$ , namely, $P(R)\cong H_{3}W/S)/Z\cdot 6\{2\}$ . From section 1, we have a suIjective homomorphism:

(4.7) $L^{PS}$ : Ps$(R)-R,$ $L^{PS_{(\{s\})=L(S)--}\pi^{2}}\tau^{=- L(1- s),0<s\leq}1$ .

In particular, $L^{PS}(\{1/2\})=-\pi^{2}/12$ and $L^{PS}(\{r\})=L(1- r^{- 1})$ , for $1\leq r\leq\infty$ .

This leads to suIjective homomorphisms:

$L_{R}^{PS}$ : $P_{R}-\vdash R$ mod $Z\cdot(\pi^{\underline{?}})$

(48)
$L^{PS}(R)$ : $P(R)-arrow R$ mod $Z\cdot(_{T^{2}}^{\pi})$ .
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Using (2.5) and (2.7) we then have:

$L_{R}^{PS}$ : $H_{3}(PSL(2,R),Z)-R$ mod $Z\cdot(\pi^{2})$ ,

(49)
$1_{d}^{PS}(R)$ : $H_{3}(PSL(2,R),Z)-R$ mod $Z\cdot(^{\pi}T^{2_{)}}$

PS PS
$\llcorner R$ is injective on torsion elements and $L$ (R) maps an element of order $m$ to one of order

$m$ or $m/2$ according to $m$ is odd or even.

Remarks 4.10: (i) $\vee|n$ using the extension to $PGL(2,R)$ and its universal covering group,

[ $[r|]$ is the usual cross-ratio symbol associated to $(\infty,0,1,r)$ for $r$ in R- {0,1}, see [PS]. Thus,

$\{r\}$ is mapped to $[[r]]$ . (ii) $H_{3}(PSL(2,R),Z)$ is conjectured to be equal to $H_{3}(PSL(2,R^{alg}),Z)$

where $R^{alg}$ denote the field of all real algebraic numbers. This follows from a similar

conjecture for $C$ in place of R. Thus, the two maps in (4.9) are not expected to be surjective.

So far, all the non-trivial elements in the image are obtained by using algebraic numbers. (iii)

It is both convenient and essential to consider the group $H_{3}(PSL(2,C),Z)$ or $H_{3}(SL(2,C),Z)$ .

Namely, $C$ admits a huge group of automorphisms while $R$ has only the trivial automorphism.

While we do not know the injectivity of $\hat{c}_{2}$ : $H_{3}(SL(2,C),Z)rightarrow \mathfrak{X}$, we do know that if a

non-zero element of $H_{3}(SL(2,C^{alg}),Z)$ can be detected by a composition $\hat{c}_{2}0\tau$ for a suitable

automorphism $\tau$ of C. This is a theorem of Borel, see [Bo]. Except when $\tau$ is the identity or

the complex conjugation map, the image $\tau(R)$ is everywhere dense in C. It is the use of the

hyperbolic volume interpretation that ultimately leads to conclusion that $H_{3}(SL(2,C),Z)$ and

$H_{3}(SL(2,R),Z)$ both contain a Q.vector subspace of infinite dimension.
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\S 5. Connection with Richmond-Szekeres and Kirillov-Reshetikhin Identities.

Granting the assertions in the preceding reviews,. we can now describe the relation of

the above discussions with the Richmond-Szekeres identity (1.9) and the extension by

Kirillov-Reshetikhin (1.10). As described in [PS], if $G$ is a $cyclic\Leftrightarrow roup$ of order $m$ with

generator $g$ , then the following chain is a (2j-l)-cycle and its class generates $H_{\underline{\gamma}}j- 1^{(G,Z)}\cong Z_{m}$ ,

$j>0$ :

(5.1) $c_{m}^{(j)}=\sum[g^{1}x_{1}\mathfrak{l}g\mathfrak{l}\cdots Ix_{j- 1}lg],$
$x_{i}$ range overG independently.

More generally, $\sum[g^{i(1)}1x_{1}1\cdots Ix_{j- 1}1g^{i(!)}]$ is homologous to $i(1)\cdots:0)\cdot c_{m^{(j)}}$ . The superscript

is used to remind us that the class behaves as aj-th power character on the cyclic $\circ roups$ . We

now map $G$ into $S=PSL(2,R)$ by sending $g$ to the following matrix:

$\{\begin{array}{llll}cos \theta - sin \thetasin \theta cos \theta\end{array}\},$ $\theta=\frac{\pi}{m}$ .

The map $\sigma$ in (4.2) sending $H_{3}(S,Z)$ into $P(R)$ is obtained by sending the 3-cell $|g_{1}lg_{2}lg_{3}|$ to

the cross-ratio symbol of $(\infty,g_{1}(\infty),g_{1}g_{2}(\infty),g_{1}g_{2}g_{3}(\infty))$. Here $\infty=R()01$ $r=R()r1$ more

generally, $y/x=R()yxx\geq 0$ and $PGL(2,R)$ acts on these lines through matrix multiplication.

However, as discussed in section 3, in the evaluation of volume, chains may be modified by

boundaries. For the special form of the 3-cells that appears in $c_{m}$

(2) this is not a serious

problem. In any event, we have a canonical identification of the torsion subgroup:

(5.2) $tor(H_{3}(PSL(2,R),Z))\cong Q\pi/Z\pi$, the rational rotations in $PSO(2,R)$ .

We now consider $c_{m}=c_{m^{(2)}}$ and note that $\sigma(c_{m})$ is of order $m$ or $m/2$ in $P(R)$

according to $m$ is odd or even. Thus, we will restrict ourselves to $m>2$ . { $gIg^{\dot{\int}}lg$ ] corresponds
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to $(\infty,g(\infty),d^{+\iota_{(}}\infty),g^{\dot{I}^{+2}}(\infty))$ . Except when $j=0,$ m-2, m-l, this is just $11Q_{j}^{2}/Q_{j- 1^{Q}j+1^{]]}}$ , where

$Q_{j}=Q_{j}(\theta)=\sin 0+1)\theta/\sin\theta,$
$\theta=\prime Um$ .

When $j=0$. [glllg] is $0$ under the usual normalization. The corresponding formal

3-cell has two identical adjacent vertices and represents $0$.

When $j=m- 2>0$ . We have the formal 3-cell $(\infty,- 1,1,\infty)$ independent of $m$ . It is the

same as $(\infty,0,1,\infty)$ and is assigned the cross ratio symbol { $\infty$ ). By taking the boundary of

$(\infty,0,1,2,\infty),$ $\{\infty\}$ is seen to be homologous to $2\{2\}=- 2\{1/2\}$ as in (4.5).

When $j=$ m-l $\geq 2$ . We have the forInal 3-cell $(\infty,0,\infty,0)$ independent of $m$ . It is the

boundary of $(\infty,O,\infty,O,1)$ . Thus, we set it to0.

To see how the preceding assignments work, we consider the cases: $m=3$ and 4.

When $m=3,$ $\sigma(c_{3})=[[\infty]]$ and $L^{PS}(\{\infty\})=\pi^{2}/6$ . This represents an element of order

3 in $R$ mod Z. $(\pi^{2}/2)$ .

When $m=4,$ $o(c_{4})=[[\infty]]+[[2]]$ and $L^{PS}(\{\infty\})+L^{PS}(\{2\})=\pi^{2}/6+\pi^{2}/12=\pi^{2_{/}},4$ .

This represents an element of order 2in $R$ mod $Z(\pi^{2}/2)$ .

We now go to the general case. Form $>2,$ $wehave$ :

$\sigma(c_{m})=[[\infty]]+\sum_{1\leq j\leq m- 3^{[[\frac{Q_{j}^{2}}{Q_{j- 1}Q_{j+1}}]]}’}$

(5.3)
$Q_{j}=Q_{j}(\theta)=\frac{\sin(j+1)\theta}{\sin\theta}$. $\theta=\frac{\pi}{m}$.
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The above calculation is purely formal and the only reason that $\theta$ is chosen to be $\prime y_{m}$ arises

from the fact that the expression in (5.1) represents the image of an element of order $m$ or $n\vee 2$

in $H_{3}(S,Z)$ . The expression for $Q_{j}$ is well known in terms of representation theory. Namely,

consider the irreducible representations of $SL(2,C)$ of finite dimension. It is well known that

there is exactly one in each dimension $n+1\geq 1$ . It is realized in the n-th symmetnc powers of

the fundamental representation of $SL(2,C)$ on $C^{2}$. This is the spin $\mathcal{N}2$ representation in

physics. Evidently, the matrix diag$(z,z^{- 1})$ is represented by diag$(z^{n},z^{n- 2},\cdots,z^{- n})$ . $Q_{j}(\theta)$ is
$- 1$

just the trace of diag$(z,z )$ in the spin $j/2$ representation where $z=\exp(\iota\theta)$ . The following

lemma results from looking at the character of the representation theory of $SL(2,C)$ :

Lemma 5.4. Let $S(i)$ denote the i-th symmetric tensor representation of $SL(2,C),$ $i>0$ .

Let j, p, q $>0$ . Then $S(p+j- 1)\otimes S(q+j- 1)\cong S(p- 1)_{\Phi}S(q- 1)\oplus S(p+q+j- 1)\otimes S(|- 1)$ holds. (Note:

the representation $S(i)$ has degree $i+1.$ )

$- 1$

For the proof, it is enough to look at diag$(z,z )$ . If we consider the special case of $z=$

$\exp(\iota\theta),$ $p=q=1$ , we get $Q_{i}^{2}=Q_{i- 1}Q_{i+1}+1$ . Since $Q_{j}^{2}=1/d_{j}$ by definition, we have:

(5.5) $\sigma(c_{m})=[[\infty]]+\sum_{1\leq j\leq m- 3^{[[(1- d_{j})^{- 1}]]}’}1\leq j\leq m- 3$ .

The right hand side of (5.5) is $[[ \infty]]+2\cdot\sum_{1\leq j\leq k- 1}[[(1- d_{j})^{- 1}]]$ for $m=2k+1$ and is $[[\infty]]+$

$[[(1- d_{k})^{- 1}]]+2\cdot\sum_{1\leq j\leq k- 1^{(1- d_{j})^{- 1}]]}}$ for $m=2k+2$.

We next have the following elementary result:

Lemma 5.6. Let $F:Qarrow Q$ be an additive homomorphism so that $F(Z)\subset Z$ and so

$thatF:Q/Z\cong Q/Z$. ThenF $=\lrcorner+d$ . $IfF(1/3)\equiv- 1/3mod Z,$ $thenF–arrow Id$.
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$Pr\infty f$. Recall that $F$ is just multiplication by a rational number because division by

integers is unique. The two restrictions on $F$ force $F$ to be multiplication $by\pm 1$ . The final

restriction forces $F$ to be minus identity.

We can now apply Lemma 5.6 to obtain the following:

$W\infty rem5.7$ . Form $\geq 3,$ $L^{PS}(R)(o(c_{m}))=-l/mmod Z\cdot(\pi^{2}/2)$. In general, we have

the congruence Kirillov-Reshetikhin identity:

$\sum_{1\leq j\leq m- 2}L(\frac{sin^{2}\frac{\pi}{m}}{\sin^{2}\frac{(\overline{J}+1)\pi}{m}})=-T^{2}\pi.\frac{3(m- 2)}{m}\equiv-\frac{\pi^{2}}{m}$ rnod $Z\cdot(-T^{2_{)}}\pi$ .

In particular, we have $\iota he$ congruence Richmond-Szekeres identity for $m=2k+1$ :

$\sum_{1\leq j\leq k- 1}L(\frac{sin_{TT+T}^{2\pi}}{\sin^{2}\frac{(J+1)\pi}{2k+1}})=\frac{\rho_{(2k- 2)}}{6\cdot(2k+1)}$ mod $Z\cdot(^{\pi}\Gamma^{2_{)}}$

Proof. We already know that $Q\{2\}$ is the inverse image of the torsion subgroup of

$P(R)$ in PS(R). Moreover, $L^{PS}$ : $Q\{2\}-Q\pi^{2}$ is an isomorphism that canies $6\{2\}$ onto
$\pi^{2}p_{-}$ . The torsion subgroup of $H_{3}(PSL(2,R),Z)$ is identified with $Q\pi 1Z\pi$ where the elements

$c_{m}$ arising from rotation by $\psi m$ in $PSO(2,R)$ and $\sigma(c_{m})$ has order $m$ or $nV2$ in $P(R)$ according

to $m$ is odd or even. Sirtce $c_{m}$ corresponds to $\pi/m$ in $Q_{7}dZ\pi$, Lemma 5.6 shows that

$L^{PS}(R)(o(c_{m}))mus\iota k\pm\pi^{2}/minQ\pi^{2}mdZ\cdot(\pi^{2}/2)$. Whenm $=3,$ $wesawthattheimageis$
$\pi^{2}/6=\pi^{2}12-\pi^{2}/3$ . It follows that $L^{PS}(R)(o(c_{m}))=-\pi^{2}/m$ mod $Z\cdot(\pi^{2}/2)$ . This is just the

general congruence identity. The more precise equality was proved in [KR-II, (2.33) and

Appendix $2.|$ by an analytic argument.



53

Let $m=2k+1$ . By (4.4), (4.7), and $\sin(\pi-\phi)=\sin\phi,$ $L^{PS}(R)(o(c_{m}))=f^{\gamma}/6+$

$2 \sum_{j}L(d_{j}),$
$1\leq j\leq k- 1$ . Next $\pi^{2}/2-\pi^{2}/(2k+1)=(2k- 1)\pi^{2}/2(2k+1)=\pi^{?}\sim/6+(4karrow 4)f^{?}/6(2k+1)$.

The congruence immediately follows.

PSIf we use the fact that $L$ is injective on $Q\{2\}$ , we have the immediate corollary:

Corollary 5.8. In PS(R), $4(m- 3)\cdot\{2\}$ $=$ $m\cdot\sum_{1\leq j\leq m- 3}$ $\{(1- d_{j})^{- 1}\}$ , $m>2$ .

Equivalently, $6( m- 2)\cdot\{2\}=m\cdot\sum_{1\leq j\leq m- 2}\{(1- d_{j})^{- 1}\},$ $m>2$ .

We may obtain more congruence identities by computing the image in $P(R)$ of a

$representativefortheclassp\cdot q\cdot c_{m^{(2)}’}0<p,$ $q<m$ . Namely, we take i(l) $=pandi(2)=qin$

the extension of (5.1). There are at most 4 exceptional symbols to consider according to $j$ mod

$m$ . When $j=0$, we always have $0$ . We therefore assume $0<j<m$ . Ifj $=- p$ or-q, depending

on $p=q$ or $p\neq q$ , we end up with either $0or-\{\infty\}$ . Finally, if $j\equiv$ -p-q mod $m$ (this forces

$p+q\neq m)$ , then the symbol is $\{\infty\}$ as before. The general congruence identity then takes on

the following form:

PSTheorem 5.9. Let $L$ denote the shifted Rogers’ dilogarithm as in (4.7). Let $m>0$ ,

$0^{-}<p,$ $q<m$ . Let

$\delta_{j}(p,q;m)=\frac{\sin(p+j)\theta\cdot\sin(q+j)\theta}{S\check{1}nj\theta\cdot S\overline{1}n(p+q+J)\theta},$ $0<j<m,$ $\theta=\frac{\pi}{m}$.

We then have the following $con_{\Leftrightarrow}ruence$ with the understanding that: the index $j$ is to skip over

the cases, -p, -q, -p-q mod $m$ ; and $\delta_{a,b}$ is the Kronecker delta mod $m$ :

$\sum_{1\leq j\leq m- 1}L^{PS}((1- d_{j^{(p)_{)}- 1_{)}}}\equiv-\frac{pq\pi^{2}}{m}+(\delta_{p,- q}-\delta_{p,q^{)\cdot-}B^{\pi_{-}^{2}}}$ mod $Z\cdot(-T^{\pi_{-)}^{2}}$
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We note that the number $(1- d_{j^{(p)}})$ lies in R- {0,1} after we exclude the exceptional cases. It is

easy to see that $\sin(x+p)\theta/\sin x$ is strictly decreasing in $x$ . Thus, $\delta_{j}(p,q;m)$ can be negative. In
PSgeneral, it is necessary to use the defining properties $(4.3)-(4.7)$ of $L$ in order to express the

congruence in terms of L. If we use Lemma 5.4, it is easy to see that:

$\delta_{i}(p,q;m)^{- 1}=1-\frac{\sin p\theta\cdot\sin q\theta}{S\overline{1}n(+)\theta\cdot S\ln(J)\theta}$

In the case of $p=q=1$ , the right hand side is strictly between $0$ and 1 so that (4.4) and (4.7)

recover the congruence in Theorem 5.7. However, for general $p,$ $q$ , we do not have a good

way to determine the “integral ambiguity“ implicit in lifting the congruence to an identity.

This resembles the classical treatment of Gauss’ treatment of Gauss‘ quadratic reciprocity

theorem in number theory via the use of Gauss‘ sums.

RemaA 5.10. In Theorem 5.7, the rational numbers, $(2k- 2)/(2k+1)$ , are the $\dagger so$-called”

effective ceIrtldl charge of the $(2,2k+1)$ Virasoro minimal model. Similarly, the rational

number $3\ell/(\ell+2)$ is the central charge of the level $\ell A_{1}^{(1)}$ WZW model. Both are models in

conformal field theory. In our present setting, they are identified as specific values of the

evaluation of the Cheeger-Chem-Simons characteristic class on the third integral homology of

the universal covering group $PSL(2,R)^{\sim}$ of $PSL(2,R)$ (viewed as a discrete group). These

homology classes are the lifts of the torsion classes for $PSL(2,R)$ .

In the recent work of Kirillov [K] concerning a conjecture of Nahm on the spectrum of

rational conformal field theory [NRT], the following abelian subgroup $W$ of $Q$ was considered:

$W=t\sum_{i}n_{i}L(a_{i})/L(1)In_{i}\in Z,$ $a_{i}\in R^{alg}$ } $\cap Q$.
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From our discussion, it is clear that $W$ contains both 1 as well as -l/m mod $Z$ for every

positive integer $m$. Thus, $W$ is simply Q. In the conjecture of Nahm, one is more concemed

with the set of effective central charges and $n_{i}$ is assumed to be non-negative. This subset is

closed under addition because one can form tensor product of $mode$ ls. Our discussion only

pins down the fractional part of such central charges while the $inte_{o}ra1$ pans apparently spread

the central charges out in a way that resembled the volume distribution of hyperbolic

3-manifolds. In the present approach, these effective central charges are volumes of certain

3-cycles in a totally different space–the compactification of the universal $covering\Leftrightarrow roup$ of

$PSL(2,R)$ . These 3-cycles can be viewed as “orbifolds“ since they arise from the finite cyclic

subgroups of $SL(2,R)$ . It should also be noted that the central charge of the Virasoro algebra is

the value of a degree two cohomology class while our description is on the level of degree

three group cohomology, but for the Lie group viewed as a $discrete\Leftrightarrow roup$ . The precise

relation between these cohomologies is not too well understood. On the level of classifying

spaces of topological groups, these is the well known conjecture, see [M] and [FM]:

Conjecture of Friedlander-Milnor: Let $G$ be any Lie $\circ roup$ and let $p$ be a prime. Then

$H_{i}(BG^{\delta},Z_{p})-H_{i}(BG,Z_{p})$ is an isomorphism (it is known to be surjective).

\S 6. The “beta map” and various conjectures.

In the work of Nahm-Recknagel-Terhoeven, [NRT], speculations were made about the

relevance of algebraic K-theory, Bloch groups [B1], geometry of hyperbolic 3-manifolds, {Th).

as well as the “physical meaning” of a “beta map“. To some extent, we have clarified the first

three of these. Namely, the connection between the effective central charge in rational
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conformal field theory with algebraic K-theory and Bloc $h$ groups, [B1], can be made by way of

the second characteristic class of Cheeger-Chern-Simons and its interpretation via volume

calculation in the universal covering group space of $PSL(2,R)$. Specifically, it is not connected

with the volume calculation in hyperbolic 3-space. (Note: According to Thurston’ $s$ work,

[Th], volume of hyperbolic 3-manifolds is a topological invariant.) Roughly speaking, the

difference rests with a missing factor of $(- 1)^{1a}$ . We next clarify the “beta map”. In terms of

diagram (4.2), the “beta map“ is denoted by:

(6.1) $d^{2}:P(R)-\Lambda_{Z}^{2}(R^{x}),$ $d^{2}([[r]])=r$ A (r-1), $r>1$ .

$d^{2}$ arises as the second differential in a spectral sequence. It is defined by solving a “descent

equation“. This is typical of the higher differential maps in a spectral sequence. The

exactness of the rows in (4.2) showed that $kerd^{2}=$ im $\sigma$. If we move up to the level of

PS(R), it is then clear that the vanishing of the $d^{2}$-invariant characterizes the elements of

$H_{3}(PSL(2,R)^{\sim},Z)$ . The origin of $d^{2}$ comes from the Dehn invariant in Euclidean 3-space. In

1900, Dehn used it to solve Hilbert’s Third Problem and extended it to hyperbolic and

spherical 3-space, see [DS2]. By working with $P(C)$ , see [DS1] and [DPS], $d^{2}$ then

incorporates both versions of the Dehn invariants. In the present case, we would interpret $d^{2}$

in terms of “ideal polyhedra“ in S. As pointed out in [PS], the following conjecture is still

open:

PSConjecture 6.2. $L$ : $H_{3}(.PSL(2,R)^{\sim},Z)arrow R$ is injective.

We already mentioned the following conjecture along this line:

Conjecture 6.3. $H_{3}(PSL(2,R^{alg})^{\sim},Z)-H_{3}(PSL(2,R)^{\sim},Z)$ is bijective.



57

The preceding conjecture is a special case of the more general “folklore” conjecture:

Conjecture 6.4. $H_{3}(SL(2,C^{alg}),Z)-H_{3}(SL(2,C),Z)$ is bijective.

More precisely, Conjecture 6.3 is equivalent to any of the corresponding conjecture for a

nontnvial quotient group of $PSL(2,R)^{\sim}$ , for example $PSL(2,R)$ . $H_{3}(SL(2,R),Z)$ is known to be

isomorphic to the fixed point set of $H_{3}(SL(2,C),Z)$ , see [Sa3]. The map in Conjecture 6.4 is

known to be injective, see[Su2]. Thus Conjecrures6.3and6.4wou1dfo11ow from:

Conjecture 6.5. $H_{3}(SL(2,C^{alg}),Z)-H_{3}(SL(2,C),Z)$ is surjective.

It should be mentioned that the map $H_{3}(SU(2),Z)arrow H_{3}(SL(2,C),Z)$ has image equal to the

image of $H_{3}(SL(2,R),Z)$ . In this connection, we have:

Conjecture 6.6. $H_{3}(SU(2),Z)-H_{3}(SL(2,C),Z)isinjective$ .

Conjecture 6.7. $\hat{c}_{2}$ : $H_{3}(SL(2,C),Z)arrow$ CIZ is injective.

Conjecture 6.7 is equivalent to the conjunction of conjecture 6.6 and the conyerse of the

Hilbert ‘
$s$ Third Problem for hyperbolic as well as spherical polytopes in dimension 3.

Namely, the Dehn invariant together with volume detect the scissors $con_{o}ruence$ classes of

such polytopes. The Euclidean case was solved by Dehn-Sydler, see $\lceil DS2$] for discussions.

The best result in this direction is the theorem of Borel, [Bo]:

Borel’s Theorem. Suppose $c$ is non-zero in $H_{3}(SL(2,C^{alg}),Z)$ , then $\hat{c}_{2}(\tau(c))$ is

non-zero for a suitable automorphism $\tau$ of C.
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We note that an illustration of the idea behind Borel ‘
$s$ Theorem was the $pr\infty f$ given in

[ $PS|$ that $H_{3}(SL(2,C^{alg}),Z)$ contains a rational vector space of infinite dimension. Recall, we

consider a real algebra number
$r_{p}$

satisfying the equation $X^{p}$ -X $+1=0,$ $p$ an odd prime.

$d^{2}(\{r_{p}))$ is therefore $0$ and [ $[r_{p}\rceil]$ then defines an element of $H_{3}(SL(2,R^{alg}),Z)_{=}$ Since $L^{PS}$ is

strictly monotone, there is no problem showing that we have distinct elements. However, it is

not obvious that these elements are Qlinearly independent. This stronger statement was a

combination of Galois theory together with the use of the hyperbolic volume.

\S 7. Concluding Remarks

In the present work, we showed that the effective central charges for certain models in

conformal field theory can be connected to the evaluation of a real valued cohomology class

on a suitable degree 3 homology class for the integral group homology of the universal

covering group $PSL(2,R)^{\sim}$ of $PSL(2,R)$ . The important point is that we have replaced the

usual topology by the discrete topology. In addition, instead of the hyperbolic 3-space, we use

the $\epsilon roup$ space of this universal covering group. The particular homology class is a suitable

lift of a homology class of finite order that generates the third integral homology of a finite

cyclic subgroup of $PSL(2,R)$ . The lift is connected with the Rogers\dagger dilogarithm identities due

to Richmond-Szekeres [RS] and $K\ddot{m}1lov$-Reshetikhin [KR]. All these identities are shown to

originate from the basic identities found by Rogers [R]. Our route ends in the central charge

identification but there are no firm connections between any of the intermediate steps followed

by us with the $inte ediate$ steps used in solyable models in conformal field theory. A casual

reading of [BPZ] and [Z2] does show that many appearances of cross-ratios. However, instead

of the complex numbers of the real numbers, we see meromorphic functions. This is also the

basic theme in the work of Bloch [B1]. On the mathematical side, there are efforts to build up

enormous structures to explain the steps in the physics side. Our present effort does not do

this.
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Another of the principal points in the present work is the fact that Rogers‘ dilogarithm

has long been known to be connected with the second Cheeger-Chern-Simons characteristic

class which is represented by the Chem-Simons form that appears in many current theoretical

physics investigations. This connection is related to the interplay between ihe “continuous“

picture and the $|\dagger discrete’’$ picture. On the mathematical side, we have a direct map on the

level of classifying spaces for groups equipped with two topologies: one discrete, the other

continuous. The map is the one that goes from the discrete to the continuous. On the physics

side, the passage from the discrete to the continuous is a subject of debate since there does not

appear to be a specific map from the discrete to the continuous (in the mathematical sense).

However, there are still a large number of unresolved issues on the mathematical side. For

example, the Virasoro algebra is typically viewed as the algebraic substitute for the

diffeomorphism group of the circle. (More precisely, it may be viewed as the “pseudo-group’t

of holomorphic maps on the sphere with two punctures.) This contains $PSL(2,R)$ which acts as

a diffeomorphism group of the circle through the identification of the circle with $P^{1}(R)$ . Our

procedure replaces these infinite dimensional (pseudo-) groups by the finite dimensional

subgroups. However, it is also accompanied by the use of the discrete topology. Although the

process of playing off one topology against another is familiar in foliation theory, it is not

explored in the present work.

In passing, we would like to indicate that Rogers‘ dilogarithm has appeared in various

related works on the physics side. Aside from the work [BR] that led Bazhanov to ask one of

us (CHS) about the connection between [BR] and [PS] in the summer of 1987, there are the

earlier works of Zamolodchikov [Z2] and Baxter [B]. Specifically, in the appendix of [B],

Rogers’ dilogarithm appeared. This has been extended recently in [BB] where they have

shown that the 3-d models of Zamolodchikov can be related to the earlier 2-d chiral Potts

models considered in [AMPTYj, [MPST], and [BPA] after suitable generalizations. On the

mathematics side, Atiyah and Murray [A] have identified the algebraic curves in $|BPA$ ] and
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[MPST] as the $spec\sigma al$ curves of $N$ magnetic monopoles arranged cyclically around an axis in

hyperbolic 3-space. In view of the fact that our present work indicates that the group manifold

$PSL(2,R)^{\sim}$ is more appropriate than the hyperbolic 3-space, one can not help but ask if there

might be an interesting mathematical theory of monopoles in $PSL(2,R)^{\sim}$ Evidently, the

present work raises many more questions than it answer.
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Fig. 1. Dividing a polytope in two different ways.
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Fig. 2. Ordered “geodesic $\sigma iang1es’’$ .


