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PREFACE 

 
Why are some people carriers of Staphylococcus aureus while others are not? Is the 

pathogenesis of S. aureus just a mishap, or is it a well-regulated performance showing us 

the versatility of this commensal bacterium? Even after all these years of research, we 

don’t know for sure, and new insights are needed to completely answer these and other 

questions regarding S. aureus colonisation and infection. As treatment of S. aureus 

infections can be challenging and may even result in treatment failure, it is of the utmost 

importance to prevent infections from arising. By gaining insight on S. aureus nasal 

colonisation and the close interactions between the microbe and the host, we hope that 

eventually, a better understanding may provide us with novel means for targeted 

intervention and treatment. 
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INTRODUCTION 

SYMBIOSIS BETWEEN HOST AND MICROBE 

In humans, mammalian cells are outnumbered by microbes by a factor of ten; on average 

an individual consists of 1013 mammalian cells and 1014 culturable microbial cells. Most 

body surfaces that are exposed to the external environment are colonized by microbes. 

However, the number of microbes and the variety of species present depends on the 

particular body site. Most of the microbes living with humans inhabit the gastro-

intestinal tract, with one million times more microbes than what is typically found on 

the skin. The microbes found at a body site are known as the indigenous microbiota, or 

the normal flora of that site, and consists of bacteria, archaea, viruses, fungi and protists. 

When we are born, a life-long symbiosis between us and the microbes starts. There are 

three different types of symbiosis; mutualism – where both parts benefit, commensalism 

- where one part benefits and the other is left unaffected, and parasitism – where one 

part benefits and the other part suffers. Through a lifetime, we will encounter all the 

three types of symbiotic relationships with different members of our normal flora. 

Several factors may affect the number and types of microbes at a specific body site, 

including age, gender, host genotype, hormones, diet, hygiene, clothing, climate, 

occupation and living conditions. Elderly people often experience a decrease in the 

efficiency of the immune system and various organ dysfunctions, as well as being more 

prone to malnutrition, reduced hygiene and increasing use of medical devices such as 

catheters. These factors may affect the indigenous microbiota of their body. Differences 

in the composition of the normal flora between males and females are found, and may 

involve hormones, anatomy, behaviour or other physiological factors (242). 

 

TROMSØ STAPH AND SKIN STUDY 

The Tromsø Staph and Skin Study (TSSS) was initiated to investigate microbe, host and 

environmental factors that are involved in Staphylococcus aureus colonisation of healthy 

adults as well as subsequent infection (Figure 1). TSSS is a cross-sectional study, and 

was performed as a part of the sixth Tromsø Study which was undertaken from October 
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2007 to December 2008. The Tromsø Study is a multipurpose, longitudinal study, based 

on the population in the municipality of Tromsø, Norway, at 69°N, and was initiated in 

1974 to determine causes of the high cardiovascular mortality. Later surveys have had 

increased emphasis on several chronic diseases and conditions, including cardiovascular 

diseases, diabetes mellitus and osteoporosis. The sixth Tromsø Study invited randomly 

chosen participants aged 30 to 87 years in the municipality of Tromsø to participate in a 

health survey, with a total of 12,984 attendees (65.7 % of the invited). Clinical 

examinations, blood samples, questionnaires and interviews were included, and all 

procedures were performed by trained technicians (89). TSSS was conducted from 

October 2007 through July 2008 and included all attendees aged 30-49 years and 

random samples of older attendees, with a relative distribution of birth cohorts as in the 

municipality (156). To assess S. aureus colonisation, baseline nasal swab cultures were 

collected from 4,026 participants (2,285 women and 1,741 men). A second sample was 

collected from 2,997 of the participants (1,712 women and 1,285 men), to determine the 

S. aureus carrier status. The median time between baseline and the second screening 

was 28 days. In this study, the term “colonisation” included both intermittent and 

persistent colonisation whereas the term “carrier” was used for participants with two 

positive nasal samples. 

 

Figure 1. Host-microbe-environment interplay. Suggested interactions between microbial, host and 

environmental risk factors involved in S. aureus colonisation and infection. Based on (158).  
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STAPHYLOCOCCUS AUREUS 

General characteristics 

Staphylococci belong taxonomically to the family of Staphylococcaceae, and are Gram-

positive, catalase-positive cocci with a GC-content of 30-35%. Currently, 47 species and 

24 subspecies of the genus Staphylococcus have been described 

(http://www.bacterio.cict.fr/s/staphylococcus.html, accessed 21. Sept. 2012). Among 

the staphylococci, S. aureus is easily identified by its ability to produce coagulase and 

hence clot human plasma (243).  

 

Host specificity and host range 

The nares are thought to be the main ecological niche and the largest reservoir of S. 

aureus in humans, but multiple body sites can harbour this bacterium (222). S. aureus is 

a common inhabitant of the skin (241)  and perineum (172), and can also be found in the 

axillae (172, 241), vagina (71) and the gastrointestinal tract (241). Several studies have 

indicated that colonisation of the throat is more prevalent than colonisation of the 

anterior nares (75, 110, 124, 147).  S. aureus is also known to colonise and infect both 

pets and livestock, including dogs, cats, rabbits, horses, cattle and pigs (140). A major 

concern is the presence of methicillin resistant S. aureus (MRSA) in pets and livestock, as 

these may serve as reservoirs for human colonisation, exemplified by ST398 from pigs 

(229).  

As human lineages of S. aureus are not so commonly found in animals, and vice versa, 

there are most likely some host range barriers. A microarray study revealed that 

although host specificity seems to be lineage specific, animal lineages are closely related 

to human lineages, and that host specificity may be attributable to only a few genes or 

gene combinations (209). Surprising similarity has been found among adhesion and 

immune evasion genes from different animal hosts, exhibiting very different target 

proteins, suggesting that these proteins are not essential for virulence (127). A study on 

isolates from farmers and cows found that the emergence of a new bovine-adapted 

genotype was the result of a host shift from humans to cows, indicating that host 

specificity is a trait that may undergo changes (184). 

http://www.bacterio.cict.fr/s/staphylococcus.html
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Clinical significance 

S. aureus is a major human pathogen and is potentially able to infect any tissue of the 

human body, causing everything from skin infections to life-threatening diseases. The 

infections caused by S. aureus can be divided into three general types: 1) superficial 

lesions, e.g. surgical site- and wound infections; 2) systemic and life threatening 

conditions, e.g. endocarditis, osteomyelitis, pneumonia, brain abscesses, meningitis and 

bacteraemia; and 3) toxinoses, e.g. toxic shock syndrome, food poisoning and scalded 

skin syndrome (2). The hallmark of staphylococcal infection is the abscess, containing 

pus which consists of dead neutrophils, living and dead bacteria, necrotic tissue, and the 

contents of lysed host and bacterial cells (153). Immunocompetent hosts will in most 

cases successfully clear the infection and drain the abscess, whereas for the 

immunocompromised and occasionally for a healthy individual, the infection may 

progress into deeper tissues and become a potentially fatal invasive infection (153). 

S. aureus infections usually involve a carrier, either by autoinfection - developing an 

infection with their own carrier strain, or by causing cross-infections – when their strain 

is transmitted to and infects another individual. Globally, S. aureus is the cause of a large 

proportion of bloodstream infections (22%), and skin and soft tissue infections (39%) 

(39). In Norway, S. aureus is the second most common blood culture isolate, accounting 

for 14.5% of the isolates when skin contaminants are excluded (148).  

Methicillin resistant S. aureus has been a topic of concern for several years, being a large 

burden for most healthcare institutions around the world, with higher mortality, 

morbidity and financial costs compared to methicillin-susceptible S. aureus (MSSA) (68).  

The MRSA rates have been increasing rapidly worldwide during the last decades (202). 

However, data from the European Antimicrobial Resistance Surveillance Network 

(EARS-Net) from 2002 to 2009, indicate that there is a significant reduction in the 

proportion of MRSA overall in the participating countries (56). MRSA infections used to 

be a hospital-related problem (healthcare-acquired/associated (HA) MRSA) but lately 

there has been an increase in MRSA infections in the community (community-

acquired/associated (CA) MRSA) and from livestock (livestock-associated (LA) MRSA) 

(202). In general, antimicrobial resistance rates are significantly higher among HA 

isolates of S. aureus than for CA isolates, implying that the hospital isolates are 
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epidemiologically distinct from community isolates and that there is a resident 

microflora in the hospitals (165). 

 

Transmission 

A typical transmission route of S. aureus is from the nose to the hand of a person, then to 

a surface (e.g. a door knob), before being transferred via the hand to the nose of a second 

person. For a successful transmission, S. aureus must adapt to different environments, 

and survive stress factors like nutrient limitation, desiccation, changes in temperature, 

osmolarity and pH, interference from other bacteria, and the antimicrobial actions of the 

human body (84). Transmission of S. aureus from host to host is less efficient than 

transmission of the related human coloniser Staphylococcus epidermidis, illustrated by 

the following three points; 1) S. epidermidis resides on the skin and only requires direct 

contact between two hosts for transfer; 2) S. epidermidis colonises all humans, and there 

are no known host barriers preventing colonisation by this organism, whereas S. aureus 

has a limited number of potential hosts; 3) Interference between Agr groups in 

genetically diverse S. aureus strains may inhibit colonisation with new strains, whereas 

this has not been shown in S. epidermidis (125). The complex transmission of S. aureus 

has been hypothesized to explain its evolution and maintenance of virulence (125). 

 

Genomic content 

The genome size of S. aureus typically varies from 2.5 to 3.1 Mb, and contains ~2,500 

open reading frames. Since the first two S. aureus genome sequences; N315 and Mu50, 

were published in 2001 (107), other genome sequences followed rapidly: MW2 (7), 

MRSA252 and MSSA476 (82), COL (59), USA300-FPR3737 (40), USA300-HOU-MR (81), 

NCTC8325 (60), ET3-1 (80), JH-1 and JH-9 (143), Newman (6) and TW20 (83). Today, 

full genome sequencing has become routine, and the number of sequenced genome 

drafts is exploding, however only a subset of these are fully annotated and completed 

(20). The S. aureus genome consists of 1) core genes, conserved between the different 

lineages; 2) core variable (CV) genes, genes that vary between genomes or may even be 

missing; and 3) mobile genetic elements (MGEs), fragments of DNA encoding toxins,
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Table 1. Mobile genetic elements (MGEs) in S. aureus. Based on (121, 202) and references therein.  

MGE Attributes Examples 

Bacteriophages encoding 

toxins 

Lytic: complete bacterial lysis 

Temperate: long-term relationship with cells 

Chronic: release progeny without killing the host 

1-4 per strain, large impact on S. aureus diversity and evolution 

Staphylococcal complement inhibitor (SCIN), chemotaxis 

inhibitory protein (CHIPS), staphylococcal enterotoxin A 

(SEA), Panton-Valentine leukocidin (PVL) 

Pathogenicity islands (SaPIs) Phage-like, but lack genes for capsid heads and tails necessary for 

horizontal transfer 

0-2 per strain 

Enterotoxins, toxic shock syndrome toxin (TSST) 

Plasmids Carry antimicrobial resistance determinants, toxins and/or 

determinants involved in metabolism 

3 plasmid groups: 1) small multicopy plasmids; 2) large low-

copy plasmids; 3) conjugative multiresistance plasmids 

Staphylococcal cassette 

chromosome  (SCC) elements 

Large fragments of DNA, often encoding antimicrobial resistance 

and/or virulence determinants 

The CcrAB or CcrC recombinases ensure site-specific integration at 

the attBscc site within orfX of the S. aureus chromosome 

SCCmec types I-XI, SCC mercury 

Genomic islands Flanked by a broken transposase gene upstream and partial 

restriction-modification (RM) system type I downstream 

Three families: vSAα, vSAβ, vSAγ. Encodes eg. 

staphylococcal superantigen-like genes, bacteriosins and 

enterotoxins, and phenol-soluble modulins, respectively 

Arginine catabolic mobile 

element (ACME) 

Encodes an arginine deaminase pathway  

Insertion sequences (IS) Can exist independently in the genome of S. aureus, but are often 

present as pairs constituting a composite transposon  

May cause changes in the expression of genes in the core genome 

IS256, IS257 

Transposons Mainly encode antimicrobial resistance genes in S. aureus 

Inserted into the chromosome or into mobile genetic elements 

Tn554 (erm), Tn1546 (vanA) 
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virulence factors and genes involved in host adaption as well as mobilisation functions 

(114, 115, 121).  

The core genome contains approximately 80% of the S. aureus genes, including genes for 

surface proteins involved in adhesion, as well as genes encoding essential metabolic and 

regulatory properties (58). As a part of the core genome, the core variable (CV) genes 

make up 10-12% of the S. aureus genome, and often encode regulators of virulence 

genes or surface proteins involved in host interactions during nasal colonisation, such as 

the surface protein staphylococcal protein A (spa) (115).  

The accessory genome accounts for the remaining 20% of the S. aureus genome, 

consisting of MGEs containing 50% of known virulence factors in S. aureus. The MGEs 

include e.g. bacteriophages, pathogenicity islands, plasmids and transposons (Table 1), 

and are capable of horizontal transfer between strains (58). Exchange of virulence 

factors between strains, resulting in different virulence factor combinations, contributes 

to adaption of clones specialised for infection of selected hosts or environments (80, 83).  

 

POPULATION STRUCTURE OF S. AUREUS 

Bacterial population structures range from clonal populations to those that are a result 

of free recombination, and include all variations in between. A strictly clonal population 

has no exchange of genetic material, and reproduces by binary fission of the mother cell 

into two daughter cells. The only source of variation is mutations, which are vertically 

inherited and accumulated and hence give rise to clonally divergent lineages. However, 

most bacterial species have mechanisms for exchange of genetic material, or horizontal 

gene transfer (HGT) and can potentially recombine with any other member of the 

population (72).  

Bacterial population structure can be interpreted by the use of different typing methods 

to obtain an understanding of other characteristics of the bacterial population, such as 

host specificity, pathogenicity, epidemic potential and the presence of virulence genes 

(126). Hence, to understand S. aureus nasal carriage and its relation to infection of the 

host, the population structure needs to be defined. Several large typing studies with 

different methods have been performed on S. aureus, revealing an essentially clonal 
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population (46, 52, 70, 130, 141). The first study to describe the population structure of 

naturally occurring MSSA isolated from the nose of healthy adults revealed 3 major and 

2 minor genetic clusters of S. aureus by using amplified fragment length polymorphism 

(AFLP) clustering (130). The results corresponded well to the multilocus sequence 

typing (MLST) based clonal complexes (CCs) defined by studies of carriage and invasive 

MSSA and MRSA isolates, mainly from the UK, with 5 of the main CCs being CC8, CC30, 

CC5, CC22 and CC45 (50, 51, 175). A microarray based on all genes from the seven 

current S. aureus sequencing projects was used to investigate isolates from 100 healthy 

carriers as well as 61 community-acquired isolates had a higher resolution, and 

identified 10 dominant lineages corresponding to MLST CC1, CC5, CC8, CC12, CC15, 

CC22, CC25, CC30, CC45 and CC51 (115). S. aureus population structures from colonised 

persons in different parts of the world, indicate that there is a large geographical 

divergence in the most commonly found CCs (49, 50, 130, 181).  

A study of 37 unlinked loci including the MLST loci in 30 well-characterised diverse 

strains resulted in a unrooted Bayesian reconstruction of S. aureus phylogeny,  

subdividing the species into two distinct groups, with group 1 subdivided into groups 1a 

and 1b, supporting the population structures previously obtained using MLST genes, 

AFLP clustering and microarray analysis (33). To summarise, S. aureus has a clonal 

population structure with a limited number of major lineages colonising the human 

population.  

 

Molecular typing 

The S. aureus population structure has been investigated by several different methods, 

including multilocus enzyme electrophoresis (MLEE), pulsed field gel electrophoresis 

(PFGE), MLST, DNA microarrays and spa typing. When typing, the underlying 

assumption is that there is only one evolutionary history, which is true for a clonal 

population. Genes acquired by HGT will have another evolutionary history than those 

inherited from mother cell to daughter cell, and to find clonal relationships of strains, 

genes subject to vertical transfer, such as housekeeping genes, have been preferred (72). 

However, a study by Cooper and Feil compared 37 loci and found no strong association 

between gene function and phylogenetic reliability, indicating that not only 



15 
 

housekeeping genes may be used to infer intra-species lineage assignments (33). When 

interpreting typing results, it is important to have knowledge of the natural bacterial 

population structure (70).  

By defining single base pair differences not found elsewhere in the MLST database as 

mutations, and multiple base pair differences and alleles found in unrelated CCs as 

recombinations, it was estimated that the MLST alleles of S. aureus change 15 times 

more often by mutation than by recombination (50). However, the 7 MLST loci do not 

represent the entire genome, and a recent genome-wide SNP analysis estimated a 

relative rate of 0.6 for homologous recombination compared to mutation rate (212). 

By the use of molecular typing techniques, the spread of clones in hospitals and in the 

community can be identified and kept under surveillance. In outbreak situations, 

epidemiological typing can be used to find the transmission modes of the epidemic 

clones, and to monitor the reservoir of the infectious agent. For epidemiological 

surveillance, typing systems reveal the prevalence of pandemic, endemic or epidemic 

clones in the population and in different geographical areas (205). Different applications 

may have different requirements, but in general, a typing regime requires proper 

typeability, reproducibility, discriminatory power and stability, and it should be easy to 

interpret and use (204). Today, a range of techniques are in use for typing of 

staphylococci, with different strengths and weaknesses (Table 2). 

From the early bacteriophage typing studies in the 1950s, based on the ability of 

bacteriophages to lyse different staphylococci, ‘epidemic types’ of staphylococci were 

first identified, giving us hints on the staphylococcal population structure (233). 

Thereafter, studies using MLEE brought insight on S. aureus population structure many 

steps further. MLEE is based on separating extracts of bacterial proteins by 

electrophoresis. The gel is then sliced in several layers, and the sections are stained to 

detect housekeeping enzymes essential for cell viability and growth. One detects allelic 

variants by observing changes in the electrophoretic migration compared to known 

alleles (191). Typically, 15-25 enzymes are selected to obtain a high level of 

differentiation between strains (45).  

PFGE, AFLP, multiple locus variable number tandem repeat analysis (MLVA), repetitive 

element PCR, and random amplified polymorphic DNA (RAPD) are all methods where 
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variation in the nucleotide sequence is detected indirectly by primer-binding and/or 

restriction sites, and are often referred to as band-based methods or molecular 

fingerprinting (200). In PFGE, chromosomal DNA is digested with a restriction enzyme 

that cleaves infrequently, to obtain large fragments which after being exposed to a 

switching electric field on an agarose gel produce a banding pattern or fingerprint (8). 

As a highly discriminatory method, it has been widely used for typing of staphylococci, 

and has been considered to be the gold standard in typing of S. aureus outbreak 

investigations (215). However, the comparison of data from fingerprints run in different 

laboratories can be challenging, and in addition the interpretation of the results is still 

quite subjective. AFLP is a PCR-based strategy, where genomic restriction fragments are 

detected by PCR amplification using generic primers (227). In MLVA, gene targets with 

short tandem repeats are used to make DNA profiles. Several MLVA schemes for typing 

of S. aureus have been used (54, 182, 189). Repetitive element PCR, or rep-PCR, is a PCR-

based method, amplifying specific regions between noncoding repetitive sequences to 

obtain a DNA fingerprint pattern of PCR products from 150 to about 5,000 bp (179). 

DNA sequence-based typing methods are of great value for bacterial population 

genetics. MLST makes use of the same genetic principles as MLEE, but differentiates 

alleles at the DNA level, by sequencing internal fragments of housekeeping genes (120). 

MLST was first applied in S. aureus in a study by Enright et al. (46). The sequences of the 

fragments of seven housekeeping genes are compared to known alleles at the MLST 

website (www.mlst.net), and an allelic profile, referred to as a sequence type (ST) is 

obtained. As an example, S. aureus ST30 has the allelic profile 2-2-2-2-6-3-2. eBURST is 

an algorithm used to cluster related STs into clonal complexes (CCs) (51). As 

housekeeping genes are essential for the bacterial cells, accumulation of genetic 

variation is limited to keep the functionality of the proteins, and this stability makes the 

MLST allelic profile suitable for studies of global epidemiology. However, MLST does not 

have sufficient discriminatory power to be used in S. aureus outbreak situations (131).  

spa typing is a sequence-based method, where the variable number tandem repeat 

(VNTR) region of Staphylococcal Protein A is analysed, and a spa type is assigned based 

on the order and number of the short, typically 24 bp repeats (Figure 2). spa typing has 

discriminatory power comparable to that of PFGE, and can be used both for outbreak 

http://www.mlst.net/
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Table 2. Some examples of current typing methods for S. aureus. Based on (72, 202, 206). 

Method Target Strengths Weaknesses 

spa typing Sequence polymorphism in the 

variable X region of the gene 

encoding S. aureus Protein A  

Rapid, high throughput, standard 

nomenclature, interlaboratory 

reproducibility 

Misclassification of particular lineages 

due to recombination/homoplasy 

Multilocus 

sequence typing 

(MLST) 

Sequence determination of allelic 

variants of seven housekeeping 

genes 

Interlaboratory reproducibility, standard 

nomenclature 

Low throughput, high cost 

Pulsed-field gel 

electrophoresis 

(PFGE) 

Polymorphisms in restriction sites 

on the chromosome 

High discriminatory power Technically demanding, time-consuming, 

limited interlaboratory reproducibility, 

multiple nomenclatures 

Multilocus VNTR 

analysis (MLVA) 

Polymorphism in chromosomal 

VNTR elements 

Rapid, high throughput No international standard protocol or 

nomenclature, misclassification of some 

lineages 

Microarray Whole genome or selected targets 

in the genome, depending on the 

array design 

Flexible, high discriminatory power Design of arrays require knowledge of 

genome content and variation  

Whole genome 

sequencing (WGS) 

Whole genome Extremely high discriminatory power Demanding data interpretation 

VNTR, variable number of tandem repeats 
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Figure 2. The principle of spa typing. The VNTR repeat region XR of Protein A is the basis for spa typing. 

This region consists of a number of short repeats, and the number of repeats as well as their order 

determines the spa type. The particular repeat succession in the figure represents spa type t003. Arrows 

indicate the primers used in spa typing.  

 

investigations as well as population studies due to the slow accumulation of point 

mutations and relatively fast changes in repeat numbers (103). However, recombination 

may disturb the congruence between spa types and sequence types/clonal complexes on 

some occasions (174). 

Microarrays can also be used for population analysis. As the DNA microarray systems 

based on the whole genome of S. aureus provide a large amount of information for which 

data analysis may be complicated, several smaller DNA microarrays have been 

developed; focusing on e.g. detection of genes associated with virulence, antimicrobial 

resistance or adhesion, agr alleles, MSCRAMMS, capsule types or assigning isolates to an 

MLST CC or ST and SCCmec type (41, 139, 186).   

Whole genome sequencing (WGS) has an extremely large discriminatory power, and has 

been proven to be a valuable research tool (97).  WGS is rapidly evolving, and has 
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already been evaluated for typing S. aureus strains by SNP analyses (48, 77, 104). The 

main challenge is the need for data interpretation.  

A quite recent approach is matrix-assisted laser desorption/ionisation time of flight 

mass spectrometry (MALDI-TOF-MS), which analyses surface-associated proteins by 

mass spectral analysis and can be used on intact bacterial cells (168). A MALDI-TOF-

based typing scheme has been established, covering the most abundant HA-MRSA 

lineages (244). 

The various typing methods differ when it comes to discriminatory power, accuracy and 

reproducibility, costs and technical challenges. Which method is the most appropriate to 

study S. aureus, depends on the study question asked. For local studies of population 

structure and short-term outbreaks, it is advantageous to use a method based on hyper-

variable loci, such as spa typing, whereas for global population studies and long-term 

studies, methods based on stable housekeeping genes (such as MLST) are preferred. 

 

S. AUREUS NASAL COLONISATION 

Already in 1931, the association between Staphylococcus aureus nasal carriage and 

staphylococcal infection was reported by Danbolt (37). More recently, Feil et al. 

analysed a sample of 334 S. aureus isolates from carriage and community-acquired 

disease in the same population, and found that the isolates from carriage had a 

population structure similar to the isolates from disease (50). A subset of these isolates 

was also examined by comparative genomic hybridisation (CGH) to find the presence of 

putative virulence genes. However, no marker or specific lineage associated with disease 

was found (115). It seems as the frequency of any S. aureus strain in the human 

population influences its potential to cause invasive disease, and the importance of its 

virulence factors remains unclear, whereas host susceptibility is thought to play an 

essential role (45). Von Eiff et al. found, in a study of S. aureus bacteraemia, that in more 

than 80% of the cases, blood isolates were identical to isolates from the patient’s 

anterior nares, indicating that most cases of S. aureus bacteraemia are of endogenous 

origin (226). 
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Epidemiology of S. aureus colonisation 

Within a healthy population, ~20% (ranging from 12-30%) are reported to be 

persistently colonised in the anterior nares, whereas ~30% (16-70%) are intermittent 

carriers and ~50% (16-69%) are non-carriers (47, 86, 101, 157, 234). The proportions 

of intermittent and non-carriers have a very wide range, resulting from differences in 

culture methods, populations studied and interpretation guidelines (223). In 2004, a 

culture rule stating that 2 nasal swab cultures accurately predicted the persistent S. 

aureus carriage status was proposed (152).  

In persistent carriers, the mean number of colony forming units (CFU) has been 

reported to be higher than in intermittent carriers (238), resulting in an increased risk 

of spreading staphylococci to the surroundings (239). It has also been shown that the 

genotypes of S. aureus isolated from repeated cultures from intermittent carriers differ 

more often than from persistent carriers (47), indicating that there may be differences 

in the determinants of persistent and intermittent carriage. Some individuals may even 

carry their resident strain for several years (223). In 2009, van Belkum et al. suggested a 

paradigm shift, where S. aureus nasal carriage types were reclassified to only two 

groups; persistent carriers and others (219). This was based on results where 

intermittent carriers and non-carriers shared both antistaphylococcal antibody profiles 

and responses to inoculation with an S. aureus mixture, as well as the previously 

described higher risk of infection among persistent carriers than in intermittent and 

non-carriers (151, 226, 236).  

In volunteers first undergoing S. aureus eradication, then artificial inoculation with a 

mixture of S. aureus strains, the original persistent carriers were found to become 

colonised with their original strain from the inoculation mixture and become carriers 

again, while the non-carriers quickly eliminated S. aureus cells from their nares (150).  

The prevalence of nasal carriage with S. aureus varies between different groups, and is 

higher among men (32, 158), white people (32) and infants (162). The prevalence is also 

higher in hospitalised patients, persons with atopic dermatitis (240), HIV-infected 

patients (197), patients with diabetes mellitus (116), and in those undergoing 

haemodialysis (99) or in need of chronic ambulatory peritoneal dialysis (119). 

Protective factors for S. aureus nasal carriage include smoking (13, 22, 156) and a high 
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serum vitamin D level (156). The habit of nose-picking (235) as well as the use of oral 

contraceptives (22) have been found to be positively associated with the risk of S. aureus 

nasal carriage.  

 

Mode of growth 

Most of the results from recent studies support a dispersed mode of growth, rather than 

growth in biofilms, during S. aureus nasal colonisation (Figure 3). The number of S. 

aureus colonies obtained from a nasal swab is relatively low, with a mean value of less 

than 100 CFU in intermittent carriers, and less than 10,000 CFU in persistent carriers 

(152). These numbers would be expected to be much higher if a biofilm was 

encountered (106). In addition S. aureus has been detected in the nose of cotton rats 

(15) and nasal tissues from human corpses (214) by microscopy, and in both cases, the 

bacteria were typically found as single cells or in small clusters, and no biofilm 

formation was observed.   

 

Determinants of S. aureus nasal colonisation  

Only a subset of the human population is persistently carrying S. aureus, indicating that 

human factors are involved in determining carriage status. In addition, some bacterial 

clones are observed more frequently than others, supporting the importance of bacterial 

factors involved in colonisation and carriage. 

The relative importance of bacterial factors, host factors and environmental factors 

involved in S. aureus colonisation and carriage is largely unknown, but it has been 

suggested that host factors play a key role, whereas bacterial factors may decide which 

strain is carried rather than the carriage status (162). Mechanisms for establishment 

and maintenance of nasal colonisation need further elucidation (101, 234).  

Shedding of squamous epithelial cells and mucus from the nose leads to constant 

mechanical clearance of S. aureus cells, and in this hostile environment the bacterium 

needs to proliferate to compensate for the removal (230).  In addition, the host’s 

immune defences must be evaded for S. aureus to become a persistent coloniser.  
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Figure 3. Nasal colonisation with S. aureus. a. Vestibulum nasi, or the nasal vestibule, is thought to be 

the main niche for S. aureus in humans. The nasal vestibule is covered with keratinised epidermis (skin) 

(214). b. S. aureus can be found in the epidermis, which consists of several layers of keratinocytes; stratum  

corneum (the outermost layer), stratum granulosum, stratum spinosum and stratum basale. Langerhans 

cells are immune cells found in the epidermis, whereas natural killer (NK) cells, macrophages, T-cells, B-

cells, mast cells, dermal dendritic cells (DC) and plasma cells are found in the dermis. Figure based on 

(105, 144). c. During nasal colonisation, several S. aureus several adhesion factors (green background) as 

well as factors involved in immune evasion (purple background) are involved, and some factors are 

shown to be important both in adhesion and immune evasion (blue background). CHIPS: chemotaxis 

inhibitory protein of S. aureus, OatA: O-acetyltransferase, SAK: staphylokinase, WTA: wall teichoic acid, 

SasG: S. aureus surface protein G, SdrD: serine-aspartic acid repeat protein D, SdrC: serine-aspartic acid 

repeat protein C, ClfB: clumping factor B, IsdA: iron-regulated surface determinant. 

 

Bacterial factors 

S. aureus lineages have individual combinations of surface proteins involved in adhesion 

as well as secreted proteins involved in immune response evasion (127) (Figure 3). In 

addition, the expression and secretion of proteins in S. aureus may vary with different 

modes of growth (142). During nasal colonisation, genes encoding adhesion and 

immune evasion determinants are typically expressed, whereas toxins are not (16). The 

individual combinations of adhesins and immune evasion factors as well as their 

expression levels may be important in determining the colonisation success of S. aureus.  

 

Adhesion factors 

For a bacterium to become a persistent coloniser of the human nasal epithelium it must 

be able to adhere to the skin surface by firm interactions with the human cell surfaces, 

simply to avoid being eliminated by physiochemical mechanisms (101). The adherence 

is a multifactorial process, involving different factors during different stages of the 

colonisation (232).  

Wall teichoic acid (WTA) is thought to have an important role in attachment, both in the 

early stage of colonisation (232), as well as for continued colonisation (231). Using a 

cotton rat model, a WTA-deficient S. aureus mutant failed to colonise the cotton rat 
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nares, and the same WTA-deficient mutant was less efficient in adhering to human nasal 

epithelial cells (231).  

Adhesive proteins belonging to a class of cell wall-associated proteins named microbial 

surface components recognising adhesive matrix molecules (MSCRAMMs), have been 

suggested to be important in the later stages of the colonisation (15), by promoting 

adhesion to epithelial cells (35). MSCRAMMs typically contain an N-terminal signal 

sequence and a C-terminal region with a LPXTG-motif, a hydrophobic domain and a 

charged tail, involved in covalent anchoring of the protein to the cell wall (188). S. 

aureus clumping factor B (ClfB) adheres to human cytokeratin 10 which is a component 

of squamous cells (155), and a mutant lacking ClfB did not survive in the human nose 

after 2 weeks (237). Iron-regulated surface determinant A (IsdA) has also been found to 

bind cytokeratin 10, in addition to loricrin and involucrin which are proteins found in 

the matrix surrounding the upper layers of epithelium in the nasal cavity (24). ClfB and 

IsdA have both been demonstrated to promote colonisation of the nares of rodents in in 

vivo models (25, 187), and were expressed during nasal colonisation in humans (16). S. 

aureus surface protein G (SasG) is another surface protein promoting adhesion to nasal 

epithelial cells (176). However, a mutant S. aureus strain defective in IsdA and ClfB and 

not expressing SasG, could still adhere to human squamous cells at approximately 40% 

of the level of the wildtype, indicating that other components of the cell surface are 

likely involved as well (25, 34). The bacterial surface serine-aspartic acid (SD) repeat 

proteins SdrC and SdrD were then demonstrated to contribute individually to S. aureus 

adherence to squamous cells, and a mutant defective in ClfB, IsdA, SdrC and SdrD was 

found not to adhere to desquamated nasal epithelial cells (35). Other adhesins 

interacting with host factors such as fibronectin, fibrinogen, elastin, collagen and von 

Willebrand factor have been identified (79), but their role in nasal colonisation is not 

clear (93). 

 

Immune evasion factors 

A large variety of secreted proteins involved in immune evasion can be produced by S. 

aureus. Several proteins target immunoglobulins, complement or neutrophil 

recruitment, others counteract the effects of antimicrobial molecules such as lysozyme 
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and defensins. McCarthy and Lindsay (127) found that when investigating 13 genes with 

a characterised or hypothesised role in immune evasion, most of these were present in 

all sequenced S. aureus genomes, indicating the important role of immune evasion for S. 

aureus.  

The first line of defence against inhaled bacteria is nasal secretions, a complex mixture 

of proteins, sugars and salts, containing e.g. lysozyme and immunoglobulins (IgA and 

IgG) (95), as well as  defensins (31) and complement proteins (18). S. aureus is resistant 

to lysozyme due to the cell wall modifying enzyme O-acetyltransferase (OatA) in 

combination with WTA (11). WTA (102) and IsdA (27) were demonstrated to make the 

S. aureus surface more hydrophilic, protecting against the innate host antimicrobial fatty 

acids requiring hydrophobic interaction to be active.  

Expression of several factors, including staphylococcal protein A (SpA), staphylokinase 

(SAK) and chemotaxis inhibitory protein of S. aureus (CHIPS) has been shown in a study 

of mRNA levels in nose swabs from persistent carriers of S. aureus (16). SpA can limit 

opsonisation by binding to the Fc-region of IgG, rendering the bacterial cells coated with 

IgG in a conformation not recognised by neutrophils (137). Through this IgG-binding, 

SpA also interferes with binding of the complement system (177). SAK can inhibit the 

bactericidal activity of α-defensins (92), and can also convert surface-bound 

plasminogen into active plasmin which is capable of cleaving human IgG and the 

complement compound C3b, thereby preventing opsonisation and hence phagocytosis of 

the bacterial cell (178). CHIPS and the staphylococcal complement inhibitor (SCIN) are 

innate immune modulators, known to interfere with the human complement (221). 

Despite the presence of complement proteins in nasal secretions, SCIN was not found to 

be expressed in the nose during nasal colonisation of humans (16). 

 

Host factors 

It seems as multiple mechanisms are involved in S. aureus nasal colonisation and 

carriage, and that there is a fine-tuned match between the microbe and the host (218). 

Early studies demonstrated that the adherence of S. aureus to mucosal cells from the 

nose of carriers was significantly higher than adherence to cells from non-carriers (4). 

Nasal secretions are a part of the host defence against microbes, and it has been shown 
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that nasal fluids from non-carriers were bacteriostatic or bactericidal, whereas the nasal 

fluids from carriers allowed growth of S. aureus (31). It has been proposed that presence 

of haemoglobin in nasal secretions promotes S. aureus colonisation through inhibition of 

the agr system (166).   

The role of host factors in nasal colonisation has been extensively studied. Although a 

recent Danish study on middle-aged and elderly twins concluded that host genetic 

factors only had a very limited influence on the S. aureus carrier state (5), host genetic 

factors have been suggested to be important determinants for persistent nasal carriage 

of S. aureus in humans, involving single nucleotide polymorphisms (SNPs) in several 

proteins. The first polymorphism found to be associated with persistent S. aureus nasal 

carriage was in the glucocorticoid receptor gene (220). Later, polymorphisms in the 

serine protease C1 inhibitor (C1INH) (43), mannose-binding lectin (MBL) genes (217), 

interleukin-4 (44, 180) and  C-reactive protein (180), as well as the expression level of 

the antimicrobial peptide human-β-defensin 3 (HBD-3) (248), have all been found to be 

associated with nasal carriage status. These findings illustrate that there are several host 

genetic determinants involved in S. aureus nasal colonisation and carriage. 

 

Environmental factors 

An important determinant of intermittent S. aureus nasal carriage is exposure. S. aureus 

is acquired from sources in the environment, with human carriers as the most important 

source, but also animal carriers or S. aureus deposited on surfaces may serve as 

reservoirs for transmission (224).  

The levels of crowding and hygiene in both hospital and household settings are 

important for the rate of transmission (241). Hospitalisation is known to be a risk factor 

for S. aureus nasal carriage (67). Healthcare workers have in some studies been reported 

to have rates of S. aureus nasal colonisation comparable to the general population (8, 

94), however others have found a higher prevalence among healthcare workers than in 

the general population (42). A recent report also detected more frequent S. aureus nasal 

carriage in surgeons than in high-risk patients (190). Colonised healthcare workers can 

serve as important sources of S. aureus transmission, both as vectors and as reservoirs 

(12).  
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Furthermore, a family size of more than 5 people has been found to be correlated with a 

higher risk of S. aureus colonisation in children (13). It has been suggested that S. aureus 

nasal carriers may impose their carrier status upon other members of the household 

(138, 162). As most mothers carry the same strain as their infants, the mother is the 

probable source and the strain acquisition may thus be dictated by environmental 

factors (162). Pets can also be colonised with S. aureus, and may serve as vehicles for 

transmission to humans (195). Activities involving close physical contact and the risk of 

minor injuries, such as sports, are positively correlated with S. aureus acquisition and 

spread (13, 96). 

 

Bacterial interference  

Several factors determine whether bacteria can colonise a human nose or not, including 

the availability of resources (e.g. nutrients and attachment sites), the presence of 

harmful substances, and the host’s immune responses. All these factors can be 

influenced by the presence of established bacterial communities in the nose (123).  

The microbial ecology of the nasopharynx is complex. Most commonly found in the 

aerobic flora of the nasal vestibule are staphylococci and Corynebacterium spp, but 

streptococci, micrococci and some Gram-negative species can also be found (113). The 

nasal microbiota has by culture-independent approaches been shown to consist of a 

wide range of microbes, primarily from the phylum Actinobacteria (including 

Propionibacterium spp. and Corynebacterium spp.), but also other phyla, including 

Firmicutes (e.g. Staphylococcus spp.) and Proteobacteria (e.g. Enterobacter spp.) are 

found (55, 112).  

Wos-Oxley et al. investigated the microbiota of the anterior nares, and found a 

significant negative correlation between the abundance of S. aureus and the anaerobic 

Finegoldia magna, and they found a positive correlation between Corynebacterium 

pseudodiphteriticum and S. aureus. The authors suggest that the potential interactions in 

the nasal microbiota need to be analysed with a higher level of resolution (245). The 

rate of S. aureus colonisation has previously been found to be lower among those 

colonised with corynebacteria, but the underlying mechanism is not known (113, 216).  
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Frank et al. reported negative associations between S. aureus and S. epidermidis 

suggesting microbial competition (55). The role for coagulase-negative staphylococci 

(CNS), and especially S. epidermidis in S. aureus colonisation has not been completely 

clear (113, 162). However, it has been reported that the serine protease Esp, secreted by 

a subset of S. epidermidis, is capable of inhibiting S. aureus nasal colonisation as well as 

biofilm formation (88). Although S. aureus does not typically form a biofilm during 

colonisation (106), the Esp protease may inhibit S. aureus nasal colonisation by 

removing S. aureus adhesins and/or immune evasion factors essential for colonisation 

(230). Other mechanisms of bacterial interference applied by S. epidermidis may involve 

phenol-soluble modulins (PSMs) (29, 30), lipoteichoic acid (LTA) (109), peptide 

pheromones (159), and induction of human beta-defensins (108).  

Although colonisation with vaccine-type Streptococcus pneumoniae in the nasopharynx 

has been found to be inversely associated with S. aureus nasal carriage (13, 170), a study 

in children did not reveal an increase in prevalence of S. aureus colonisation after 

introduction of the 7-valent pneumococcal-conjugate vaccine (PCV7) (111). A study by 

Melles et al. investigated whether specific genotypes of S. aureus had a better capacity of 

competing with S. pneumoniae in co-colonisation of the nasopharynx in children. 

However, the results suggested that there were no such differences between the 

genotypes (129). It has been proposed that hydrogen peroxide produced by S. 

pneumoniae drives its bacterial interference activity (171), but this has not been 

confirmed in recent studies (122, 123). 

A resident strain of S. aureus may resist replacement by another S. aureus strain, also 

known as colonisation resistance. This was exploited in the 1960s, when infants were 

inoculated with the supposedly non-pathogenic S. aureus isolate 502A, to avoid 

colonisation with pathogenic strains (193), but the practice was abandoned when it 

turned out that 502A was able to cause even fatal infections (85).  It has also been 

shown that MSSA nasal carriage interferes with and hence may protect against MRSA 

acquisition (36). Colonisation resistance may be the result of a resident population 

producing harmful substances such as bacteriocins; antimicrobial molecules though to 

mediate population dynamics within a species (173). S. aureus is known to produce 

several types of bacteriocins with a broad-spectrum activity, targeting e.g. strains of S. 

aureus, CNS, corynebacteria and streptococci (242). Another suggested mechanism for 
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colonisation resistance is agr interference, based on polymorphisms in the regulatory 

agr locus resulting in inhibition of virulence gene expression and exclusion of 

heterologous strains (53, 61, 91). A recent study by Margolis et al. suggests that the 

mechanism behind S. aureus colonisation resistance may be a resource limitation on a 

“first come, first serve” basis, e.g. for attachment sites (123).  

 

TOLL-LIKE RECEPTOR SIGNALLING IN HOST CELLS  

The skin is both a physical and an immunological barrier that protects us from 

pathogens. The keratinocytes of the epidermis sense pathogens by expressing pattern 

recognition receptors (PRRs) that recognize pathogen-associated molecular patterns 

(PAMPs) (210). PAMPs are evolutionary conserved microbial components, including 

lipopolysaccharide (LPS), peptidoglycan and nucleic acids (144). The most extensively 

studied group of PRRs are the Toll-like receptors (TLRs), which are transmembrane 

glycoproteins with an extracellular domain recognizing PAMPs, a transmembrane 

domain, and an intracellular Toll/interleukin-1 receptor domain (TIR) domain 

responsible for initiation of intracellular signalling cascades (135) (Figure 4). This TIR-

domain typically shows 20-30% conservation on the amino acid level (3) and contains 3 

conserved boxes, two of which are crucial for signalling (199).  When a ligand binds the 

extracellular domain, the TIR domain attracts adaptor proteins containing TIR-domains, 

such as the adaptor molecules myeloid differentiation primary response protein 88 

(MyD88) or TIR-domain-containing adaptor protein (TIRAP) (210). This results in 

initiation of signalling cascades which activate transcription factors like nuclear factor 

κB (NFκB) and mitogen-activated kinases (MAPKs) (6), eventually leading to increased 

production of cytokines, chemokines and antimicrobial peptides and initiation of innate 

and adaptive immune responses which promote killing of S. aureus (3, 105).  
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Figure 4. Simplified view of S. aureus-induced TLR-mediated NF-κB signalling. PAMPs from S. aureus, 

e.g. LTA or lipoproteins, activate the TLRs which recruit adaptors such as TIRAP and MyD88, initiating a 

signalling cascade. a. The signalling cascade activates the transcription factor NF-κB, resulting in 

transcription of cytokines, chemokines and AMPs. b. A TIR-containing protein (e.g. TirS) from bacteria can 

negatively interfere with the PAMP-induced signalling cascade, preventing the activation of NF-κB and 

hence the production of cytokines, chemokines and AMPs. Based on (93). 
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OBJECTIVES 

 

The main objectives of this study were to investigate the population structure of S. 

aureus in colonised adults from the community and contribute to the knowledge on S. 

aureus interactions with the human host. 

 

PAPER I 

Although it is known that S. aureus nasal carriers are at risk of autoinfection, knowledge 

about the factors making specific strains successful colonisers is limited. This study 

aimed to identify the most successful S. aureus clones in nasal carriers from a general 

population and compare their distribution among host groups by using spa typing, MLST 

and statistical analyses. 

 

PAPER II 

Healthcare workers (HCWs) may serve as a reservoir for S. aureus transmission to 

patients. As studies of the healthcare setting often lack the perspective of how 

background prevalence in the general population and households may bias the result, 

we aimed to examine whether HCW status was associated with S. aureus nasal carriage 

and certain spa types in an unselected general population by the use of spa typing and 

multivariable logistic regression models. 

 

PAPER III 

Staphylococcal protein A (SpA) is a surface protein known to contribute to S. aureus 

pathogenesis by interference with the immune responses and activation of 

inflammation. Seven isolates with frameshift mutations in the spa repeat region were 

found among isolates from bacteraemia, MRSA-infection and one healthy nasal carrier. 
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The aim of this study was to investigate the molecular implications of the frameshift 

mutations by western blot and sequencing of the in-frame spa gene, and to find the 

relation between these isolates by running MLST.  

 

PAPER IV 

Bacterial proteins containing a Toll/Interleukin-1 receptor (TIR) domain have been 

found to interfere with the signalling of Toll-like receptors (TLRs) of human cells to 

suppress the innate immune response. Our aim was to confirm the presence of a 

putative TIR-domain containing protein in the S. aureus strain MSSA476 and to 

investigate its possible interference with TLR signalling and bacterial accumulation 

within human cells. We aimed to do this by cloning TirS into a eukaryotic expression 

vector and performing NF-κB reporter (luciferase) assays, western blot analyses, 

cytokine assays as well as intracellular survival assays in mammalian cells.  
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MAIN RESULTS 

 

PAPER I 

• In total, 1,981 isolates were included, 1,113 from baseline and 868 from the 

second screening. The isolates were assigned to 400 unique spa types, of which 

91 were novel. The spa types grouped into 21 clusters and 16 singletons, with 

three spa clonal complexes (spa CCs) comprising 62.4% of the S. aureus isolates at 

baseline; spa CC012 (28.3%), spa CC065 (18.2%) and spa CC084 (15.9%).  

 

• The most common spa types at the baseline of the study were t012 (8.4%), t084 

(7.6%) and t065 (4.9%). 86.1% (317 of 368) of the spa types from baseline were 

found in less than four individuals, and 65.5% (241 of 368) were found only in 

single individuals, indicating large genetic diversity. 92.2% (671 of 728) of the 

persistent nasal carriers had identical spa types in both samples. 

 

• MLST analysis of 176 consecutive isolates revealed 49 STs, 23 of which were not 

previously reported. Twenty-four new allele types were designated. The STs 

were grouped into 16 different clonal complexes (CCs), and four were singletons. 

CC30 (34.1%), CC45 (25.0%) and CC15 (13.1%) were the three largest CCs. 

 

• The concordance between spa CCs (as defined by BURP clustering) and CCs (as 

defined by eBURST) was 0.76 by Adjusted Rand evaluation, while the Wallace 

coefficient indicated a 90% probability that two isolates belonging to the same 

spa CC will also share CC. 

 

• In the colonised population, the prevalence of spa type t012 decreased 

significantly with increasing age and was almost twice as high in the youngest 

group compared to the oldest group (P = 0.03). The spa types t012 and t084 

demonstrated significant gender associations, with t012 being more prevalent in 

females (P = 0.03) and t084 in males (P = 0.03). spa type t084 had a twofold 
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higher prevalence among intermittent carriers than among persistent carriers (P 

= 0.04).  

 

• The spa types from bacteraemia isolates coincided with carrier strain spa types, 

with some exceptions. 

 

PAPER II 

• HCWs comprised 334 of 1,302 women and 71 of 977 men included in the study. 

The overall prevalence of S. aureus nasal carriage was 26.2% in HCWs and 26.0 in 

non-HCWs. The gender-specific rates in HCWs and non-HCWs were 22.5% and 

18.4% in women (P = 0.11) and 43.7% and 34.1% in men (P = 0.10), respectively. 

 

• Although HCW status was not associated with S. aureus nasal carriage in 

multivariable analysis of the total population, female HCWs had a 54% increased 

risk of S. aureus nasal carriage compared to female non-HCWs (odds ratio [OR] 

1.54, 95% confidence interval [CI] 1.09-2.19). In men, no such differences were 

observed. 

 

• Among women residing with children, there was an 86% increased risk of S. 

aureus nasal carriage in HCWs compared to non-HCWs (multivariable analysis: 

OR 1.86, 95% CI 1.14-3.04), while for men, there was no significant effect of 

family status.  

 
• The majority of spa types were observed in both HCWs and non-HCWs.  

 
• Among S. aureus nasal carriers, it was observed that HCWs had a higher risk of 

carrying spa types t012 and t015 (multivariable analysis: OR 2.17, 95% CI 1.16-

4.08 and OR 3.16, 95% CI 1.13-8.87, respectively). 

 
• For nasal carriers residing with children, the age- and gender-adjusted risk of 

carrying spa type t012 was higher in HCWs than in non-HCWs (age- and gender-

adjusted analysis: OR 2.42, 95% CI 1.03-5.70), and this association was 
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particularly strong in male nasal carriers (age-adjusted analysis: OR 4.61, 95% CI 

1.36-15.61). 

 
• Among S. aureus nasal carriers not living with children, HCWs were found to have 

a fourfold increased risk of spa type t015 compared to non-HCWs (age- and 

gender-adjusted analysis: OR 4.28, 95% CI 0.99-18.43).  

 

PAPER III 

• Sequencing of the complete SpA encoding region revealed that none of the seven 

isolates had identical spa repeat successions, although the same deviant repeat 

was found in three of the isolates. 

 

• For six isolates, the deviation was associated with the span of adenines in the 5th 

and 6th codons of a regular 24 or 27 bp repeat, with one base inserted or deleted, 

resulting in repeats of 23, 25 or 28 bp.  

 

• The seventh isolate exhibited either a short spa repeat of 14 bp followed by a 

regular 24 bp repeat (r93), or possibly one 38 bp repeat resulting from the fusion 

of two repeats.  

 

• All seven deviating spa repeats caused frameshifts in the SpA coding sequence, 

leading to premature translational stops upstream of the cell wall binding 

recognition sequence LPXTG, suggesting that the final gene product would lack 

cell wall binding ability. 

 

• The size of each truncated product was predicted and varied between 32 and 47 

kDa, including the signal sequence of 3.6 kDa.  

 

• Five isolates displayed a SpA sequence of five IgG-binding domains each, whereas 

the last two isolates only had four IgG binding domains, with domain C or domain 

A absent. 
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• The seven isolates were assigned to 6 different MLST types; ST8, 15, 45, 58, 228 

and the novel ST2834 due to the novel glpF allele type 292, and belonged to four 

different clonal complexes (CC5, CC8, CC15 and CC45). 

 

• Western blots revealed that for six out of the seven isolates SpA was mainly 

present in the supernatant, and the size of the truncated proteins corresponded 

well with the predicted sizes from sequence analyses. For the seventh isolate no 

SpA was detected by western blot, neither in the bacterial pellet nor in the 

supernatant.  

 

PAPER IV 

• An ORF encoding a protein of 280 amino acids with a TIR domain was located in 

S. aureus MSSA476 and named tirS. The tirS gene was located on the SCC476 

element. The TIR domain of TirS was 62% similar on the amino acid level to the 

TIR domain from TIR-containing protein C (TcpC) found in Escherichia coli.  

 

• By luciferase assays detecting the activity of the transcription factor NF-κB, the 

presence of TirS was shown to significantly inhibit S. aureus-, synthetic 

triacylated lipoprotein (Pam3CSK4)- or lipoteichoic acid (LTA)-induced NF-κB 

activation in human embryonic kidney 293 (HEK293) cells. These results were 

confirmed in mouse leukaemic monocyte macrophage RAW264.7 cells stimulated 

with Pam3CSK4 or LTA. TirS was also shown to significantly inhibit S. aureus-

induced NF-κB response in the HaCaT keratinocyte cell line after overexpression 

of TLR2. The presence of TirS in all these experiments was confirmed by western 

blot.  

 

• Western blot analyses revealed that the presence of TirS negatively interfered 

with MAPK phosphorylation in HEK293 cells stimulated with S. aureus.  
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• The presence of TirS was shown to inhibit MyD88- and TIRAP- induced NF-κB 

activation in HEK293 cells, using luciferase assays for detection of NF-κB-activity. 

 

• Intracellular survival assays revealed that the expression of TirS in HEK293 cells 

gave an increased intracellular accumulation of S. aureus.  

 

• Results from the Milliplex analysis of secreted cytokines demonstrated that the 

presence of TirS negatively interfered with the level of secreted cytokines 

monocyte chemoattractant protein 1 (MCP-1) and granulocyte colony-

stimulating factor (G-CSF). 

 

• PCR was performed on DNA from 554 S. aureus isolates from nasal carriers in a 

general population, however, tirS was not detected in this material. 
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GENERAL DISCUSSION 

 

Breakage of the skin barrier may lead to the transformation of S. aureus from a 

commensal coloniser to an invading pathogen, and its multitude of virulence factors 

enables it to adhere to and survive on and in the host cells (65). In most categories of 

hospitalised patients, S. aureus nasal carriage has been identified as a major risk factor 

for developing subsequent infections (234). Asserting that S. aureus infections are of 

endogenous origin is supported by studies revealing that isolates from nosocomial S. 

aureus infections were identical to nasal carrier isolates in 80% or more of the patients 

(119, 226, 236). In non-surgical patients who were S. aureus nasal carriers, the risk of 

acquiring a nosocomial S. aureus bacteraemia was three times higher than in non-

carriers (236).  

To gain an understanding of S. aureus nasal carriage and the connection with subsequent 

infection, the S. aureus population structure needs to be defined (234). In our studies, we 

investigated the population structure of S. aureus in adult nasal carriers from a general 

population (paper I) and among healthcare workers (paper II). Moreover, we have had 

a closer look at proteins involved in S. aureus immune evasion by investigating naturally 

occurring SpA mutants with frameshift mutations (paper III) and the bacterial TIR-

domain containing protein TirS (paper IV).  

  

NASAL COLONISATION BY S. AUREUS 

For a commensal to live and prosper in a human host one can envision two possible 

strategies. Either, it can stay hidden from the human immune system, hence not 

provoking an immune response, or the other option is to be detected and then 

manipulate the immune response to be able to survive. For S. aureus, both strategies 

seem to be important for survival in a human host, involving immune evasion factors 

such as SpA and TirS (paper III and IV). 

To investigate the population structure of S. aureus, we wanted to use an unselected 

collection of nasal isolates originating from a general population, thought to represent 
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the natural habitat for S. aureus. From this material, the bacterial population structure 

was elucidated.  The diversity was striking; in a material from 1,113 participants, 368 

unique spa types were observed, and the majority of these (65.5%) were observed in 

single individuals only. As many as 86.1% of the spa types were found in less than four 

individuals. This diversity is in line with findings from previous studies for both 

community and clinical strains (69, 132, 185, 203).  

In paper I, the most commonly observed spa types from blood culture isolates belonged 

to the most widespread lineages among carriers, implying that the ability of the strain to 

adhere to host cells and evade the immune response may also be beneficial when 

invading the host. It has been suggested that the gene combinations important for 

invasive disease may be the same as those involved in nasal colonisation (115). In fact, 

the evolution and maintenance of virulence genes in S. aureus may be a consequence of 

the complex host-to-host transmission pathway of this bacterium (125). An alternative 

view is that S. aureus during colonisation represses its virulence to prevent causing 

infection in a healthy host. However, by scanning for weak points in the host defence and 

exploiting them when they arise, S. aureus can be the first to the table in a competitive 

environment (17).  

Closer investigations of the bacterial population structure combined with host attributes 

revealed that there are seemingly more to the relationship between host and microbe, 

than just a developing bacterial population. Variation in S. aureus nasal carriage rates 

with gender and age, with lower carriage rates among women and the elderly, is a well-

known phenomenon (66, 156, 158, 234). We observed intriguing gender and age 

preferences among certain spa types, suggesting matching between host and microbe. In 

this close interplay, the phenotypes of both host and microbe seem to be relevant for 

successful colonisation. The associations between spa type type t012 and women, as 

well as spa type t084 and men, could possibly be related to reproductive hormones or 

indirect effects of such hormones. Reproductive hormones have been shown to have 

immunomodulatory effects (100, 163). In fact, it has been observed that isolates of S. 

aureus displayed increased attachment to cultured HeLa cells stimulated with estrogens 

(208), and that use of hormonal contraceptives are positively associated with S. aureus 

nasal carriage (22, 247). One could speculate that spa type t012 holds a factor that is 

advantageous for colonisation of hosts with high levels of female reproductive 
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hormones, whereas for t084, male reproductive hormones or indirect effects of these 

may be involved. The t012 association with younger age of carriers was gender-

independent, and hence could not be directly explained by reproductive hormones. 

However, associations of nasal carriage with factors such as glucocorticoid receptor 

gene polymorphisms (220) and 25-hydroxyvitamin D serum levels (156) indicate a 

possible role of steroid hormones in colonisation. Steroid hormones and hormone 

receptors regulate the expression of antimicrobial peptides (1, 192). A decrease in the 

number of glucocorticoid receptors in mononuclear leukocytes from elderly subjects 

compared with subjects younger than 20 years has previously been suggested (213). In 

addition, a positive association between age and 25-hydroxyvitamin D serum levels was 

found among both genders in the TSSS study (156). Possibly, t012 may be more 

sensitive to killing by antimicrobial peptides than other spa types, however this 

hypothesis has not been investigated further.  

Our findings (paper I) are supported by the results from two artificial human 

colonisation studies (150, 219). In both studies, decolonised volunteers were artificially 

recolonized with a mixture of strains, including their former resident strain. Most non-

carriers and almost all persistent carriers resumed their original carrier state, and most 

persistent carriers were recolonised with their original resident strain. These studies 

suggest the importance of an optimal fit between S. aureus and the human host, and 

highly specific host-microbe interactions. Host genotype may define whether one is a 

nasal carrier or not, through the expression level and polymorphisms of receptors for 

bacterial adherence in the nares and the immune response resulting in either tolerance 

or eradication of S. aureus, whereas the bacterial factors may define which strain is 

carried (161).  

Sakwinska et al. found that when studying hospital personnel over a period of nine 

months, 8% acquired a strain entirely different from the original one (183). In 

comparison, our study (paper I) revealed that 7.8% (57/728) of those defined as 

persistent carriers did not have identical spa types in both samples, but as 19 of these 57 

isolates (33.3%) belonged to the same spa CC, only 5.2% displayed entirely different spa 

types. The change in spa type from one sampling to the next may be due to the presence 

of several spa types simultaneously in human hosts (co-colonisation) (19, 185), strain 

replacement (183) or possibly spa type alterations such as repeat deletions, duplications 
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or point mutations (14). With a median time of 28 days between the two samples in our 

study, the rates of strain replacement or co-colonisation are in line with previous 

findings for MSSA in nasal carriers (183). As only one isolate per sample was selected in 

our study, we cannot rule out the possibility of several spa types present in the carriers. 

In fact, a recent study found that in 5.7% (5/88) of colonised volunteers, S. aureus 

isolates from the right and left nostrils had less than 50% PFGE identity (98).  However, 

previous studies have found low rates of co-colonisation, with only 2.3% (3/130) and 

2.2% (2/89) of healthy colonised individuals having multiple S. aureus strains in the 

nose (183, 185).  

Interestingly, our results also revealed an association between spa type t084 and 

intermittent carriage. Previously, it has been reported that the number of S. aureus 

colony forming units (CFU) in the nose is higher among persistent carriers (median 3 x 

105 CFU/swab) than the CFU among intermittent carriers (median 40 CFU/swab) (225). 

It has been shown that the in vivo abundance of bacteria differ between genotypes (185), 

and that lower bacterial counts are associated with an increased probability of 

eliminating colonisation (183). However, the fact that the most commonly observed 

genotypes in nasal carriers did not show increased CFU numbers compared to others, 

indicate that in vivo abundance cannot explain their success (185). It is possible that the 

association between spa type t084 and intermittent carriage has to do with an efficient 

transmission of this spa type between hosts, but this remains to be elucidated.  

Households have been suggested to serve as a reservoir for S. aureus in the community 

(136), and children have been found to have a higher prevalence of colonisation with S. 

aureus than adults (38, 66, 73). An S. aureus nasal carrier may impose his or her carrier 

status upon other family members (138, 162, 228), and in households with more than 

one person colonised, 50% were found to carry the same strain (136). For MRSA, it has 

been reported that family members may serve as a reservoir for S. aureus to be re-

introduced into the hospital via intrafamilial transmission to and from healthcare 

workers (118, 228).  Several studies have investigated whether working in healthcare 

services may be an environmental risk factor for MSSA colonisation, but the results are 

not consistent (42, 94, 190, 207).  In general, many of the studies in healthcare settings 

may have been biased by a lack of information on background prevalence in the relevant 

general population as well as in households. Hence, we wanted to explore the 
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epidemiology of S. aureus carriage among healthcare workers in an unselected 

population (paper II). Results from paper II demonstrated that working in healthcare 

services was associated with a 54% increased risk of S. aureus nasal carriage in women, 

and the risk was even more increased (86%) in women residing with children. Among 

men working in healthcare services and living with children, we found associations with 

increased prevalence of certain spa types.  

Recently, niche-adaption in CC30 was described, suggesting that S. aureus through gain, 

loss and change of genes can adapt to niches such as the hospital environment (128). In 

fact, the associations between health care workers and the increased risk of spa types 

t012 and t015 may be hypothesised to be due to certain spa types being adapted to 

specific ecological niches. However, these associations between certain spa types and 

healthcare workers may also possibly result from an increased potential for 

transmission of these spa types in healthcare- and/or family settings. However, the 

degree of uncertainty in these estimates is considerable, and no firm conclusions should 

be drawn. The main weakness of paper II was the lack of information on profession, 

workplace and patient contact among the healthcare workers. Information on factors 

such as family size and age of children were also not available. Future studies including 

information on work and home exposures are therefore needed to improve our 

knowledge on the associations between health care workers and S. aureus nasal 

carriage. 

Despite of screening the nasal samples from all 4,026 participants, no MRSA isolates 

were found (paper I and II). MRSA is not considered to be endemic in Norway, and the 

prevalence of MRSA in clinical S. aureus samples from surveillance in 2007-2008 was 

0.2-0.7% (149). As the surveillance data do not reflect a healthy population they cannot 

be directly compared to the MRSA/MSSA colonisation rates in our study.  

The typing method we selected for our studies was spa typing (paper I, II and III). spa 

typing has been thoroughly evaluated and is a rapid and informative method that is easy 

to use and interpret and hence enables high throughput at low costs, and the 

standardised nomenclature and interlaboratory reproducibility enables global 

comparisons (202). The discriminatory power has been reported to be higher than for 

MLST/eBURST in several studies (133, 203). We evaluated the concordance between 

spa typing and MLST in our material to verify the appropriateness of spa typing MSSA 
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isolates (paper I). The good concordance supports our hypothesis of the clonal 

dispersion of isolates, with spa CC012 corresponding to CC30, spa CC065 corresponding 

to CC45 and spa CC084 corresponding to CC15. However, one should be aware of the 

limitations of spa typing. Discrepancies may occur between spa typing and other 

methods, due to spa homoplasies or possibly chromosomal replacements involving the 

spa locus, resulting in identical spa types among non-related isolates (9, 74, 133, 154). 

This may result in e.g. misleading suggestions of global clonal spread (154).  

 

HOST-MICROBE INTERACTIONS 

There is a redundancy of surface proteins in S. aureus, where many of the surface 

proteins are able to bind to several host proteins and several surface proteins may bind 

to the same host protein (26). It is therefore challenging to prove the importance of 

individual proteins in virulence, and it is not unlikely that a combination of S. aureus 

proteins may be essential for virulence (127). The redundancy of surface proteins 

implies the importance of the functions of these proteins for S. aureus survival. In many 

cases, the bacterium will have a backup if there is a failure in the function of one of these 

proteins. For the seven isolates in paper III which secrete SpA to the extracellular 

environment, such backup mechanisms may come into play, leaving the bacteria capable 

of causing infections and surviving in carriers.   

SpA is a highly conserved virulence factor that is present in virtually all S. aureus 

isolates. In addition to being a target for typing of S. aureus isolates, SpA has been 

suggested to have important roles in invasive infections (117), arthritis (160) and 

staphylococcal pneumonia (62). SpA exhibits an Immunoglobulin G (IgG) binding region 

of four or five repeats, binding tightly to the Fc region of IgG (137, 198). The 

polymorphic XR-region follows the IgG binding region, and contains a variable number of 

repeats that are the target for spa typing (194) (Figure 2). An N-terminal signal 

sequence leads SpA into a protein export pathway, while three C-terminal elements; an 

LPXTG-motif, a hydrophobic domain and a charged tail are involved in the covalent 

anchoring of SpA to the cell wall. In a large material of more than 14,000 S. aureus 

isolates, only 7 isolates with deviating spa repeat lengths were found; 5 from 

bacteraemia, one from an MRSA infection and one from a healthy nasal carrier (paper 



44 
 

III). We found that SpA from all seven isolates were truncated in the C-terminal end, and 

hence was not attached to the cell wall. However, with an intact IgG binding region, SpA 

in the secreted form could still be beneficial for S. aureus. In addition to limiting 

opsonisation and phagocytosis by binding the Fc region of IgG, the IgG binding domains 

can bind the Fab region of the VH3 subclass immunoglobulins (90), inducing apoptosis 

of B lymphocytes (64). The IgG binding domains are also known to activate tumor 

necrosis factor receptor 1 (TNFR1) signalling, activating inflammation through 

chemokine expression (63). Other studies have found that SpA interacts with von 

Willebrand factor (vWF) (78), platelet gC1qR (146) as well as osteoblasts (28). In paper 

III, five of the SpA mutants were from blood cultures and one was isolated from an 

MRSA infection, suggesting that the isolates were still virulent. In fact, it was recently 

demonstrated that several host chemokines stimulate release of SpA from the cell wall, 

and the authors suggest that this release of SpA may serve as a potential immune 

evasion strategy (246). It has also been shown that SpA can induce biofilm formation 

without being anchored to the cell wall (134).  

Structural mimicry is a mechanism utilised by bacteria to manipulate the innate immune 

response by mimicking host proteins (201). TLRs are key factors in the upregulation of 

the innate immune response, as they by sensing PAMPs start a signalling cascade that 

results in the initiation of immune responses (169). Bacterial proteins containing TIR 

domains were shown to interfere with host TLR signalling and decreasing the 

inflammatory response via structural mimicry (21). TIR proteins have been observed in 

several human pathogens, such as Salmonella enterica, Escherichia coli and Brucella 

melitensis, and TIR-containing proteins have been found to contribute to virulence by 

suppressing the innate immunity (23, 145). In S. aureus, a TIR protein was identified in 

strain MSSA476 via a database search (23). This TIR-containing protein, named TirS, 

was investigated further in paper IV. The results show that TirS negatively interferes 

with innate immunity by preventing cytokine production via TLR2-mediated signalling. 

MSSA476 belongs to a major global lineage associated with invasive community-

acquired disease (82), but whether the presence of TirS increases the virulence of S. 

aureus strains requires further investigation. Other studies have demonstrated the 

importance of TLR2 and MyD88 in clearance of S. aureus infections (164, 211), and 

hence we propose that interfering with TLR2 may be beneficial for S. aureus by 

contributing to immune evasion. We hypothesised that TirS could be involved in nasal 
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colonisation. Although TirS was not detected among the 554 tested S. aureus isolates 

from nasal carriers, we did observe inhibition of S. aureus-induced NF-κB response in a 

keratinocyte cell line, and the putative role of TirS in colonisation remains to be 

elucidated.  

S. aureus has classically been regarded as an extracellular bacterium, but its ability to 

internalise in a range of cell types, including endothelial cells, epithelial cells, fibroblasts, 

osteoblasts and keratinocytes, as well as professional phagocytes, has been 

demonstrated during the last decades (10, 57, 76, 87, 167). The ability of S. aureus to 

invade and survive within mammalian cells may contribute to chronic carriage and/or 

chronic or frequent relapse of staphylococcal infections such as osteomyelitis and 

mastitis (57, 196). It is not yet known whether S. aureus is found intracellularly during 

nasal colonisation, but intracellular persistence is thought to be a strategy for immune 

evasion where the bacteria are protected against professional phagocytes and 

extracellular antimicrobials (57). In paper IV, it was shown that the presence of TirS 

increased the intracellular accumulation of S. aureus in HEK cells, possibly contributing 

to bacterial survival during infection. This observed effect of TirS is in line with results 

from previous studies of TIR-containing proteins in intracellular survival (23, 145). 

The ectopic expression of TirS in eukaryotic cells is a limitation of paper IV, as TirS then 

is constitutively expressed by a strong promoter, possibly yielding higher 

concentrations of TirS in the cytosol than bacterial expression of the protein would give. 

The TIR-domain containing protein TcpC from E. coli has been found to be secreted and 

to be taken up by host cells (23), but it is not yet known whether bacterial TirS is 

secreted, and how it may enter human cells during colonisation or infection. 

The role of SCC elements in the spread of putative virulence factors, antimicrobial 

resistance determinants and genes involved in bacterial fitness has been proposed, and 

as tirS is located on the SCC476 element, spread by horizontal gene transfer to other 

members of the S. aureus population may occur  (82).   

  



46 
 

CONCLUDING REMARKS 

 

Even though the intimate relationship between the human host and S. aureus was 

recognised already during the late nineteenth century, the knowledge on the molecular 

interactions contributing to colonisation and carriage is still limited today.  

A match between the microbe and the host seems to be essential for the interplay during 

colonisation and carriage. Our results support the view of a close relationship where the 

genotype/phenotype of both host and microbe are important, as we found associations 

between certain spa types and host characteristics such as age, gender and working in 

healthcare services. As for the future, we will continue our search for determinants 

among hosts and microbes that are involved in S. aureus colonisation of healthy 

individuals. WGS studies may help us obtain a broader understanding of the bacterial 

factors involved in colonisation. Also, S. aureus colonisation of other body niches is in 

our field of interest.  

An extensive number of surface proteins and virulence factors can be found in S. aureus. 

SpA is reported to have several important functions for S. aureus in a host.  We identified 

isolates from carriage and disease in which the SpA proteins were truncated and 

secreted into the extracellular environment, indicating that cell wall-attached SpA may 

not be essential for S. aureus virulence and colonisation.  

The putative virulence factor TirS was found to negatively interfere with innate 

immunity and contribute to intracellular accumulation of S. aureus in a human cell line. 

Its location on a SCC element may enable horizontal transfer. Future studies will include 

analyses of bacterial TirS expression and localisation. Also, the influence of TirS on S. 

aureus colonisation, invasion and intracellular survival will be investigated.  

In summary, our results have increased the knowledge on the S. aureus population 

structure in an unselected human population and have added some pieces to the puzzle 

on the relationship between S. aureus and its human host. However, further studies on 

determinants involved in S. aureus colonisation and disease are needed to fully 

understand this host-microbe relationship.  
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