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Abstract

This thesis focusses on extracting, evaluating and selecting features to study multi-sensor data
fusion for forest applications. Due to the difference in the underlying sensor technology, data from
synthetic aperture radar (SAR) and optical sensors refer to different properties of the observed
scene and it is believed that when they are fused together, they complement each other to
improve the performance of a particular application. Improved fusion results and useful physical
interpretation of the observed scene can also be obtained by extracting and selecting sensor
specific features. The two primary aims of this study are investigating the benefit of Polarimetric
SAR and multi-spectral optical data fusion for forest applications by using different features
extracted from each of these datasets, and identifying those few best Polarimetric SAR and multi-
spectral optical features that jointly perform best for forest classification. Two secondary aims are
comparing the potential of four different datasets for forest applications based on their individual
classification performances, and comparing two feature selection algorithms in selecting the first
few best features.

Multi-frequency fully Polarimetric SAR data at P-, L- and C-band and multi-spectral Landsat
TM data acquired over the Nezer forest in France were used for demonstration. The scene is
composed of homogeneous fields of either bare soil or maritime pine trees of different ages, and
the application was discriminating the bare soil, and the trees in terms of their ages. On the one
hand, different combinations of the polarimetric channels were used to extract simple polarimetric
SAR features. On the other hand, different combinations of the available multi-spectral bands
were used to extract different vegetation indices. A Supervised maximum likelihood Bayesian
classification scheme was applied to evaluate and compare the classification performances of each
of the four datasets and their different combinations. The classification accuracy (%) was used
for a quantitative comparison. The two standard, sequential forward and sequential backward,
feature selection algorithms were applied and compared in selecting the best features.

A literature review of data fusion methods found that feature level fusion is the best approach
for our application. A total of twenty-six features; six from each of the three Polarimetric SAR
datasets and eight from the optical dataset were extracted. A number of features from the
extracted set were found useful to interpret the scene in terms of its physical parameters. In
comparing the classification performances of the four datasets, it was found that P-band is the
best whereas C-band is the poorest. The L-band and the Landsat TM datasets were found to have
moderate performances. Therefore, P-band is potentially the best band for forest applications,
and whenever it is available, priority should be given to the use of it. Significant classification
accuracy improvement (up to 12%) was achieved by fusing the polarimetric SAR and the multi-
spectral optical datasets. Therefore, attention should be given to the combined use of them
whenever they are available.

The sequential forward feature selection approach gave slightly better results in selecting the few

best features than the backward one. Therefore, whenever the objective is to choose the few

best features, the forward approach should be used. Five features were found to jointly preserve

98.5% of the classification information of the available set. This shows the incredible advantage

of feature selection in preserving most of the classification information and at the same time

reducing the size of the data. Two of the best features, namely the mean radar backscatter

and the cross-pol ratio, were identified from the polarimetric SAR features. The wetness and

the soil brightness index were found to be the two best optical features in complementing the



polarimetric SAR features irrespective of the SAR frequency used. The normalized difference

vegetation index was found specifically useful in complementing the P-band whereas the greenness

was best in complementing the L-and C-band features. In addition to retaining most of the

valuable information, these few identified features were found useful to interpret the scene in

terms of the different forest scattering mechanisms. Therefore, they can be reasonably expected

to be used for other forest applications too.
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Chapter 1

Introduction

These days, many remote sensing satellite sensors are acquiring information at di�erent
spatial, spectral and temporal resolutions, and hence a wide spectrum of data is available
for the same observed site. However, the information provided by the individual sensors
might be incomplete or imprecise for a given application [2, 3, 4]. Hence, a combined
use of data from two or more sources may provide complementary information which
could help to understand the observed scene better or improve the result of a particular
application [5, 6]. This is the main motivation for this study.

Data from synthetic aperture radar (SAR) and optical sensors refer to di�erent charac-
teristics of the observed scene, and it is believed that when combined, they o�er com-
plementary information that helps to distinguish the di�erent classes of a particular
observation. Optical data contains information on the re�ective and emissive character-
istics of the targets in terms of spectral intensity. This spectral information is related
the chemical composition and moisture content of the observed target. On the other
hand, SAR data contains information on the geometric structure, surface roughness and
dielectric properties of natural and man-made objects. As an example, spectral signa-
ture is the information inferred from optical data, which is used to characterize ground
targets. However, some vegetation species may not be discriminated as they can have
similar spectral responses. Therefore, radar images can help in discriminating these veg-
etation species as they contain additional information about the geometric structure and
dielectric properties of the vegetation cover.

Data fusion refers to combining information from two or more sources together to improve
the quality and interpretability of the source data. This can be achieved at any one of
the three di�erent processing levels of the image information: pixel, feature or decision
levels.

� Pixel level fusion is a low level fusion where di�erent source images are combined
to produce a single fused image

� Feature level fusion is an intermediate level of fusion, which requires the merging
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of extracted features

� Decision level fusion is a high level fusion which is used to integrate separately
processed image information using decision rules

Regardless of the fusion techniques used, the fused image is believed to contain greater
information content for a given scene than any one of the individual image sources alone
[3].

The process of transforming an input dataset into a set of representative features which
accurately and concisely represent the original information is referred to as feature ex-
traction. When dealing with data from multiple sensors, feature extraction is the �rst
process undertaken to preserve sensor speci�c information. When wisely implemented,
the extracted features can be helpful to interpret the observed target in terms of its phys-
ical parameters. A related process, i.e., feature selection, refers to selecting a subset of
features from the available set. It is an important process to identify those best features
that contain most of the valuable information for a particular application. An additional
bene�t of feature extraction, when it is accompanied by a systematic feature selection
process, is that a smaller amount of memory and processing time will be required in the
feature space because of the removal of redundant information in the process.

Many studies have been conducted to combine SAR and optical data for a number of
applications [7, 8, 9, 10, 11]. To mention some of the applications, two SAR datasets from
ERS-1/2 (C-band) and JERS-1 (L-band) are fused with a multi-spectral dataset from
the SPOT satellite for the purpose of urban land cover classi�cation [7]. In [8] a study
was conducted to integrate images from ERS-1 satellite and Landsat thematic mapper
sensors for geological study purposes. Snow cover mapping using these two di�erent
datasets was demonstrated in [9]. Another application example where SAR and optical
data sets are integrated is land cover mapping, [10, 12].

Even though they are not many, a number of studies have been conducted to integrate
SAR and optical data for forest applications. However, most of these studies concentrated
on estimating di�erent forest parameters, mainly biomass and some related variables such
as canopy height [13, 14, 15, 16]. Very recently, classi�cation of forest in terms of tree
species has been studied in [17]. In most of these studies, the raw data from the di�erent
sources is directly used for either forest variable estimation or classi�cation.

However, only few studies have been conducted on extracting and combining features
from SAR and optical datasets for forest applications [13, 16]. In [16], statistical metrics
derived from di�erent features extracted from four data sources (LiDAR, SAR/InSAR,
ETM+ and Quickbird) are used to compare the performance of the combined datasets
with that of the individual ones in mapping forest biomass and canopy height. In [13],
some selected polarimetric channels from multi-frequency polarimetric SAR, coherence
amplitude from a single frequency interferometric SAR, and some selected bands from
Landsat TM dataset are combined for the purpose of mapping foliage biomass. The
selection among the channels and the bands was performed by looking at the corre-
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lation information in a scatter plots. Apart from these two related e�orts, no work is
done to integrate di�erent polarimetric SAR and multi-spectral optical features for forest
classi�cation.

This study focuses on extracting, evaluating and selecting di�erent multi-frequency po-
larimetric SAR (PolSAR) and multi-spectral optical features to demonstrate the bene�t
of SAR and optical data fusion for forest applications. The primary aim of the feature
evaluation and selection process is to identify those features, from the di�erent datasets
considered, which are best for forest applications, with a secondary aim of comparing
the potential of two feature selection algorithms in selecting a few best features. In addi-
tion, the study will look in to the individual classi�cation performances of four di�erent
datasets with respect to forest classi�cation. The main motivation of extracting and
using di�erent multi-frequency PolSAR and multi-spectral optical features is that sensor
speci�c information can be retained in the fusion process and could be helpful to improve
the fusion results by using di�erent features that are unique to the sensors.

A data fusion approach, which takes in to account the sensor speci�c information in the
fusion process and is suitable for the evaluation and selection of features, is chosen by
an extensive literature review. The application is illustrated by using datasets acquired
over the Nezer forest, France, under the objective of discriminating maritime pine trees
of di�erent ages and bare soil. Four datasets are considered; three air-borne fully po-
larimetric SAR datasets acquired with three di�erent frequencies, C-, L- and P-bands,
and one multi-spectral Landsat Thematic Mapper (TM) dataset. As a preprocessing
step of the datasets, atmospheric correction is applied to the multi-spectral Landsat TM
dataset, then all the bands of the Landsat TM dataset are co-registered with the Pol-
SAR images by manual image tie-point selection and resampling, and the SAR images
are multi-looked to reduce speckle and to adapt to the Landsat TM resolution. After
processing the original single-look complex polarimetric SAR data, di�erent combina-
tions of the polarimetric channels are used to extract simple polarimetric features [18],
and di�erent combinations of the available multi-spectral bands are used to extract dif-
ferent vegetation indices [1]. A supervised maximum likelihood Bayesian classi�cation
scheme is applied to evaluate and compare the classi�cation performance of each of the
four datasets and their di�erent combinations. Percentage classi�cation accuracy is used
for a quantitative comparison. Two standard, sequential forward and backward, feature
selection algorithms [1] are applied and compared in selecting the few best features.

In total, twenty-six features; six from each of the three PolSAR datasets and eight from
the Landsat TM dataset are extracted and used for this study. This number does not
present all possible polarimetric and optical features, however, it includes the most com-
monly used features and is enough for our intended purposes, i.e., (a) to investigate
the bene�t of extracting and selecting sensor speci�c features to identify those most
representative ones and reduce the volume of the data, and (b) to investigate the com-
plementariness of SAR and optical features. There are a lot more Polarimetric features,
especially those can be derived from the polarimetric target decomposition theorems and
other more multi-spectral features. They are not considered here as it is beyond the
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scope of this study. The di�erent fusion approaches are not quantitatively compared
here. This is also beyond the scope of the project and the selection among the fusion
approaches is simply made by reviewing the literature. For the classi�cation and future
selection part, a commonly used classi�er is applied, and the di�erent classi�ers that
can be used to analyse multivariate datasets will not be investigated here for the same
reason.

As it is pointed out above, this study encounters discriminating among the di�erent
age groups of single-species pine trees. This task is actually harder than other forest
applications that involve mixed-species trees. Therefore, the results of this study could
potentially be used for other forest applications.

1.1 Structure of the thesis

The thesis consists of both theoretical concepts and experimental parts. The theoretical
concepts are covered in chapters 2 and 3, while the experimental parts are covered in
chapters 4, 5, 6 and 7.

The second chapter introduces two key concepts. The �rst one is the sensor technology
of SAR and its optical multi-spectral counterpart, and the second fundamental concept
is the interaction of electromagnetic waves with the forest in the microwave and visi-
ble/infrared regions of the electromagnetic spectrum.

The third chapter looks into the concept of data fusion. Here, the basic concepts of data
fusion, as it is applied to remote sensing purposes, are discussed and the most widely
used fusion techniques are reviewed. In addition, by comparing the di�erent data fusion
approaches, an appropriate one for our application is selected.

The fourth chapter �rst introduces the datasets used in this study, and then addresses
the preprocessing of the datasets. Atmospheric correction, image to image registration
and speckle �ltering are the main preprocessing tasks considered.

Feature extraction from the datasets is presented in chapter �ve. Here, di�erent po-
larimetric SAR and multi-spectral features are extracted and discussed in terms of the
physical parameters of the scene.

In chapter six, a maximum likelihood Bayesian classi�cation scheme is applied on the
extracted feature sets. Here, the bene�t of multi-source data fusion is demonstrated by
combining the features from the di�erent sources. The classi�cation results from the
individual and the combined datasets are quantitatively compared.

Feature evaluation and selection is covered in the seventh chapter. Here, the whole feature
set from the di�erent datasets are analysed and features, which jointly perform best with
respect to classi�cation accuracy, are selected. Two feature selection approaches are used
and compared.
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Lastly, chapter eight concludes the whole work.

5





Chapter 2

SAR and optical sensors and

electromagnetic interactions with

forest

A lot of literatures and textbooks can be referred for a detailed description of polari-
metric synthetic aperture radar [19, 20, 21, 22] and optical multi-spectral sensors [1, 23].
In this chapter, some of the relevant concepts about these sensors are addressed to give
a background information about the PolSAR and optical multi-spectral datasets used
in this project. In addition, the interaction of electromagnetic radiation with the forest
is among the topics discussed. A few basic characteristics of the images acquired by
these sensors are also described, to give some insight about the issues that should be ac-
counted for in the preprocessing step of the datasets considered. Finally some important
comparisons between the datasets acquired by these sensors will be given.

2.1 The potential of remote sensing for forest applications

Due to their extended area coverage and complex nature, information about forests is
not easily accessible. Remote sensing is an important tool for forest applications as it is
capable of acquiring information over a wide area in a repetitive manner. The ability of
satellite remote sensing systems to image extensive areas makes them preferable for ap-
plications at the global scale, and air-born remote sensing systems can be used for forest
monitoring at a local scale [24]. From their orbiting nature, space-born sensors are capa-
ble of repeat imaging every part of the earth's surface at a �xed interval of time. Hence,
they can provide a large amount of multi-temporal data for the same observed forest
site, that can be used for di�erent purposes. Even though they can o�er greater �exi-
bility with respect to the time of data acquisition, air-born systems will cost much more
to provide similar frequency of observation over extended areas. An important aspect
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of radar systems is their ability to see through clouds and atmospheric moisture. This
is particularly useful for forest applications, especially in the humid tropics. Moreover,
the high resolution and polarimetric capabilities of recent SAR systems, makes remote
sensing an important source of information for di�erent forest applications.

Remote sensing information acquired over forest can be used for di�erent applications
such as [25]:

� Forest/non-forest mapping

� Forest type and species mapping

� Forest age discrimination

� Deforestation and forest regeneration mapping

� Forest �re detection

� Carbon and biomass mapping

As it is pointed out in the introduction chapter, this study encounters forest age discrimi-
nation. Such an information can be used for di�erent purposes such as timber production
and forest inventory [26, 27].

2.2 Synthetic aperture radar (SAR)

2.2.1 Basic concepts

Radar is an active sensor, which works by transmitting and receiving pulses of microwave
energy. The sensor transmits a signal, which is directed toward the target area to be
investigated. The radiation re�ected from that target is detected and measured by the
radar receiver. For earth observation purposes, these sensors can be installed on either an
air-borne or space-borne platforms and can operate at various frequencies. Real aperture
radar (RAR) is a radar system where the resolution in the �ight direction is controlled
by the physical length of the antenna. For these systems, only the amplitude (and not
the phase) of each return echo is measured and processed. To determine the spatial
resolution at any point in a radar image, it is necessary to compute the resolution in two
dimensions, in the range (across track) and azimuth (along track) directions. The range
resolution of a RAR is dependent on the e�ective length of the pulse in the slant range
direction and mathematically it is given by [28]:

△𝑅 =
𝐶𝜏

2
=

𝐶

2𝛽

where △R is the slant range resolution, C is the speed of light, 𝜏 is the pulse length and
𝛽 is the bandwidth. This resolution could be improved by decreasing the pulse length.
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But if we decrease the pulse length, the system requires much input power (in order to
get a detectable amount of signal) as the signal energy is given by

𝐸 ≡ 𝑃𝜏

where P is the instantaneous peak power. However, the maximum power is severely
limited by the sensor hardware, particularly in the case of space borne sensors. Thus, in
order to have high detection ability (large E) and a high resolution (large 𝛽), a pulse with
the seemingly incompatible characteristics of large 𝜏 and large 𝛽 is needed. This can be
achieved by signal processing techniques, modulating and de-modulating the transmitted
and received signals respectively [28].

The azimuth resolution △A is given by the beam width and is a function of the oper-
ating wavelength, position in range and the dimension of the antenna in that direction.
Mathematically, it is given by

△A = 𝐿 =
𝜆𝑅

𝐷𝑎

Where L is the beam width, 𝜆 is the wave length, 𝐷𝑎 is the dimension of the antenna
in the azimuth direction and R is the slant range distance to the target. One way of
achieving better azimuth resolution is to boost frequency; another is to increase along
track antenna length; a third is to decrease the target range. None of these options is
very e�ective from space. This is where the concept of Synthetic aperture radar (SAR)
comes into play.

SAR is a coherent mostly airborne or space borne side-looking radar system which utilizes
the motion of the platform to simulate an extremely large antenna using advanced signal
processing, and that generates high-resolution remote sensing imagery. The geometry of
SAR is shown in �gure 2.1 below. The platform travels forward in the �ight direction
with the nadir directly beneath the platform. The radar beam is transmitted obliquely
at right angles to the direction of �ight illuminating a swath, which is o�set from nadir.
That is the reason why it is also known as a side looking radar. The radial line of
sight distance between the radar and each target on the surface is called the slant range
distance.

As the radar moves, a pulse is transmitted at each position (shown by string of dots in the
�gure below). The amplitude and phase of the signals returned from objects are recorded
and stored throughout the time period in which the objects are within the beam of the
moving antenna. Advanced signal processing techniques are used to coherently combine
the recorded information from each of the returned signals to achieve very high azimuth
resolution. The �nal output could be a single image with the highest azimuth resolution
possible (single-look data) or a multi-look processed data composed of several images
with reduced azimuthal resolution. Generally, depending on the processing, resolutions
achieved by SAR sensors are of the order of 1-3 meters for air-borne SAR and 5-50
meters for space-borne SAR [20, 28]. SAR achieves �ne range resolution the same way
as RAR does, by pulse modulation. As an example, the SAR data used in this project
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has 3 meters spatial resolution in the azimuth and 6.7 meters of spatial resolution in the
range.

Figure 2.1: Geometry of SAR.

2.2.2 SAR Polarimetry

Polarization describes the orientation of the electric �eld component of electromagnetic
waves in a plane perpendicular to the direction of propagation. In general, radar sys-
tems can have one, two, or all four of the following transmit-receive linear polarization
combinations; HH, VV, HV, VH. Conventional SAR systems operate within a single,
�xed-polarization antenna for both transmission and reception of microwave signals. In
this way, a single radar re�ectivity is measured, for a speci�c transmit and receive polar-
ization combination, for every resolution element of the image. As a result, additional
information about the scattering process contained in the polarization properties of the
scattered signal is lost. To ensure that all the information of the scattered wave is re-
tained, the polarization of the scattered wave must be measured. Polarimetric SAR is a
radar system, which transmits microwave signals in two orthogonal directions (H and V)
and records the backscattered signal in two or more separate channels. Depending of the
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number of receiving channels, polarimetric SAR systems can be semi- or fully polarimet-
ric. Fully polarimetric channels record the received signal in four separate channels. The
target response is given by a 2 × 2 scattering matrix, where the diagonal elements are
the co-polarization (HH, VV) terms, while the o� diagonal elements are known as cross-
polarization (HV, VH) terms. Mathematically the scattering matrix S is represented
by:

S =

[︃
𝑆ℎℎ 𝑆ℎ𝑣

𝑆𝑣ℎ 𝑆𝑣𝑣

]︃
SAR polarimetry has great advantage over conventional single-channel radar systems as
it is capable of measuring the complete scattering matrix for each resolution element of
a scene [21, 29]. This helps to obtain more information about the scattering mechanisms
on surfaces or within volumes.

2.2.3 SAR image characteristics

A SAR image has several characteristics that make it unique. Images obtained from
coherent sensors such as SAR systems are characterized by speckle. Speckle is a salt
and pepper appearance of radar images which is caused by random constructive and
destructive interferences from the multiple scattering returns that will occur within each
resolution cell. In other words, speckle is a statistical �uctuation associated with the
radar re�ectivity (brightness) of each pixel in the image of a scene. It is a form of noise
which degrades the quality of radar images and therefore reducing this e�ect could help for
better discrimination of targets. One of the most common speckle suppression techniques
is multi-looking. Single-look imaging uses all signal returns from a ground target to create
a single image. Multi-looking is the dividing of the radar beam into several narrower sub-
beams. Each sub-beam provides an independent look of the illuminated scene. Summing
and averaging the images from the di�erent looks will result an image with reduced
speckle. In cases where only single-look processed images are available, the averaging
can be done on the local neighbourhood of pixels. The later approach is used for this
study, as the original datasets were supplied as single-look complex images. However,
multi-looking in general is performed at the expense of the spatial resolution of radar
images.

However, it is also important to note that speckle is not really noise in the classic sense
because it is the radar signature of the target. It has some useful information that can
be used to characterize the texture information in radar images. Texture in radar images
refers to the natural variation of the average radar backscatter on a scale of several
resolution cells. Therefore, its statistical characterization requires measurements from a
�nite sampling window rather than estimates at the individual pixel level [30].

Another property of radar images is that the position and proportions of objects in SAR
images can appear distorted compared to a photograph. This distortion is a unique
geometric characteristic of radar images resulted from the di�erence in sample spacing
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between the slant range plane and ground plane. This slant range distortion causes
variation in the scale of radar images from near to far range, and targets in the near range
appears compressed relative to the far range. There are also other geometric distortions
of SAR images and a more complete summary of them can be found in [30].

2.2.4 Interaction of microwaves with forest

When electromagnetic radiation strikes a surface, it may be transmitted, absorbed and re
emitted or re�ected. Transmission occurs when radiation passes through a target while
re�ection occurs when radiation "bounces" o� the target and is redirected. In the case
of absorption, the incident electromagnetic radiation will be converted to other forms
of energy after being absorbed by the target. Remote sensing relies on measuring the
re�ected energy from targets. Depending on the surface roughness in comparison to
the wavelength of the incoming radiation, earth surface features re�ect either specularly
or di�usely, or somewhere in between these two extremes. Usually the de�nition of
smoothness or roughness for surface scattering is given by some criteria and is totally
dependent on the wavelength of the electromagnetic radiation used, the incident angle
and the surface standard deviation height. Such two criteria are the Rayleigh and the
Fraunhofer criteria [22]. Specular re�ection occurs when almost all of the incident energy
is directed away from the surface in a single dominant direction and it is a property of
smooth surfaces. On the other hand di�use re�ection occurs when the incident energy is
re�ected almost uniformly in all directions. If the wavelengths are much smaller than the
surface variations or the particle sizes that make up the surface (rough surface), di�use
re�ection will dominate [31].

SAR sensors record the backscatter signal (both the amplitude and the phase) from
targets. The proportion of this backscattered signal as compared to the transmitted
one is dependent on a number of factors including, surface roughness, slope of the sur-
face, dielectric properties of the target, types of land cover (soil, vegetation, man-made
objects), microwave frequency, polarization and incident angle. Let us closely examine
each of these factors in the framework of land cover features in general and forest in
particular.

In general, the backscatter intensity for rough surfaces is higher than smooth surfaces;
hence the SAR image will look brighter. Trees and other vegetation are usually moder-
ately rough on the wavelength scale. Hence, they appear as moderately bright features
in SAR images. When a transmitted wave strikes a target and returns directly back to
the sensor, it is known as single scattering or single bounce. In a forest media, this could
happen if the wave directly bounces back after hitting the di�erent tree structures or
the ground. Figure 2.2 shows the di�erent types of scatterings from a forest [32]. Single
bounce is denoted by �A� and �C� in the �gure. If the transmitted wave bounces o� twice,
it is termed as double bounce. This is a common property of a group of targets known as
corner re�ectors that include built-up areas, ships on the sea, high-rise buildings, metal-
lic objects such as cargo containers etc. As it is shown in the �gure (letter �B�), double
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bounce could be a result of interactions between ground and trunk or between trunk and
twigs in a forest. Such targets have brighter appearances in radar images. This is due
to the fact that while the transmitted signal bounces o� twice, the specular re�ection
component with its high energy will direct back to the sensor. The third type of scat-
tering occurs when the transmitted wave bounces o� more than twice, and it is known
as multiple scattering or volume scattering. This is the most common type of scattering
in environments such as dense forest canopies which occur due to interactions among
leaves, branches, twigs and trunks. Therefore, in a forest, we usually have all these three
scattering mechanisms, however the volume scattering is dominant. The proportion of
each depends on the type, height and density of the trees.

Figure 2.2: Scattering mechanisms in a forest.

Dielectric constant is another parameter which in�uences the interaction of radar waves
with targets. It describes the response of a medium to the presence of electric �eld
[33], and therefore it is related to its conductivity. For trees and natural targets, this
information is related to their moisture content. A medium with a higher dielectric
constant has a higher re�ectivity. As an example, water has a dielectric constant of 80
whereas dry soil and rocks have 3-8 at radar wavelengths [33]. This direct relationship
between water and dielectric constant and higher sensitivity of radar backscatter to
dielectric constant can provide useful information when it comes to forest applications
[34]. This is because information about moisture and volumetric water content of forest
canopies can easily be inferred from radar signatures.
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Another very important parameter to consider in microwave-target interactions is fre-
quency (or wavelength). Because the surface roughness is dependent on the operating
frequency of SAR, it will have a direct e�ect on the appearance of a particular target in
radar images. Penetration is the key factor for the selection of a speci�c band for a par-
ticular application: the longer the wavelength (the smaller the frequency), the stronger
the penetration into vegetation and soil. This higher penetration capability of relatively
longer wavelengths has a two fold advantage for forest applications. One is that longer
wavelengths are capable of penetrating through clouds and atmospheric moisture. This is
especially useful for forest monitoring in the tropical regions which are frequently under
cloud covers throughout the year. One of the main advantages of SAR over optical sen-
sors, that are to be discussed in the section to follow, is this penetration capability which
enables them to acquire information in almost all weather conditions. The second key
advantage of those longer wavelengths for forest applications is that they can penetrate
through the vegetation canopy and interact with the many structures of the forest [33].
This may give useful distinguishing ability that may not be present in surface scattering
alone. Most widely used bands by SAR sensors for di�erent forest applications are listed
in table 2.1.

Table 2.1: Commonly used bands by SAR sensors for forest applications.

Band designation Wavelength Frequency

P 30 - 130 cm 0.3 - 1 GHz

L 15 - 30 cm 1 - 2 GHz

C 3.75 - 7.5 cm 4 - 8 GHz

X 2.4 - 3.75 cm 8 - 12.5 GHz

The type of polarization of the radiation in polarimetric SAR has a major role in deter-
mining the type of signal interaction with the forest components. The probability that the
like-polarised radiation interact with structures having similar orientation is very high,
so vertical structures in a forest will interact strongly with VV polarization. Branches
with horizontal orientation interact strongly with HH polarization. The cross-polarized
backscatter (HV/VH) is highly sensitive to biomass as it is commonly originated from
canopy volume scattering in a forested/vegetated media. This is a direct consequence
of the higher depolarizing e�ect of the multiple scatterers in a forest. For �at bare soil
surfaces with no signi�cant moisture content, HH and VV have approximately similar
responses [35].

Incident angle is another parameter which a�ects the radar backscatter. It refers to the
angle between the incident radar beam and the direction perpendicular to the surface
of the target at the point of contact. Its e�ect on the microwave-forest interaction is
primarily due to its in�uence on the microwave vertical penetration depth. In general,
the radar backscatter decreases with increasing incident angle.
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2.3 Optical Multi-spectral sensors

Unlike active sensors such as radar, optical sensors are passive sensors, which measure
naturally available energy. It is well known that the sun is a very convenient source of
naturally available energy for remote sensing. The sun's energy is either re�ected, as it is
for visible and a portion of infrared (IR) wavelengths, or absorbed and then re-emitted,
as it is for thermal infrared wavelengths. Therefore, re�ected energy can only be detected
during the time when the sun is illuminating the Earth. Energy that is naturally emitted
(such as thermal infrared) can be detected day or night, as long as the amount of energy
is large enough to be recorded.

Optical wavelength regions in the electromagnetic spectrum (EMS) which are mainly
applicable for passive remote sensing are:

� The visible region (0.4-0.7𝜇m)

� The infrared region (0.7 𝜇m-1mm)

The visible region is a narrow band which is visible to the human eyes. It consists
of the various color components of the EMS among which red (610 − 700𝑛𝑚), green
(500− 570𝑛𝑚) and blue (450− 500𝑛𝑚) are the principal color components. The portion
of the infrared band which is useful for passive remote sensing can be further divided
into re�ected IR and thermal IR. Radiation in the re�ected IR region is used for remote
sensing purposes in ways very similar to radiation in the visible portion. The thermal
IR region is quite di�erent from the visible and re�ected IR portions, as this energy is
essentially the radiation that is emitted from the Earth's surface in the form of heat.
There is no clear distinction between these regions as there is radiation re�ected and
emitted from some portion of the region simultaneously.

Multi-spectral remote sensing systems record re�ected or emitted energy from an object
or region of interest in multiple bands of the electromagnetic spectrum. These sensors
are implemented as either air-borne or space-borne systems. The Landsat Multi-spectral
Scanner and Thematic Mappers are the two well known sensors, which acquire infor-
mation about the Earth's surface from space [1]. The Multi-spectral Scanner is able to
record the re�ected energy in the visible and IR portion of the spectrum in four dis-
crete bands, whereas the TM records re�ected visible, re�ected IR and emitted (thermal
IR) energy in seven separate bands. The wavelength ranges of both Landsat MSS and
Landsat TM bands are listed in table 2.2.
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Table 2.2: Landsat instrument bands.

Band MSS Band TM

1 0.5-0.6 𝜇m GREEN 1 0.45-0.52 𝜇m BLUE

2 0.6-0.7 𝜇m RED 2 0.52-0.6 𝜇m GREEN

3 0.7-0.8 𝜇m IR 3 0.63-0.69 𝜇m RED

4 0.8-1.1 𝜇m IR 4 0.76-0.9 𝜇m NIR

5 1.55-1.75 𝜇m SWIR1

6 10.4-11.5 𝜇m TIR

7 2.08-2.35 𝜇m SWIR2

Where, IR = infrared; NIR = near infrared; SWIR = short wavelength infrared; TIR =
thermal infrared; and 𝜇m = micron or micrometer.

The output of multi-spectral imaging systems is a stacks of images, each associated
with the di�erent bands. Images acquired by optical sensors like any other images are
susceptible to geometric distortions caused by variations in platform stability including
changes in their speed, altitude, and angular orientation with respect to the ground
during data acquisition. It is assumed that all of the system corrections have been made
for the datasets used in this study.

2.3.1 Interaction of visible and IR electromagnetic waves with the for-

est

The amount of re�ected visible and IR energy from land cover features is mainly in�u-
enced by the chemical composition and moisture content of the observed scene. This
energy, which can be recorded by optical sensors, is usually expressed as a percentage
of the amount of energy incident upon those features, and it is termed as reflectance.
Across any range of wavelengths, the percent re�ectance values for landscape features
such as water, bare land, sand, vegetation, etc. can be plotted and compared. Such
plots are called spectral signatures. Vegetation in general has a particular spectral sig-
nature form which enables it to be distinguished readily from other types of land cover
features in an optical/near-infrared image. The spectral signature of a typical healthy
green vegetation is shown in �gure 2.3. It can be clearly seen from the �gure that the
re�ectance for vegetation is low in both the blue and red regions of the spectrum. This
is due to the fact that chlorophyll and other pigments in plants absorb the incoming
radiation at these speci�c wavelength ranges for the purpose of photosynthesis, a food
making process in plants. On the other hand, these pigments re�ect the incident radi-
ation at the green region, which gives rise to the green color of vegetation. In the near
infrared (NIR) region, the re�ectance is much higher than that in the visible band due
to the cellular structure in the leaves. This is evidenced by the peak re�ectance values
in the �gure. Therefore, the internal structure of healthy leaves act as excellent di�use
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re�ectors of near-infrared wavelengths. Hence, vegetation can be identi�ed by the high
NIR but generally low visible re�ectance values [1, 36, 37].

Figure 2.3: Spectral characteristics of healthy green vegetation [1].

In most cases, di�erent landscape features have di�erent spectral signatures. As an exam-
ple, the spectral signature of some common landscape features is given in �gure 2.4, [38].
This unique spectral absorption and re�ection characteristics of the di�erent landscape
features in visible and near infrared region is the basis for multi-spectral and hyperspec-
tral remote sensing. In principle, a particular landscape feature can be identi�ed from
its spectral signature if the spectral resolution of the sensing system is high enough to
distinguish its spectrum from other landscape features [38]. As it is pointed out in the
introduction chapter, this study encounters discriminating among the di�erent tree age
categories of a forest. Therefore, a relevant point for our study that can be inferred from
the �gure is that the shape of the re�ectance spectrum can be used for identi�cation of
vegetation types. From the �gure, vegetation types 1 and 2 can be easily distinguished
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from one another as they have di�erent responses to the visible and infrared regions.
For example, this could be used to discriminate between oak and pine trees in a forest
of heterogeneous species or younger and older trees in a mono-species forest. Therefore,
even with in the same vegetation type, it is possible to discriminate among the di�erent
classes of vegetation based on age, moisture content, health etc. as these conditions a�ect
the way the radiation interacts with vegetation.

Figure 2.4: Spectral signature of some common land cover features.

Another point that has to be mentioned with respect to optical sensors is that they do not
directly measure the spectral re�ectance of targets, rather they measure the spectral ra-
diance (up-welling radiance) at the sensors. Therefore, in addition to surface re�ectance,
the spectral radiance measured by these remote sensors depends on the interactions of
input solar energy with the atmosphere (during its upward and downward passages).
This is one of the limitations of optical remote sensing systems compared to microwave
remote sensing systems. Since these additional factors a�ect our ability to retrieve accu-
rate spectral re�ectance values for ground features, an atmospheric correction has to be
made before any further processing. This issue is addressed in section 4.2.1.
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2.4 Comparison and Complementariness of SAR and opti-
cal datasets

Advantages of SAR sensors include the ability to obtain measurements under almost all
weather and environmental conditions so that data can be collected at any time. In
addition, their high resolution imaging and polarimetric capabilities are other important
aspects of SAR sensors. Moreover, since they use their own source of energy, SAR sensors
can be used to better control the way a target is illuminated. However, active remote
sensing systems in general require the generation of a fairly large amount of energy to
adequately illuminate targets. From the discussions of this chapter, some important
points and comparisons of SAR and multi-spectral optical sensors are summarized in
table 2.3.

Table 2.3: Comparison between SAR and optical Multi-spectral sensors.

Optical multi-spectral SAR

Platform airborne/space-borne airborne/space-borne

Radiation Use re�ected sunlight (passive) Use Its own radiation (active)

Spectrum visible/infrared microwave

Frequency multi-frequency multi-frequency

Polarimetry not available is possible

Acquisition time day time Day/night

Weather blocked by clouds Can see through clouds and light rain

As it is discussed above, information acquired by SAR sensors contain information on
the geometric structures, surface roughness and dielectric properties of natural and man-
made objects. On the other hand, optical data contains information on the re�ective
and emissive characteristics of the Earth's surface. This information is highly dependent
on the chemical composition and moisture content of the observed target. We have seen
in the above discussions that this information can be e�ectively used to determine the
type of feature that the imaged surface contains (water, vegetation, etc.). Even though
it is a�ected by atmospheric attenuation, optical multi-spectral imagery take advantage
of the lack of the speckle e�ect leading to images with a far better quality [39]. These
di�erent types of information retrieved from SAR and optical sensors are referring to
di�erent object qualities and when used together, they will complement each other. This
will improve the result of a particular application such as classi�cation. This is of course
one of the motives of this study, taking advantage of this complementary information.
Data fusion is treated next.
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Chapter 3

Multi-Source Data Fusion

This chapter is aiming at introducing the concept of data fusion applied in the context
of remote sensing purposes. The commonly used fusion approaches in the data fusion
community are reviewed and some practical examples are provided. Finally, some com-
parisons among the fusion approaches are made to choose a convenient approach for our
study.

3.1 Introduction

Data fusion refers to combining data from two or more sources or data from a single
source acquired at two di�erent times to increase the quality and improve the interpreta-
tion performance of the source data. Fused images may provide increased interpretation
capabilities and more reliable results since data with di�erent characteristics and com-
plementary information are combined [3]. Preprocessing such as image registration and
geocoding are applied to the component datasets prior to fusion to bring them into
alignment [40].

In remote sensing, fusion of multi-temporal and multi-sensor datasets is of considerable
importance to earth and space observation applications, such as environmental, agricul-
tural and maritime monitoring. It is applied to integrate the information acquired with
di�erent spatial, spectral and temporal resolution sensors mounted on satellites, aircraft
and ground platforms to produce fused data that contains more detailed information
than each of the component inputs alone. In particular it has been successfully applied
for land cover classi�cation [10, 41]; urban area surface feature enhancement and map-
ping [42]. Speci�c application examples include: sharpen images [43]; enhance certain
features not visible in either of the component datasets [44]; complement data sources
for improved classi�cation [10]; change detection using multi-temporal data [45]. Some
examples of the many studies conducted to integrate a pair of images where the �rst is
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acquired by a multi-spectral sensor of low spatial resolution while the second is acquired
by a panchromatic sensor of high spatial resolution include [46, 47, 48, 49].

The datasets to be fused could be from:

� Two or more di�erent sensors with di�erent spatial or spectral resolutions, A good
example in this regard is the fusion of images acquired by SAR sensors with optical
data which is acquired by sensors sensitive to the visible/infrared portion of the
electromagnetic spectrum.

� A single sensor, where the data is acquired at di�erent times (multi-temporal).
This helps to reveal the changes between datasets acquired at di�erent times.

� It is also possible to combine remotely sensed data with ancillary data, for example
fusion of optical images with geographic information system (GIS) data.

The fusion of optical and SAR data has received a tremendous attention by the remote
sensing community[7, 8, 9, 10, 11, 50]. This is because, as it is discussed in chapter 2,
the two datasets contain complementary information about the observed scene. Some
application examples where these two di�erent datasets applied include; land cover map-
ping [10, 12], geological study [8], snow cover mapping [9] and forest biomass estimation
[14, 15]. As it is pointed out in the introduction chapter, this study investigates the
fusion of multi-frequency Polarimetric SAR and multi-spectral optical datasets for the
purpose of forest classi�cation.

Di�erent techniques have been proposed by many authors to integrate multi-source re-
mote sensing data for the purpose of enhancing various features. The most commonly
used data fusion techniques are discussed in the section to follow.

3.2 Data fusion techniques

In general remote sensing data fusion techniques can be classi�ed into three di�erent
levels: pixel level, feature level and decision level [3]. This classi�cation is according to
the stage of processing at which the fusion takes place.

3.2.1 Pixel level fusion

This level of fusion refers to fusion at the lowest level, where multiple source images
are combined to produce a single fused image. In many cases, this technique is applied
to enhance the spatial resolution of one of the images while maintaining the spectral
properties of the other images. A celebrated example in this regard is the fusion of a
pair of images where the �rst acquired by a multi-spectral sensor has a pixel size greater
than the pixel size of the second image acquired by a panchromatic sensor. The results
will be a new multi-spectral image with a spatial resolution equal to the panchromatic

22



Chapter 3. Multi-Source Data Fusion

one. In general, precise co-registration of the datasets is required (at a sub-pixel level of
accuracy) for this type of fusion.

Figure 3.1: Flow chart of pixel level fusion.

Figure 3.1 shows the general structure of pixel level fusion of two images, where the
component images undergo a registration process �rst before being merged. There are
di�erent techniques of pixel level fusion. A detailed review of these techniques can be
found in [3, 51, 52]. The basic principles and particular application examples of the some
commonly used pixel level fusion techniques as reviewed from the literature are presented
as follows:

1. Arithmetic fusion algorithms

These algorithms produce the fused image pixel by pixel, as an arithmetic combina-
tion of the corresponding pixels in the input images [51]. They are also the simplest
and sometimes e�ective fusion methods. The arithmetic operations involved in-
cludes addition, multiplication, averaging, subtraction and division. Addition and
multiplication of images is useful for contrast enhancement whereas di�erence and
ratio images are particularly suitable for change detection [3]. Examples of stud-
ies in which this fusion approach is applied to combine high-resolution panchro-
matic images with lower resolution multi-spectral data to obtain high-resolution
multi-spectral imagery include [53, 54, 55]. In their respective works, they used a
combination of weighted addition and multiplication to combine the input images.

2. Color composite (RGB) methods

These methods assign three di�erent monochrome inputs as the red, green and blue
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color channels of the fused image. The intensity information (grey scale value) of
the input images is converted into color information (pseudo color). Prior to the
fusion process, di�erent image enhancement techniques such as contrast stretching
and histogram equalization are usually applied to the monochrome input images to
improve the color contrast of the fused image [51]. The di�erence in the grey scale
values of each of the single channels results in variations in color which facilitates the
interpretation of multi-channel image data. The RGB color composite technique is
also commonly applied in combination with other fusion techniques such as intensity
hue saturation (IHS) and principal component analysis (PCA), methods that will
be discussed in the next subsections. This method has been applied to combine
di�erent datasets. As an example, it is applied to integrate images from SPOT
and Seasat satelites for the purpose of improving the interpretability of geological
features over temperate agricultural regions [56]. Some more examples where this
method is applied to integrate optical and microwave data include [57, 58].

3. Intensity hue saturation (IHS) transformation fusion techniques

This method is one of the most widely used pixel level fusion technique. It is a class
of component substitution techniques where the intensity component image of the
multi-spectral data (lower spatial resolution) is replaced by an image with higher
spatial resolution to improve the spatial resolution of the multi-spectral image.
The method involves three steps. First, three bands of the lower spatial resolution
dataset is transformed to IHS space. Second, the higher spatial resolution image
replaces the intensity component. Third, backward transform from IHS space to
the original space to construct the fused result. The higher spatial resolution image
has a contrast stretching applied to it so that it approximately can have the same
variance and mean value as the intensity component image, just to make sure
that the two images are approximately equal spectrally [3, 43]. This method has
been successfully applied to merge di�erent datasets. The following are some of the
examples. It has been used to merge Landsat TM and PAN data [59], hyperspectral
and radar data to enhance urban surface features [42]. Another study was also
carried out in [60] to merging IRS-1C multi-spectral data and panchromatic data
using this method. In [61], the IHS fusion approach and other fusion techniques
were applied to combine multi-spectral optical data with a panchromatic image for
forest application.

4. Principal component analysis (PCA) fusion method

This is a method used to transform a multivariate data set of inter-correlated vari-
ables into a dataset of uncorrelated linear combination of the original variables [3].
The method generates a new set of orthogonal axes. It involves the computation of
the eigenvalues/eigenvectors in decomposing the data into its principal components
[62]. The principal components correspond to the dominant eigenvalues whose cor-
responding eigenvectors describe the direction that optimally retain most of the
variance of the data. The uncorrelated data is the result of projecting the original
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data on to the eigenvectors. There are two approaches of image fusion using PCA
[3, 51]. The �rst involves performing PCA on a multichannel image and then re-
placing the �rst principal component by a di�erent image (usually an image with
higher spatial resolution like PAN). The procedure of this merging method is similar
to the IHS method and it is also known as principal component substitution (PCS).
The second approach integrates the disparate natures of multi-sensor input data
in one image. The image channels of the di�erent sensors are combined into one
image �le and a PCA is calculated from all the channels [36]. In both cases, inverse
PCA is used to transform the data back to the original image space. A number of
studies use this technique to fuse di�erent datasets. In [50] the method is used to
combine a SPOT XS image and an ERS-2 SAR image. The integration of ERS-2
and four bands of IRS-1C datasets using this fusion technique is also demonstrated
in [63] for geological information enhancement. In [64], the performance of the PCS
fusion method is compared with two other pixel level fusion approaches, i.e., IHS
and Brovey's transformation ([65]) for forest applications. It is reported in their
results that PCS provides better information for the discrimination of forest stand
types than the other two.

5. High pass �ltering (HPF)

This method is commonly used to enhance the spatial resolution of a lower spatial
resolution image by using high pass �lters. In this method, the higher spatial
resolution data have a small high pass �lter applied. The results of the �ltering
operation contain the high frequency information that is mostly related to the
spatial information. The HPF results are added, pixel by pixel, to the lower spatial
resolution, but higher spectral resolution, dataset. The result will be a fused image
with both higher spatial and spectral resolutions. As an example, this method has
been successfully applied to merge the IRS-1C multi-spectral and panchromatic
bands [60].

3.2.2 Feature level fusion

Feature level fusion requires the extraction of various features from multiple data sources
and then combining them into a single feature vector that can be used instead of the
original data for further processing. The features are an abstraction of the raw data
intended to either highlight a particular characteristics of the observed target or provide
a reduced form of the raw data, which accurately and concisely represents the original
information. Representative features for imagery data includes [66]:

� Geometrical characteristics of image segments, such as edges, lines, line length, line
relationships (parallel, perpendicular), arcs, circles, conic shapes, size, area.

� Structural features, such as surface area, relative orientation, orientation to vertical
and horizontal ground plane.
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� Statistical features, such as number of surfaces, moments/mean, variance, kurtosis,
skewness, Fourier descriptors, wavelet coe�cients, entropy.

� Spectral features, such as color coe�cients, spectral peaks, spectral signature and
vegetation indices.

� Polarimetric features, such as co-pol and cross-pol ratios.

� Contextual features, e.g., texture.

Transformation of the raw data into feature vectors is termed as feature extraction. Meth-
ods applied to extract features usually depend on the characteristics of the individual
source data and the application [52]. Segmentation procedures, region characterization,
band combinations, polarimetric decomposition and principal component analysis are
some of the methods that can be used for the feature extraction process. The output of
this process is a list of feature vectors describing the main characteristics of the original
data. These extracted features can use the separate sensor speci�c characteristics, which
pixel level does not. Feature level fusion is then implemented on these feature sets. Fig-
ure 3.2 shows a general scheme of fusion at feature level for two registered images. As
can be seen from the �gure, the extracted features from each of the images are fed to a
feature level fusion algorithm to form a single feature vector. When the feature sets are
homogeneous, e.g., features obtained from data of identical sensors, feature level fusion
can be achieved by computing a single resultant feature vector from the weighted average
of the individual feature vectors. However, in the case of non-homogeneous feature sets,
e.g., features obtained from data of di�erent sensors, this level of fusion can be attained
by combining them into a single concatenated feature vector.

In cases where there are di�erences in the range of values and distribution of the in-
dividual feature vectors, a feature normalization procedure that consists of modifying
the scale of the values of the features is applied in order to map them into a common
domain.
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Figure 3.2: Flow chart of feature level fusion.

As an example, in [41], this level of data fusion is used to integrate polarimetric SAR
(PolSAR)and Polarimetric Interferometric SAR (PolInSAR) for land cover classi�cation.
In their study, they used polarimetric target decomposition techniques [67] to extract a
number of di�erent features from the available PolSAR (L-and P-band) and PolInSAR
(L-and P-band) datasets. Then they have applied logistic regression technique to fuse the
features. A similar study was conducted in [68] to combine di�erent polarimetric SAR
features for land cover classi�cation. They have considered two sets of polarimetric SAR
features: one is based on polarimetric target decomposition theorems and the second
set of features is computed from the di�erent combinations of the available polarimetric
channels.

3.2.3 Decision level fusion

In this type of fusion, the component datasets are transformed into feature vectors �rst,
and then they undergo a preliminary classi�cation process independently. Finally, the
preliminary classi�cation results from multiple sensors are combined applying decision
rules to form a �nal classi�ed image. The framework of this level of fusion is depicted in
�gure 3.3. Some examples of decision level fusion are classical inference, Bayesian infer-
ence, Dempster�Shafer's method, voting Strategies, expert Systems, logical templates,
neural Networks, Support Vector Machines (SVM) and fuzzy Logic. A more complete list
of decision level fusion techniques and their detailed description can be found in [66, 69].
In the data fusion community, these methods have been applied either independently or
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in combination for integrating di�erent datasets. Some examples of these methods as
applied for remote sensing purposes are given below.

In [70] decision level fusion is utilized to combine hyperspectral and polarimetric SAR
data to enhance urban features. Supervised classi�cation methods are applied on the
features extracted from the hyperspectral and SAR data separately and the results of
these classi�cations are fused together. Feature images were derived from the SAR data
using speckle reduction and polarimetric decomposition techniques. PCA is used to
extract features from the hyperspectral data (the di�erent PCA band images are used
as feature images). Three decision level fusion methods were applied and the results
were compared: a weighted majority vote, a support vector machine and a decision tree
method. According to their comparison, the decision tree fusion approach gives the best
classi�cation result. Another decision level fusion method for statistical classi�cation of
multi-source data was proposed by [71]. The method was applied to combine Landsat TM
image and ERS-1 SAR image, acquired at di�erent times, for land use classi�cation. It
incorporates a priori information about the likelihood of changes between the acquisitions
of the di�erent images to be fused.

Figure 3.3: Decision level fusion.

In [72] Dempster�Shafer's fusion method is applied to combine the di�erent bands of
a Landsat TM dataset to produce a single classi�ed image of a forested area. This
fusion method is based on evidential reasoning, which can represent both imprecision and
uncertainly through the de�nition of belief and plausibility functions [66]. This method
is also applied to integrate data from optical (Spot) and the SAR image (Radarsat) for
the purpose of classifying a vegetated area [73].
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Before moving th the next section, which is about the comparison of the above three
data fusion techniques, it is important to mention that the above classi�cation does not
present all the available data fusion techniques. This is because, there are also multi-level
fusion approaches which are based up on the di�erent combinations of the above three
fusion levels [74]. However, they are not discussed here as it is beyond the scope of this
study.

3.3 Comparison among the different levels of data fusion

The selection among the three di�erent data fusion levels discussed above is dependent on
a number of factors including the available information type and the application. As can
be seen from �gures 3.1, 3.2 and 3.3, registration of the component images is an important
step in all the three levels of fusion. This preprocessing step will be discussed in detail
in section 4.2 of chapter 4. In general, fusing information that is closer to the source
provides better accuracy [75]. Thus, pixel level fusion is potentially more accurate than
feature level fusion, which in turn is potentially more accurate than decision level fusion.
However, pixel level fusion has some drawbacks, such as a requirement of an accurate
data alignment among the sensors [3], it is only feasible for sensors producing the same
type of observation and requires more time and memory as the whole raw data need to
be processed. In feature level fusion, the feature extraction and selection scheme ensures
that redundant or correlated features can be detected and removed before any further
processing. Therefore, feature level fusion does not require much more space compared
to the pixel level fusion. Another very important advantage of feature level fusion over
pixel level is its potential of retaining sensor speci�c information, that is unique to the
datasets considered. In addition, it has a potential of handling information from di�erent
sensors with a reasonable accuracy. However, in both pixel and feature level approaches,
an assumption of a common distribution of the component datasets is required. Decision
level fusion has a potential of handling information from arbitrary sources as it doesn't
assume anything about the distribution of each of the input datasets. However, it has a
potential of reducing the available statistical information to discrete levels and therefore
it causes a loss of useful information [75]. In addition, decision level fusion is more
complicated compared to the other two and usually it requires a special software. The
selection of the best fusion level for a particular application is also dependent on other
factors such as characteristics of the sensors and computational resources available. The
three levels of fusion are compared and contrasted in table 3.1.
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Table 3.1: Comparison of the three levels of fusion.

Fusion levels Pros Cons

Pixel level

� Accurate for data from identi-
cal sources

� Simple; and no special classi-
fier software needed

� Precise image registration is
required (at sub-pixel level of
accuracy)

� Needs much memory, and
longer processing time as the
whole available data is used in
the fusion and classification

� Only feasible for sensors pro-
ducing the same type of ob-
servation and assume that the
combined data can be mod-
elled using a common distribu-
tion

Feature level

� Sensor-specific features gives
advantage over pixel level fu-
sion

� Simple; and no special classi-
fier software needed

� Capable of handling data from
different sources

� Does not need much memory
as compared to pixel level

� Often assumes that the result-
ing feature data can be mod-
elled using a common proba-
bility density function

Decision Level

� Suited for data with different
probability densities

� Does not need much memory
as compared to pixel level fu-
sion

� Complex, and therefore spe-
cial software is often needed

� Might cause loss of some infor-
mation

As it is pointed out in the introduction section, this study is dealing with four datasets
where three of them are polarimetric SAR datasets at three di�erent frequencies and
the fourth one is an optical dataset. It was discussed in chapter 2 that, because of
the underlying sensor technology, datasets from SAR and optical sensors have di�erent
characteristics. From the previous discussions and table 3.1 above, feature level fusion
has many interesting features. Its ability to handle data from di�erent sources with
reasonable accuracy, its capability of taking advantage of sensor-speci�c information and
its simplicity to be implemented are some of them. Even though it has a potential of
handling data from di�erent distributions, decision level fusion is too complicated to
implement and has a potential of �killing� some of the information contained in the data.
In addition, as it is pointed out in the introduction chapter, another objective of this
study is to evaluate and select di�erent features that have the best joint performance,
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and it is straight forward to see that feature level fusion is the most convenient approach
to investigate the combined performance of features. Therefore, feature level fusion
is chosen for this study.
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Chapter 4

Data characteristics and

preprocessing

This chapter brie�y introduces the datasets used in this study. In addition, di�erent
preprocessing tasks are considered and applied to the datasets.

4.1 Study area and data characteristics

In this study, data fusion and feature extraction and selection are demonstrated using
multi-sensor datasets consisting of polarimetric C-, L- and P-band airborne SAR data
and multi-spectral Landsat TM data over the Nezer forest, France. The Nezer forest is
a well monitored forest site with mono-species maritime pine trees of large rectangular
production plots. The area is �at with no signi�cant slope. The scene is composed of
bare soil and forested areas with trees of di�erent ages. Six tree-age groups are included
from 5-8 years to more than 41 years of age. The ground truth map is shown in �gure
4.1. Table 4.1 shows the proportion of each of the classes. As it can be seen from the
table, the bare soil is the dominant class of all the classes.

The polarimetric SAR data is acquired in August 1989 by the NASA/JPL airborne
synthetic aperture radar (AIRSAR) which operates in fully polarimetric mode at P-, L-
and C-band simultaneously. The radar look angle is 45 degrees. It consists of three
polarimetric SAR datasets acquired with the three di�erent frequencies, C- (5.3 GHz),
L- (1.2 GHz) and P-band (440 MHz). Each of these three datasets has four co-registered
polarimetric channels of single-look complex data. However, the two cross-pol terms
are equal and therefore we have only three distinct scattering components; HH, VV,
HV=VH. The scene covers a small area and has a size of 1968 pixels in the azimuth and
445 pixels in the range. The pixel spacing is 3m in the azimuth and 6.7m in the range
direction. P-, L- and C-band color composite images with red for |HH|, Green for |HV|
and blue for |VV| are shown in �gure 4.2.
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ss

Figure 4.1: Ground truth maps of the Nezer forest.

Table 4.1: The proportion of each of the classes in the dataset.

Classes Proportion (%)

Bare soil 36.76

5-8 years 7.65

8-11 years 8.33

11-14 years 14.18

15-19 years 4.06

33-41 years 18.86

>41 years 10.16
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Figure 4.2: Color composite P-, L-, and C-band images of the SAR data, HH(Red),
HV(Green) and VV(blue).

The multi-spectral Landsat TM dataset is acquired by the Landsat TM sensor of Landsat-
4 satellite on 22 July 1991 and has seven co-registered spectral channels. The range of
wavelengths corresponding to these seven spectral bands of the Landsat TM sensor are
already listed in table 2.2 of chapter 2. Originally, all except the 6th band were at
30𝑚× 30𝑚 resolution; the thermal band was at a resolution of 120𝑚× 120𝑚. However,
it is provided after all the seven bands are co-registered to a common resolution of
30𝑚× 30𝑚. A slightly bigger portion of the original Landsat image, which contains the
area of interest, is cut and shown as color composite image in �gure 4.3, with band-
4(Red), band-2(Green) and band-3(Blue).
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Figure 4.3: Color composite image of a portion of the Landsat data, band-4(Red), band-
2(Green) and band-3(Blue).

4.2 Preprocessing of the datasets

Preprocessing refers the di�erent processes applied on datasets before any further actions,
such as classi�cation and fusion are implemented on them. Some of the objectives of
applying preprocessing include:

� To correct distorted or degraded remote sensing data, so that a more faithful repre-
sentation of the original scene can be obtained. Typical processes in this category
include atmospheric correction and speckle reduction.

� To align two or more images so that they are overlaid in such a way that corre-
sponding pixels on each image represent the same location on the Earth, where
geocoding and image to image registration are examples in this category.

� To cut out an area of interest from a bigger image, which is also known as cropping.

It is mentioned in chapter 3 that proper alignment of the component datasets is a key
factor for the success of any data fusion approach. This can be achieved by registering
the component images. Generally, image to image registration can be de�ned as the
process of aligning two or more images, or one or more images with another data source,
for example, a map [76]. It is an important step in data fusion, as the component images
to be fused should contain overlapping views of the same ground features. Image reg-
istration makes sure that the component datasets will cover the same geographic area,
have the same pixel size, have the same image size, and have the same orientation. In
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image to image registration, one image (called input image) need to be scaled, translated
or rotated, to align it with the other (called base or reference image). It involves locating
and matching similar regions in the two images to be registered. This can be done either
manually, where a human carries out these tasks visually using interactive software or
automatically where algorithms perform these tasks. In remote sensing, manual regis-
tration is frequently used, as automated registration techniques do not always o�er the
required reliability and accuracy. In the case of manual registration, the user selects con-
trol points (CPs) also called tie-points from both of the images. First, the CPs in both
images are interactively matched pair wise to achieve correspondence. Then, correspond-
ing CPs are used to compute the parameters of a geometric transformation to perform
the desired alignment. The main di�culty with the manual registration technique is
that it is very laborious, time taking and probably impractical to manually select CPs
from large amounts of data. A related but more general term is geocoding, which refers
to geometric transformations of one or more images into a common cartographic map
projection.

In this study, a number of preprocessing steps are applied to the datasets. They are
depicted in the schematic diagram of �gure 4.4, and each of them are discussed below.
ENVI and Matlab are entirely used for the preprocessing.

Figure 4.4: A schematic diagram showing the preprocessing applied to the datasets.

4.2.1 Atmospheric correction

As it is pointed out in chapter 2, one of the problems with data from optical sensors
is that it is a�ected by atmospheric e�ects. These atmospheric e�ects are caused by
the interaction of electromagnetic waves with gaseous molecules and particles in the
atmosphere through absorption and scattering. As these atmospheric e�ects bear upon
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the information extraction process of multi-spectral and hyperspectral images, they are
usually corrected before any further processing. There are a number of atmospheric
correction techniques for multi-spectral and hyperspectral remote sensing images. A
review of the commonly used atmospheric correction methods for remote sensing images
can be found in [77]. In this study, the quick atmospheric correction (QAC) module in
ENVI is applied to the Landsat TM dataset as it is simple and give reasonably good
results [78]. After applying the QAC, the cropped and corrected image is shown in �gure
4.5.

Figure 4.5: Atmospheric correction of the Landsat TM dataset; left: uncorrected, right:
corrected; band-4(Red), band-2(Green) and band-3(Blue).

From the �gure, it can be clearly seen that no signi�cant change is observed for these
channels after the correction. A potential reason for this could be, as the image is
acquired in summer, it may not have aerosol and signi�cant cloud cover.

4.2.2 Image-to-image registration

The image to image registration is performed manually by locating and matching tie
points. However, before staring the tie point selection, the two component images should
be at the same resolution. This can be achieved by resampling either the multi-spectral
TM data or the SAR data. At this point, it is necessary to decide which one of the
datasets should be the base image and which one is the input one, as this decision
determines the image to be resampled. It is usually advisable to make radar images as
base images upon registration when combining them with other data sources [40]. This is
due to the fact that resampling an image a�ects the spatial statistics of the neighbouring
pixels, which is of importance for many radar image feature extraction methods that
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might use speckle statistics or texture. After choosing the SAR image as a base image,
each of the multi-spectral band images are resampled (up-sampled) in ENVI so that
their resolution will be approximately equal to the original resolution of the single-look
complex SAR data 3𝑚 × 6.7𝑚. Using the SAR image as a base image has an extra
advantage in our case as it enables us to perform the registration at a higher resolution.
The reason is; if we had used the multi-spectral TM data as our base image and down
sampled the SAR image to the resolution of multi-spectral TM data, we would have faced
a reduction in the information content of the data which would have in turn complicated
the control point selection in the registration process.

There are three options of resampling in ENVI; nearest neighbour, bilinear and cubic
convolution. The nearest neighbour resampling method is used throughout the whole
work as it has the least e�ect with respect to radiometric distortion. Now the two
datasets are ready for control point selection. A total of 172 control points are selected.
Then each of the multi-spectral TM bands are warped about the SAR image so that the
two; the SAR and TM images, are able to exactly align with each other. ENVI has three
warping methods; rotation-scaling-translation (RST), polynomial and triangulation. The
best result is obtained using the triangulation warping method and the results are shown
in �gure 4.6. After the registration, it can be checked in ENVI that the two images are
exactly aligned with each other, with the same number of pixels 1968 × 445, with the
same resolution and orientation.

Figure 4.6: Registered images at the SAR resolution; left: P band, HH (Red), HV (Green)
and VV (blue). Multi-spectral TM data, band-4(Red), band-2(Green) and band-3(Blue)
(right).
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4.2.3 Speckle suppression

It is mentioned in section 2.2.3 that multi-look averaging of the local neighbourhood
pixels of single-look complex images is one of the methods applied to radar images to
reduce speckle noise. Here, the polarimetric SAR data is processed to a 32-look averaged
data (8 in the azimuth and 4 in the range). After the multi-looking, the SAR data end
up with a resolution of 24mx26.8m and has a size of 246 pixels in the azimuth and 111
pixels in the range. The speckle �ltered P-band color composed image is shown in �gure
4.7 together with the un�ltered SLC image for comparison.

Figure 4.7: Un�ltered P-band SLC image (left) and Speckle �ltered image (right); color
coding: |𝐻𝐻|(Red), |𝐻𝑉 | (Green) and |𝑉 𝑉 | (blue).

It can be clearly seen from the �gure that the multi-look averaged image has less speckle
than the original SLC image.

Then, the co-registered bands of the multi-spectral TM data (�gure 4.6) are down sam-
pled to the multi-looked resolution. Since the SAR image is chosen as a reference image,
the registration is done on the slant range plane, and now all the registered datasets
are on this plane. It has been mentioned that the original ground resolution of the TM
data is 30𝑥30𝑚. It is possible to compute the original resolution of the TM data on
the slant range plane, using trigonometry for comparison. From the radar look angle
of 45 degrees of our SAR datasets, the slant range resolution of the unregistered TM
data is 21.2𝑚𝑥21.2𝑚. This shows that the multi-looked resolution (24𝑚𝑥26.8𝑚) and the
original Landsat TM resolution have small di�erences only.

Now both of the datasets:
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� Cover the same geographic area

� Have approximately equal resolution; 24𝑚× 26.8𝑚

� Have the same number of pixels; 246 × 111

� Have the same orientation

Therefore, the datasets are ready for further processing, such as fusion and classi�ca-
tion.
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Feature extraction

Feature extraction refers to the process of transforming an input dataset into a new rep-
resentation set of features which accurately and concisely represents the original infor-
mation. An obvious advantage of feature extraction when assisted with feature selection
is that only small amount of memory and processing time will be required in the feature
space as redundant information is removed in the process. As it is pointed out in chap-
ter 3, feature extraction is also the �rst and fundamental step in taking advantage of
sensor speci�c information when dealing with data from multiple sensors. Another basic
advantage when it is wisely implemented is that the extracted features can have useful
physical interpretation with respect to the observed scene.

This chapter is devoted to the extraction and discussions of the di�erent features con-
sidered in this study. In total, twenty-six features; six from each of the three PolSAR
datasets and eight from the Landsat TM dataset are extracted and used for this study.
This number does not present all possible polarimetric and optical features, however,
it includes the most commonly used features and is enough for our intended purposes.
More features will be considered in future work. Feature extraction from the PolSAR
datasets is based on processing the intensity, polarimetric and texture information, while
feature extraction from the TM dataset is based on di�erent band combinations to take
advantage of the unique spectral responses of vegetation in the visible and near-infrared
bands.

5.1 Feature extraction from the PolSAR datasets

Polarimetric features can be generally grouped into two broad categories, the �rst con-
tains features processed from a simple transform of the original dataset (from the covari-
ance matrix for example), [18], and the second category contains features extracted based
on the di�erent target decomposition theorems, [67]. Features from both categories can
provide useful physical interpretation of the observed scene. A number of features from
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both categories are tested for di�erent applications in [18, 68, 79]. In [18], six features
from the �rst category were tested for land cover (lake, some forest, crop land and some
urban areas) classi�cation. In their results, it is found that the six features considered
have a rich distinguishing power for the di�erent classes. In [68], seven features from
the �rst category and twenty-six features from the second category were used for the
identi�cation of four di�erent land cover classes; water, wetland, woodland and farm-
land. Four features from the �rst category are considered in [79] for sea ice classi�cation.
Some more examples of studies that features from the second category are applied for
land cover classi�cation include [41] and [80]. In all of these studies, part or all of the
PolSAR features considered are found useful for the respective applications.

Only features from the �rst category are considered here. The fact that the information
from the di�erent polarimetric channels represent di�erent characteristics of the observed
forest (section 2.2.4), the correlation among the channels and texture, a common property
in radar images are the basis for the polarimetric SAR features extracted here. Based
on [18], six PolSAR features are chosen for this study. These polarimetric features are
mean radar backscatter, non-Gaussianity measure, cross-pol ratio, co-pol ratio, co-pol
correlation magnitude, and correlation phase. A mathematical de�nition of each is given
below. They are calculated from a local covariance matrix which is computed from the
multi-look processed data.

The mean radar backscatter represents the total intensity of the backscattered signal.
The non-Gaussianity measure represents the texture information of the observed scene.
As can be observed from their mathematical expressions below, the rest of the four
features are computed by ratioing elements of the covariance matrix, and are intended
to enhance di�erent physical structures of the scene by using correlation information
from the separate polarimetric channels. A local covariance matrix C, from which the
six features are derived, is calculated by passing over the full size image, using a sliding
window of size 4 x 8. This window size is the number of looks to be averaged to reduce
the speckle e�ect at the same time, section 4.2.3. The multivariate covariance matrix
from a collection of L local x𝑖 inside the window, is given by:

C =
𝑖=𝐿∑︁
𝑖=0

x𝑖x
𝐻
𝑖

where the x𝑖 are the SLC vectors and the superscript H denotes the complex conjugate
transpose. Mathematically, each of the six features are de�ned as follows:

1. Mean radar backscatter is given by

𝜇 = 𝑑𝑒𝑡(C)
1
𝑑

2. Non-Gaussianity measure is given by

𝜈 =
𝑚𝑒𝑎𝑛(x𝐻

𝑖 C−1x𝑖)
2

𝑑(𝑑+1)

3. Cross-pol ratio, the ratio of cross-polarized returns to co-polarized returns, is given
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by

fx = 2*C𝐻𝑉

C𝐻𝐻+C𝑉 𝑉

4. Co-pol ratio, the ratio of co-polarized returns, is given by

fc = C𝐻𝐻

C𝑉 𝑉

5. co-polarized correlation magnitude, a measure of the correlation of the magnitudes
between co-polarized returns, is given by

fm = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒( C𝐻𝐻𝑉 𝑉√
C𝐻𝐻*C𝑉 𝑉

)

6. co-polarized correlation phase, a measure of the correlation of the phases between
co-polarized returns, is given by

fp = 𝑎𝑛𝑔𝑙𝑒( C𝐻𝐻𝑉 𝑉√
C𝐻𝐻*C𝑉 𝑉

)

where L is the number of looks to be averaged, thirty-two in this case, d is the number
of distinct elements in the scattering matrix, three in this case (HH, HV=VH, VV) and
det() is determinant of the matrix.

A total of eighteen polarimetric features; six from each of the three SAR datasets (C-,
L-, and P-band) are extracted. A logarithm transformation is applied to 𝜇, 𝜈, fx and fc
for improved visualization. The values of all the features are scaled to a common range,
[0,1], for ease of comparison. This feature normalization is also a basic preprocessing
step for feature combination. Each of the six features from the P-, L- and C-bands are
shown as images in �gures 5.1, 5.3 and 5.5 respectively. The corresponding histograms
are shown in �gures 5.2, 5.4 and 5.6.
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Figure 5.1: The 6 feature images of P band PolSAR data.

Figure 5.2: Histogram plots the 6 features of P band PolSAR data.
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Figure 5.3: The 6 feature images of L band PolSAR data.

Figure 5.4: Histogram plots the 6 features of L band PolSAR data.
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Figure 5.5: The 6 feature images of C band PolSAR data.

Figure 5.6: Histogram plots the 6 features of C band PolSAR data.
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Referring to each of the six di�erent feature images of the three datasets and their
respective histograms, the level of contrast and detail decreases from P- through L- to C-
band features. Another point that can be observed from the feature images is that there
is a relative di�erence in contrast even among features within the same dataset. This
indicates that some of the features might perform better than others in discriminating
among the di�erent classes. The physical interpretations with respect to the P-band
features is given below. Even though the level of detail decreases from the P- to C-
bands, the discussions are also valid for the L- and C-band features.

The mean radar backscatter, �gure 5.1, shows relatively higher contrast than the rest of
the features. The bare soil appears darker, while the older trees have brighter appear-
ances. The young and middle age trees (5-8, 8-11, 11-14 and 15-19 years of age) have
di�erent shades of grey appearances. Generally, it can be seen from the �gure that the
intensity increases with tree age. This is not far from the expected, because as the age
of the tree increases it will have much more branches and twigs which in turn result in
higher amounts of backscatter.

The non-Gaussianity measure has low values (dark) almost everywhere except at the
boundaries of the di�erent classes, where it has higher values with brighter appearances,
�gure 5.1. It is acting like an edge detector, which enhances edge mixtures. This edges
are highlighted primarily due to high contrast mixing. Such mixtures �measure� a high
variance relative to the average, which appears as a high texture measure, but it is due
to two classes and not �true� radar texture.

Even though it is not as high as the mean radar backscatter, the cross-pol ratio also shows
reasonably good contrast among the di�erent classes. Here also, the bare soil appears
dark, and the older trees appear brighter. This is from the fact that the cross polarized
return (HV) in general is weaker than HH or VV but is strengthened by depolarization
caused by the di�erent tree structures. In the co-pol image, it is possible to identify the
bare soil from the forested area as the bare soil appears relatively darker. However, it
only shows little contrast among the di�erent forest age groups compared to the cross-pol
image.

Again referring to �gure 5.1, the bare soil and the edges appeared brighter than the rest
of the scene in the correlation magnitude image. This is opposite to the other features
where in most of them, the bare soil appears darker. The darker appearances in the
forested part in this case, indicates that there exists low correlation between HH and
VV returns in the forest than the bare soil part. This is due to the fact that, as it is
discussed in section 2.2.4, the HH and VV polarizations interact with the tree structures
di�erently.

In the correlation phase image, the bare soil appeared much smoother than the rest of
the scene, which is characterised by granular structures of di�erent shades of grey dots.
The smooth appearance of the correlation phase in the bare soil part than the forested
region is from the fact that the variation in the phase change between the transmitted
and received polarizations of HH and VV is smaller for the bare soil than the forest. This

49



Chapter 5. Feature extraction

is of course reasonable because, a rapid phase change is expected in the forest part (due
to the many interactions with the di�erent tree structures) of the scene than the bare
soil part.

The relatively higher contrast among the di�erent forest age groups in the cross-pol image
than the other three, co-pol ratio, correlation magnitude and correlation phase, is due to
the fact that the cross-polarized return from forested/vegetated area is highly sensitive
to vegetation biomass, and this biomass is expected to vary with tree age.

Figure 5.7 shows the scatter plots of all possible pairwise combinations of P-band fea-
tures.

Figure 5.7: Scatter plots of all possible pairwise combinations P-band features.

It can be clearly seen in the �rst upper row of �gure 5.7 that the scatter plots show two
separable main clusters and potentially four globular clusters. In contrast, the rest of
the plots show lots of overlap/mixing. This shows that the mean radar backscatter has a
relatively better quality compared to the other �ve features. In reference to the ground
truth map, �gure 4.1, one can guess that the above two separable main clusters (blobs)
could correspond to the bare soil and the forest classes.
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5.2 Feature extraction from the multi-spectral TM dataset

Vegetation indices (VIs) are the most widely used multi-spectral/hyperspectral features
for vegetation applications. They are combinations of surface re�ectance at two or more
wavelengths in a multi-spectral or hyperspectral optical data designed to highlight a par-
ticular property of vegetation, such as relative abundance and activity of green vegeta-
tion, percentage green cover, chlorophyll content and absorbed photosynthetically active
radiation, [1]. Most of the vegetation indices take advantage of the inverse relation of the
re�ective properties of healthy green vegetation in the infrared and visible regions. This
is from the fact that, in case of healthy green vegetation, most of the energy in the near
infrared wavelengths is transmitted and re�ected, with little absorbed, in contrast to
the visible wavelengths where absorption is predominant, with some re�ected and little
transmitted.

As it is pointed out in section 2.3.1 of chapter 2, the higher absorption in the visible (blue
and red bands) region is due to the presence of chlorophyll pigments in green plants. They
use this absorbed energy for photosynthesis, a food making process in green plants. A
relative lack of absorption between the blue and red bands produces a trough in the
absorption curve at approximately 0.54𝜇m, which corresponds to the green portion of
the electromagnetic spectrum [1]. At the near infrared (NIR) portion of the EMS on
the other hand, the re�ectance and transmittance of plant leaves is very high; because
of the structure of the leaf. When there is a bulk of incident sunlight in this region,
and if plants absorb this energy with the same e�ciency as they do in the visible region,
they could become much too warm and the proteins would be irreversibly denatured.
Therefore, they re�ect or transmit it.

VIs are computed either by ratioing any two or more spectral bands, or by taking the
ratio of sums, di�erences or products of any number of bands. It is also important to
note that, even though there are some VIs which provide unique information, many of
them are functionally equivalent (redundant), [1]. The following eight vegetation indices
are extracted from the Landsat TM dataset for this project, and their mathematical
de�nitions are taken from [1]. The historical development and detailed discussion of a
large number of VIs, including those considered here, can be found in [1].

1. The Normalized Di�erence Vegetation Index (NDVI)

The NDVI is one of the oldest, most well known, and most frequently used VIs.
It is de�ned by the ratio of the di�erence of the near-infrared and red re�ectance,
over the sum of those. Its values ranges from -1 (no vegetation) to +1 (abundant
vegetation) [31]. It is found to be related to many properties of plants. It can be
used to identify the health status of plants, to give a description of phenological
changes and to estimate green biomass and crop yield. For Landsat TM data, it is
computed from the following band combinations:

𝑁𝐷𝑉 𝐼 = (𝑁𝐼𝑅−𝑅𝐸𝐷)
(𝑁𝐼𝑅+𝑅𝐸𝐷)
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where the band designation are based on table 2.2 of chapter 2.

2. Soil brightness index (B), Greenness (G) and wetness (W) indices

These three features are derived on the basis of an orthogonal transformation of the
original Landsat Multi-spectral data space, called tasseled cap or Kauth-Thomas
transformation, into a new feature space. The basic idea in tasseled cap transfor-
mation is that, if information about a particular scene characteristics is represented
by more than one band in a multi-spectral information acquiring system, the total
information about this scene characteristics can be best captured by a systematic
combination of the bands, [81]. The soil brightness index is intended to measure
the soil characteristics, the greenness vegetation index is intended to highlight the
green biomass and the wetness is intended to highlight the moisture content of a
vegetated area [1]. In contrast to the NDVI, which is formed from the combina-
tion of red and infrared bands, these three features are formed by including the
SWIR bands to account soil and moisture information. For a Landsat TM data,
the linear combinations of the visible, near-infrared and middle-infrared bands in
deriving these three features are given by:

𝐵 = 0.2909𝐵𝐿𝑈𝐸 + 0.2493𝐺𝑅𝐸𝐸𝑁 + 0.4806𝑅𝐸𝐷 + 0.5568𝑁𝐼𝑅 +
0.4438𝑆𝑊𝐼𝑅1 + 0.1706𝑆𝑊𝐼𝑅2

𝐺 = −0.2728𝐵𝐿𝑈𝐸 − 0.2174𝐺𝑅𝐸𝐸𝑁 − 0.5508𝑅𝐸𝐷 + 0.7221𝑁𝐼𝑅 +
0.0733𝑆𝑊𝐼𝑅1 + 0.1648𝑆𝑊𝐼𝑅2

𝑊 = 0.1446𝐵𝐿𝑈𝐸 + 0.1761𝐺𝑅𝐸𝐸𝑁 + 0.3322𝑅𝐸𝐷 + 0.3396𝑁𝐼𝑅 +
0.6210𝑆𝑊𝐼𝑅1 + 0.4186𝑆𝑊𝐼𝑅2

3. Perpendicular vegetation index (PVI)

This vegetation index is intended to highlight plant development by using the
perpendicular distance from the soil line. The longer the perpendicular distance
from the soil line in the direction of high canopy closure inside the triangular shaded
area, see �gure 5.8, the higher the values of PVI and the more matured the plant
is. It can be computed from the following band combinations:

𝑃𝑉 𝐼 =
√︀

(0.355𝑁𝐼𝑅− 0.149𝐺𝑅𝐸𝐸𝑁)2 + (0.355𝐺𝑅𝐸𝐸𝑁 − 0.852𝑁𝐼𝑅)2

4. Triangular vegetation index (TVI)

The triangular vegetation index uses the relative di�erence between red and near-
infrared re�ectance together with the magnitude of green re�ectance to describe
the radiative energy absorbed by plant pigments. It is computed as an area of
a triangle in spectral space, where the vertices of the triangle are determined by
the maximum of the green re�ectance, the minimum of the red absorption and
maximum of the near-infrared re�ectance. Mathematically it is given by:

𝑇𝑉 𝐼 = 0.5 * (120(𝑁𝐼𝑅−𝐺𝑅𝐸𝐸𝑁) − 200(𝑅𝐸𝐷 −𝐺𝑅𝐸𝐸𝑁))
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Figure 5.8: The soil line and distribution of pixels in a red and near/infrared space, [1].

5. Soil adjusted vegetation index (SAVI) and atmospherically resistant vegetation
index (ARVI)

Even though the NDVI is a useful and universally used VI, its e�ciency is highly
in�uenced by a number of factors including soil background variations, moisture,
atmospheric conditions and the presence of dead material in the canopy itself.
Therefore a number of other vegetation indices have been developed by correcting
NDVI for di�erent factors, where SAVI and ARVI are two of such indices. In the
SAVI, an adjustment factor, L is incorporated into the NDVI to account for soil
background variations. L is usually determined iteratively, for example for a dark
and light soil background, the search for L continues until an appropriate value
that give equal vegetation index results for the dark and light soils is found. Soil
brightness variations are found to be minimized by using an L value of 0.5, [82],
and this value of L is used for this study. The ARVI is also a simple modi�cation
of the NDVI to reduce its sensitivity to atmospheric e�ects. Landsat TM band
combinations for these two indices are given by:

𝑆𝐴𝑉 𝐼 = (1+𝐿)(𝑁𝐼𝑅−𝑅𝐸𝐷)
𝐿+𝑁𝐼𝑅+𝑅𝐸𝐷

𝐴𝑅𝑉 𝐼 = 𝑁𝐼𝑅−(𝑅𝐸𝐷−𝐶*(𝐵𝐿𝑈𝐸−𝑅𝐸𝐷))
𝑁𝐼𝑅+(𝑅𝐸𝐷−𝐶*(𝐵𝐿𝑈𝐸−𝑅𝐸𝐷))

Where C is a constant. Di�erent values of C can be used depending on the appli-
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cation, whether it is maritime, desert or highly vegetated area [83]. A value of 0.3
is used here.

It is found that a square root transformation of the perpendicular vegetation index im-
proved its visualization. All the values are normalized to the same common scales, [0,1],
as it is done for the PolSAR features. All of the above eight vegetation indices extracted
from the multi-spectral TM data, together with their respective histograms are shown in
�gures 5.9 and 5.10 respectively.

Figure 5.9: The 8 features of multi-spectral TM dataset.
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Figure 5.10: Histogram plots the 8 features of multi-spectral TM dataset.

It can be clearly seen from �gure 5.9 that the bare soil and the forested parts can be easily
identi�ed from the soil brightness index and wetness images. The soil brightness index
has higher values for the soil part than the forest as expected. Beyond highlighting the
soil part, it has also identi�ed an extra class within the bare soil, indicated as a brighter
rectangle in the middle portion of the bare soil region. However, this information is not
included in the ground truth map and might cause some confusion in the classi�cation
task. The same is true for the wetness index. In the wetness image higher values
correspond to the bare soil part, and the forest appears darker. This means that the
moisture content of the bare soil is higher than that of the forest. For an image acquired
during the summer time, this could happen due to rain.

It is somewhat di�cult to relate the remaining six vegetation indices to the physical
property of the scene, see �gure 5.9. As an example, in the NDVI image, it is expected
that higher values (bright) correspond to the forested part and the brightness is expected
to increase with forest age. However, there are high values of NDVI in both the bare
soil parts as well as in younger tree regions, and the same is true for the other �ve
indices. Even though it is di�cult to associate to the di�erent tree age categories, the
high contrast in the images of these six features in the forested region might help to
discriminate some of the di�erent tree age categories.

The scatter plots of all the vegetation indices (all possible pair-wise combination) is
shown in �gure 5.11.
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Figure 5.11: Scatter plots of all pair-wise combinations of the Landsat TM features.

As can be clearly seen from the scatter plots, there are some kinds of patterns which look
like �dotted lines�. These patterns are resulted from the 256 discrete level of Landsat
data. As expected, a lot of correlation is observed among the di�erent vegetation indices.
Specially three of them, namely NDVI, soil adjusted vegetation index and atmospherically
resistant vegetation indices show high correlation. This is due to the fact that two of
them is a simple modi�cations of the NDVI, as explained above. It can be observed
from the scatter plots that the two features namely soil brightness index and wetness are
able to form some clusters, and hence it is possible to expect some better classi�cation
performances from them than from the others.

In summing up, a total of 26 features are extracted from the four datasets, six from each
of the three PolSAR datasets and eight from the Landsat TM dataset. In general, it can
be seen from their respective feature images that the P-band shows better contrast with
respect to the di�erent classes than the L- and C-band datasets. The C-band feature
images relatively show the least detail of the four datasets. Even though there is a lot of
contrast in many of the Landsat TM feature images, it is a bit di�cult to associate this
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information to the di�erent tree age categories. Moreover, there exists a lot of redundant
information in the TM dataset as expected. The di�erent features considered in this
study are listed in table 5.1 for ease of reference.

Table 5.1: List of extracted features.

Feature SAR features from Optical features from

number each of P-, L- and C-bands Landsat TM

1 Mean radar backscatter Normalized di�erence VI

2 Non-Gaussianity measure Soil brightness index

3 Cross-pol ratio Greenness

4 Co-pol ratio Wetness

5 Correlation magnitude Perpendicular VI

6 Correlation phase Triangular VI

7 Soil adjusted VI

8 Atmospherically resistant VI
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Experiment 1: Fusion of the

datasets and classification

This chapter aims to quantitatively evaluate and compare the classi�cation performances
of each of the four datasets and their di�erent combinations, using their respective fea-
tures, in discriminating the di�erent classes of our scene.

As can be seen from the histogram plots of many of the features in �gures 5.2 and 5.10,
their distribution approximates a Gaussian distribution. In addition, from the scatter
plots of �gures 5.7 and 5.11, some feature combinations are able to form clearly separable
compact clusters. The nature of their distribution and their capability of forming nat-
ural compact clusters indicate that multivariate Gaussian distribution assumption can
possibly be made in the multi-dimensional feature space. This mixture of Gaussian as-
sumption can then be used in a supervised or unsupervised fashion for the classi�cation
task of the di�erent classes [62, 84].

In this study, a supervised maximum likelihood Bayesian classi�cation scheme is applied
on the feature sets using training samples taken based on the ground truth. The method is
a statistical approach, which assumes class dependant multivariate normal distributions
of pixels from feature images. This classi�cation technique has been commonly applied
for remote sensing purposes [85, 86, 87]. Linear discriminant functions are computed
from the mean and covariance estimates of the training data points. Each pixel in the
feature image is then assigned to the class for which it has the highest probability of
membership determined by the discriminant functions. Mathematically, it can be stated
as follows [62]:

For M classes 𝑤1, 𝑤2, ..., 𝑤𝑀 , the Bayesian classi�er assigns an unknown feature vector
x to class 𝑤𝑖 if

𝑃 (𝑤𝑖|x) > 𝑃 (𝑤𝑗 |x) ∀ i ̸=j

where the conditional probability 𝑃 (𝑤𝑖|x) is obtained from Bayes rule given by
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𝑃 (𝑤𝑖|x) = 𝑝(x|𝑤𝑖)𝑃 (𝑤𝑖)
𝑝(x)

where 𝑃 (𝑤𝑖), 𝑖 = 1, 2, ...,𝑀 are the prior probabilities of each of the classes that can be
estimated from the available training data points. 𝑝(x) is the pdf of x which is given by

𝑝(x) =
𝑖=𝑀∑︁
𝑖=1

𝑝(x|𝑤𝑖)𝑃 (𝑤𝑖). The remaining unknown parameters are the class-conditional

probability density functions 𝑝(x|𝑤𝑖), 𝑖 = 1, 2, ...,𝑀 , describing the distribution of the
feature vectors in each of the available classes. These class conditional probability density
functions in the l-dimensional feature space can be computed by making an assumption
of multivariate normal distributions for pixels of feature images, and they are given
by

𝑝(x|𝑤𝑖) = 1

(2𝜋)𝑙/2Σ
1/2
𝑖

exp(−1
2(x− 𝜇𝑖)

𝑇Σ−1
𝑖 (x− 𝜇𝑖))

where 𝜇𝑖 𝑎𝑛𝑑 Σ𝑖 are the mean and covariance structures of each of the classes that can
be estimated from the available training data points.

6.1 Ground truth

The ground truth map is repeated here for ease of reference. It can be clearly seen from
the left and right �gures of �gure 6.1 that there are some discrepancies between the two
provided ground truth maps. Therefore, another ground truth map is created based on
fusing the information from both maps. This new map contains only regions that agree
with both of the ground truth maps and is shown in �gure 6.2.
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Figure 6.1: Ground truth maps of the Nezer forest.

Figure 6.2: The prepared ground truth map with its color-coding.
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6.2 Training and testing data points

In a supervised classi�cation task, whenever separate training and testing datasets are
not available, it is a usual practice to split the available data into two parts: one for
training and the other for testing based on the ground truth map. These training and
testing pairs are made not to overlap each other for cross-validation. Cross-validation is
applied to get a more accurate estimate of the performance of the trained classi�er by
using independent training and testing pairs. However, the results from a single training
and testing experiment might be misleading as the results are highly dependent on the
choice of the training/testing split. Therefore, it is reasonable to select training datasets
randomly a number of times (say N times) and run the experiment N times using the
selected training and testing pairs independently. Then the classi�cation accuracies will
be computed as the average of the separate estimates. In this study, 150 training data
points are selected from each of the classes considered for a single random selection ex-
periment and the remaining data points are used for testing. All classi�cation results are
computed by averaging ten estimates of the classi�cation accuracy from ten independent
training and testing experiments. Figure 6.3 shows a pair of training and- testing data
points for a single random selection experiment.

Figure 6.3: Training data points, shown as dotted (left) and testing data points (right).

6.3 Fusion of the datasets at feature level

It is pointed out in section 3.2.2 that when the available features are from data of di�erent
sensors, a suitable way of fusing them is to concatenate them into a single feature vector.
Therefore, in this study, feature level fusion is achieved by concatenating the features
from the four di�erent datasets. To evaluate the discriminating capability of the di�erent
combinations of the four datasets, the features from each of them are �rst inserted into
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separate feature vectors. The six PolSAR features from each of the P-, L- and C-bands
are inserted into three separate feature vectors, 𝐹𝑃 , 𝐹𝐿 and 𝐹𝐶 respectively. The same is
done for the eight Landsat TM features where they are inserted into feature vector 𝐹𝑇𝑀 .
Then, feature level multi-frequency PolSAR data fusion is demonstrated by concatenating
subsets (or all) of {𝐹𝑃 , 𝐹𝐿, 𝐹𝐶}. For example, fusion of P- and L-band datasets is attained
by concatenating feature vectors 𝐹𝑃 and 𝐹𝐿. Fusion of the Landsat TM dataset with
the PolSAR datasets is achieved the same way by concatenating 𝐹𝑇𝑀 with subsets (or
all) of the three PolSAR feature vectors.

6.4 Classification results from the individual and fused datasets

In evaluating the classi�cation performance of the individual datasets, the four feature
vectors, 𝐹𝑃 , 𝐹𝐿, 𝐹𝐶 and 𝐹𝑇𝑀 , are separately applied as input to the classi�er, whereas
di�erent subsets of {𝐹𝑃 , 𝐹𝐿, 𝐹𝐶 , 𝐹𝑇𝑀} with two or more feature vectors are used in the
case of the fused datasets. Classi�cation accuracy (in percentage) is used to evaluate
and compare the classi�cation performances of the datasets and their combinations. For
a single training-and-testing experiment, it is computed using the expression:

%Classif.accuracy = Number of correctly classif. data points
Total number of testing data points

× 100%

The values reported as percentage classi�cation accuracy throughout this study are com-
puted by averaging ten estimates of the classi�cation accuracies obtained from equation
6.4 for cross validation.

In this chapter, classi�cation is applied for three di�erent cases. First, the whole scene
with all the seven classes is considered to evaluate the performance of each of the four
datasets and their combinations in discriminating among the bare soil and the di�erent
tree age categories. Second, classi�cation is applied to discriminate the bare soil from the
forest. Finally, only the forested part is treated to discriminate among the six di�erent
tree age categories. This �nal approach will help to remove the e�ect of the dominant bare
soil part in evaluating the capability of the datasets for tree age discrimination.

6.4.1 Discriminating among bare soil and the different forest ages;

seven classes

In this case, classi�cation is applied to discriminate among the available seven classes.
The ground truth map used for the evaluation of the classi�cation accuracy is the one
shown in �gure 6.2. The classi�cation accuracies are reported in table 6.1.
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Table 6.1: Classi�cation results from all individual and combined datasets.

The different feature vectors Average % classification accuracies

and their different with their corresponding

combinations standard deviation values

1 SAR, P-band (six features) 67.89 ± 0.30

2 SAR, L-band (six features) 54.76± 0.44

3 SAR, C-band (six features) 43.97 ± 0.94

4 Vegetation indices (all eight features) 53.34 ± 0.47

5 Six TM bands (taken as six features) 52.07 ± 0.72

6 SAR, P-and L-band (12 features) 68.35 ± 0.48

7 SAR, P-and C-band (12 features) 68.67 ± 0.43

8 SAR, L-and C-band (12 features) 56.63 ± 0.48

9 SAR, P-, L-and C-band (18 features) 68.90 ± 0.46

10 SAR, P-band and eight VI (14 features) 75.34 ± 0.38

11 SAR, L-band and eight VI (14 features) 64.82 ± 0.47

12 SAR, C-band and eight VI (14 features) 58.19 ± 0.41

13 SAR, P-,L-bands and eight VI (20 features) 75.60 ± 0.39

14 SAR, P-,C-bands and eight VI (20 features) 75.91 ± 0.41

15 SAR, L-,C-bands and eight VI (20 features) 66.13 ± 0.53

16 SAR, P-,L-, C-bands and eight VI (26 features) 75.92 ± 0.27

6.4.1.1 Discussions

The individual classi�cation performances of the four datasets are reported in the �rst
four rows of table 6.1. As expected, P-band has the best classi�cation performance of all
the datasets, whereas C-bands has the poorest classi�cation performance of all. L-band is
the second best from the four datasets considered. The relatively higher performance of
the P- and L bands as compared to that of the C-band is because of the ability of longer
wavelength microwave bands to penetrate through the vegetation canopy and interact
with the di�erent structures of the trees in the forest and the ground. The performance
of the Landsat TM dataset is slightly lower than the performance of the L-band, but far
better than the performance of the C-band. Even though it is not a big improvement,
it can be seen from the table that using the eight extracted Landsat TM features gives
a slightly higher classi�cation accuracy than directly using the six bands (excluding the
thermal band). This indicates that in addition to enhancing the interpretability of the
observed scene in terms of the physical parameters, feature extraction could also improve
classi�cation results.

The results of multi-frequency PolSAR data fusion are listed from the sixth to ninth
rows of the table. The results show that no big improvement is achieved from any of the
combinations. Both the fusion of P- and L-bands, and P- and C-bands give approximately
equal results compared to the performance of the P-band alone. The performance of the
L-band dataset is slightly improved (about 2%) by fusing it with C-band. Only about one
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percent improvement is achieved by combining all the three P-, L- and C-band datasets
(68.90%), compared to the performance of the P-band alone (67.89%).

In the case of combining data from the PolSAR and Landsat TM datasets, we can see
many outstanding performances. It can be seen from the table that combining

all the eight vegetation indices with any of the three PolSAR datasets (P-

, L- or C-band) gives a much better performance than any of them used

alone. The classi�cation accuracy of P-band is improved from 67.89% to 75.34%, the
L-band performance is improved from 54.74% to 64.82% and that of the C-band jumped
from 43.97% to 58.19% when fused with the Landsat TM dataset. The four best results
around 75% are within two standard deviations of each other and are therefore e�ectively
equivalent. As can be clearly seen from the table, this best classi�cation performance
involves the combination of Landsat TM and P-band datasets. Adding the other two (L-
and C-band) datasets brings bout no signi�cant improvement to the joint performance
of Landsat TM and P-band datasets.

This big classi�cation performance improvement upon the combined use of SAR and
optical datasets is due to the fact that each of them captures di�erent properties of the
observed forest as well as bare soil. Optical sensors record the re�ected energy where this
energy is highly dependent on the chemical composition of leaves, the internal structure
of leaves and the moisture content of the leaves and the bare soil. In the case of PolSAR
sensors, the microwave scattering of single bounce, double bounce and multiple scattering
is highly sensitive to the volume, structure and moisture content of the canopy, and
surface roughness and moisture content of the bare soil. These di�erent characteristics
of the two sensors are the basis for their complementariness.

In [88], a slightly di�erent study was done on the Nezer forest dataset and it was found
that fusing all the three PolaSAR datasets (P-, L- and C-band) gives a relatively bigger
performance improvement than our results. However, the fusion is applied directly on
the multi-looked data without extracting any features. Moreover, a slightly di�erent
classi�cation approach was used and fusion of SAR and optical datasets was not included
in their study. Therefore, some further improvement may be gained by exploring di�erent
features and other classi�ers for PolSAR data in the future.

Figure 6.4 compares the classi�cation result achieved by all the 26 features with the
ground truth map. It can be clearly seen that the bare soil is e�ectively discriminated
from the forest group. However, there are some mixing in the di�erent forest age cat-
egories. For example, there is much mixing between forest ages of 5-8 years and 8-11
years (dark blue and cyan) and between 33-41 years and >41 years (light green and dark
green). This gives a clue that there is some challenge with respect to discriminating some
of the di�erent forest age categories.
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Figure 6.4: Ground truth (left) and classi�cation result (right) using all 26 features.

6.4.2 Bare soil versus forest; two classes

Here, the performance of each of the four datasets and their di�erent combinations is
evaluated in discriminating between bare soil and forest as a whole. This is simply a two-
class classi�cation problem where the bare soil forms one class and the di�erent forest
age groups are merged together to form the second class. After merging all the di�erent
forest age groups into one, the ground truth map is shown in �gure 6.5. Training data
points are randomly chosen from each of the two classes and all the single and fused
datasets are fed to the classi�er the same way as explained previously. The classi�cation
results are reported in table 6.2.
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Figure 6.5: Ground truth for the two-class case.

Table 6.2: Classi�cation results from all individual and combined datasets in discrimi-
nating bare soil from forest.

The different feature vectors Average % classification accuracies

and their different with their corresponding

combinations standard deviation values

1 SAR, P-band (six features) 98.94 ± 0.11

2 SAR, L-band (six features) 98.85 ± 0.21

3 SAR, C-band (six features) 89.92 ± 0.36

4 Vegetation indices (all eight features) 91.59 ± 0.37

5 SAR, P-and L-band (12 features) 99.30 ± 0.15

6 SAR, P-and C-band (12 features) 99.30 ± 0.09

7 SAR, L-and C-band (12 features) 99.01 ± 0.21

8 SAR, P-, L-and C-band (18 features) 99.42 ± 0.11

9 SAR, P-band and eight VI (14 features) 99.33 ± 0.17

10 SAR, L-band and eight VI (14 features) 97.87 ± 0.73

11 SAR, C-band and eight VI (14 features) 93.61 ± 0.50

12 SAR, P-,L-bands and eight VI (20 features) 99.40 ± 0.16

13 SAR, P-,C-bands and eight VI (20 features) 99.42 ± 0.14

14 SAR, L-,C-bands and eight VI (20 features) 98.12 ± 0.67

15 SAR, P-,L-, C-bands and eight VI (26 features) 99.46 ± 0.14
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6.4.2.1 Discussions

As can be seen from table 6.2, the P-band and the L-band PolSAR datasets perform
better than the C-band and Landsat TM datasets. Generally, it can be seen from the
table that most of the performances from the combined datasets (except the combination
of C-band with the Landsat TM features) are approximately equal compared to the P-
band or L-band performance alone. Therefore, data fusion may not be necessary in this
case, as a single longer frequency PolSAR dataset (either P-or L-band), can discriminate
the bare soil from the forest with a very high accuracy. As can be seen from the table,
even the Landsat TM or the C-band dataset alone, or their combination can be used to
discriminate the bare soil from the forest with an acceptable accuracy. This might be
interesting for forest/non-forest mapping purposes whenever data at longer wavelengths
is not available. Figure 6.6 compares the classi�cation result achieved by all the 26
features with the ground truth map.

Figure 6.6: Ground truth (left) and classi�cation result (right) using all 26 features in
discriminating between bare soil and forest.

6.4.3 Discriminating among the different forest ages; six classes

In this case, the bare soil is masked out and the classi�cation is applied only on the
forested part to discriminate among the di�erent forest age classes. The ground truth
map is shown in �gures 6.7 and the classi�cation results are reported in table 6.3.
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Figure 6.7: Ground truth for the di�erent tree age categories.

Table 6.3: Classi�cation results from all individual and combined datasets in discrimi-
nating the six tree age categories.

The different feature vectors Average % classification accuracies

and their different with their corresponding

combinations standard deviation values

1 SAR, P-band (six features) 49.12 ± 0.45

2 SAR, L-band (six features) 29.76 ± 0.64

3 SAR, C-band (six features) 20.70 ± 0.55

4 Vegetation indices (all eight features) 35.66 ± 1.21

5 SAR, P-and L-band (12 features) 49.79 ± 0.52

6 SAR, P-and C-band (12 features) 50.03 ± 0.47

7 SAR, L-and C-band (12 features) 32.33 ± 0.53

8 SAR, P-, L-and C-band (18 features) 50.54 ± 0.54

9 SAR, P-band and eight VI (14 features) 61.67 ± 0.89

10 SAR, L-band and eight VI (14 features) 45.58 ± 0.80

11 SAR, C-band and eight VI (14 features) 38.21 ± 1.21

12 SAR, P-,L-bands and eight VI (20 features) 62.44 ± 0.74

13 SAR, P-,C-bands and eight VI (20 features) 62.48 ± 0.82

14 SAR, L-,C-bands and eight VI (20 features) 47.28 ± 0.85

15 SAR, P-,L-, C-bands and eight VI (26 features) 63.08 ± 0.66
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6.4.3.1 Discussions

Interesting results are obtained from this classi�cation stage as well, and important
points can be inferred from table 6.3. In general it can be seen from the table that lower
classi�cation accuracy values are obtained compared to the �rst experiment where all
the seven classes are considered. This is due to the fact that discriminating the bare
soil from the forest is done at a higher e�ciency than that of discriminating among the
di�erent tree age categories, and this contributed to the relatively higher accuracy values
in the �rst experiment. When it comes to the performance of the individual datasets,
the P-band and the optical features perform better than the L- and C-bands. This
is not far from the expected as the P-band has higher penetration capability into the
forest, and the vegetation indices are intended to highlight di�erent biophysical properties
of plants. More importantly, it can be noted that all the performances of using the
single datasets are below 50%, and this forces to look for other possibilities of improving
the classi�cation accuracy (as it is di�cult to draw any information from such poor
classi�cation performance, < 50%). It is obvious that one of the possibilities is a combined
use of data from di�erent sources. It can be seen from the table that the classi�cation
accuracies of all the three single frequency PolSAR datasets are increased by a signi�cant
amount when combined with the Landsat TM dataset. The classi�cation accuracy of P-
band is improved from 49.12% to 61.67%, the L-band performance is improved from
29.76% to 45.58% and that of the C-band improved from 20.70% to 38.21%. For tree
age discrimination also, the best classi�cation performance involves the P-band and the
Landsat TM datasets, and adding the other two datasets does not bring about signi�cant
improvement.

Figure 6.8 compares the classi�cation result achieved by all the 26 features with the
ground truth map. Here also, it is clear to see from the �gure that there is some challenge
of the datasets to discriminate between the younger trees (5-8 and 8-11 years) and also
between the older trees (33-41 and >41 years). Let us further investigate this issue using
the information from the confusion matrix. For ease of comparison of the elements of
the confusion matrix, classi�cation is applied for an equal number of testing points after
modifying the ground truth map by taking equal number of samples (636 in this case)
from each of the classes. This issue of equal number of sampling will be further discussed
in section 7.2 of chapter 7. 100 data points are used for training and the remaining 536
data points are used for testing. The resulting confusion matrix is shown in table 6.4.
The numbers reported in the confusion matrix are computed by ratioing the number
of correctly classi�ed and misclassi�ed data points in each class to the total number of
testing points in each of the classes (536).
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Table 6.4: Confusion matrix for tree age classi�cation.

Actual classes
5-8 8-11 11-14 15-19 33-41 >41

Predicted
classes

5-8 0.6828 0.3022 0.0541 0 0.0056 0
8-11 0.2817 0.5093 0.1791 0.0522 0.0055 0
11-14 0.0317 0.1119 0.5933 0.0727 0.0410 0.0111
15-19 0.0018 0.0727 0.1119 0.8041 0.0448 0.0970
33-41 0.0018 0.0018 0.0466 0.0280 0.5578 0.1175
>41 0 0.0018 0.0149 0.0429 0.3451 0.7742

From the confusion matrix, it can be clearly seen that about 30% of the trees from the
group 8 − 11 years are misclassi�ed into the group 5 − 8 years, and about 28% of the
trees from group 5−8 years are misclassi�ed into the age group 8−11 years. Also, about
18% and 11% of the trees from the group 11 − 14 years are misclassi�ed into the classes
of tree age 8 − 11 and 15 − 19, respectively. 34.5% of the trees from the group 33 − 41
years are misclassi�ed into the group >41 years, however, only 11.75% of the trees are
misclassi�ed on the other way round. On the other hand, more trees from the groups
15− 19 and >41 years are correctly classi�ed to their respective classes compared to the
other four tree age categories.

From the above observations, we can see that there is more challenge in discriminating
between tree age groups 5 − 8 and 8 − 11, and between groups 33 − 41 and >41 years
compared to the others. One potential reason for this could be the expected similarity in
size and shape of trees around the same age, and this could be related to the phenological
changes of pine trees in these speci�ed age limits. Another potential reason could be the
two year di�erence in the acquisition dates of the SAR and optical datasets. This is due
to the fact that some of the trees from the group 5 − 8, 8 − 11 and 33 − 41 will grow to
8 − 11, 11 − 14 and >41 years, respectively in this two years time. It can be seen from
the confusion matrix that most of the trees from the group 15 − 19 years are correctly
classi�ed. This supports both of the reasons explained as there is at least a one year gap
between 11 − 14 and 15 − 19 and at least 14 years of gap between 15 − 19 and 33 − 41
years of tree age categories.

Another very interesting point to note from the �rst and this experiments is that when
the Landsat TM dataset is combined with the L-band dataset, it achieves a comparable
value to the performance of the P-band alone (slightly lower), and when the Landsat TM
dataset is combined with the c-band dataset, a slightly bigger accuracy value is obtained
compared to the performance of the L-band alone. It looks that the combined use of
Landsat TM and L-band is equivalent to the use of P-band alone, and the combined
use of Landsat TM and C-band is equivalent to the use of L band alone. Therefore,
whenever data at a longer wavelength is not available, which is often the case, equivalent
accuracy may be obtained by combining an optical dataset with the available shorter
SAR band.
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Figure 6.8: Ground truth (left) and classi�cation result (right) using all 26 features in
discriminating among the tree age categories.

6.4.4 Summary of the results

In summing-up, we have seen from the above three cases that when used alone, the P-
band PolSAR dataset gives the highest classi�cation performances of all the performance
of the individual datasets. In addition, we found that all the best performances from
the fused datasets involve the P-band dataset. Therefore, this leads to a conclusion
that P-band is the best band for our applications. The L-band dataset is the next
best from the PolSAR datasets. The C-band dataset is the poorest of all the datasets
with respect to our application. With such poor performance, it can not be trusted
for many forest applications. However, it can be used for limited forest applications
such as deforestation mapping as it can identify forest from non-forest with reasonable
accuracy. The classi�cation accuracy signi�cantly improved by using a combination of
the polarimetric SAR data and the multi-spectral optical data. Therefore, whenever
available, a combined use of SAR and optical data provides more accurate and reliable
results than using any of them alone. Finally, it is important to mention that the above
comparisons are done based on all the features of the respective datasets. No comparison
is done among the features of the datasets. Maybe some of the individual features from
the datasets of lower performances might perform better than some of the individual
features from the best datasets. Moreover, the same level of accuracy might be achieved
by using fewer best features. This is the concern of the next chapter.
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Chapter 7

Experiment 2: Feature evaluation

and selection

7.1 Introduction

Feature selection is a mechanism that we use to reduce the number of features with little
or no loss in performance compared to the performance of the available features treated
all together. In other words, it is a process of choosing and eliminating features with
little or no predictive information. Therefore, in a classi�cation task, the objective of
feature selection is to select the most important features from the available set so as to
reduce their number and at the same time retain their class discriminatory information
as much as possible. One of the main reasons to reduce the number of features is to
minimize the computational complexity. Another major reason of performing feature
selection in a supervised classi�cation task is to improve the generalization capability
of the classi�er [62]. This is the ability of a trained classi�er to classify correctly data
outside the training set. Feature selection could also be performed under the objective
of improving the classi�cation performance of the available features.

For two main reasons, feature selection is important for this study. The �rst one is that
there are a number of features in our extracted feature set with little detail and contrast
compared to others. As it is shown from the feature images and their respective his-
tograms in chapter 5, some of the features within the same dataset have poorer contrast
and less detail than others. A good example is that the P-band mean radar backscatter
has a higher contrast than the remaining P-band features, see �gure 5.1 of chapter 5. As
it is discussed in chapter 5, there is also a di�erence in contrast and level of detail among
features of the di�erent datasets. As an example, the C-band features show poor con-
trast compared to the P- and L-band features, see �gures 5.1 and 5.5. This indicates that
some of the features can have better discriminating capability than others. This has also
re�ected in section 6.4 that when used together, the C-band features have poor classi�-
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cation performances than the features in the remaining three datasets. Therefore, there
may not be a signi�cant bene�t of using features with such poor predictive capability
except adding complexity. The second main reason is that there exists high correlation
among some of the extracted features. For example, some of the vegetation indices are
highly correlated as it is shown in the scatter plots of �gure 5.11. From the plots, it can
be clearly seen that there exists a high correlation among NDVI, soil adjusted vegetation
index and atmospherically resistant vegetation index. However, it is a di�cult task to
choose features by simply looking at their correlation in a scatter plot. This is because,
with all of the twenty-six extracted features, we will have 325 possible combinations of
two features in a scatter plot, a di�cult task to manage. Therefore it is important to see
other ways of systematically selecting best performing subset of features.

There are a number of approaches for feature selection, where many of them have arisen
from the �eld of Statistics and Pattern recognition. One simple and straight forward
approach for a feature selection problem is to evaluate the class discriminatory capability
of each of the available features independently, rank them accordingly and select the �rst
few best features. The major advantage of such methods is that they are computationally
simple. However, they neglect to take into account the correlation that unavoidably exists
among features and in�uences the classi�cation capability of the selected subset. This
is from the fact that even though it is possible to get good classi�cation information by
treating two correlated features separately, there might be little gain if they are combined
into a feature vector. This will be elaborated more with examples in section 7.3.

Another approach is that the selection of the best subset of features is achieved by trans-
forming the available feature space into a new space. When applied to the original data
space, such as multi-spectral or hyperspectral data space, such an approach can also be
used to extract features at the same time. In addition to reducing the size of the avail-
able data, such transformations have additional objectives such as removing redundant
information by decorrelation or discriminating better in the new space. A celebrated
example in this category is the Principal component analysis (PCA). In PCA, a reduced,
new uncorrelated feature set is obtained by projecting the original space into the �rst
few principal axes, where the directions of these principal axes are determined from an
eigenvalue problem [62]. This approach could be one solution for the correlation prob-
lem pointed out above. However, beyond leaving the selected features uncorrelated, PCA
does not guarantee features with higher class distinguishing ability, a big limitation when
used for classi�cation purposes. Another limitation of feature extraction and selection
using PCA for remote sensing purposes is that it is no longer possible to interpret feature
images with respect to the physical parameters of the observed scene in the transformed
space.

In other feature selection approaches, the selection of a subset of best features is carried
out directly in the feature space without doing any kind of transformation by evaluating
di�erent feature combinations to account correlation. The methods in this category
are the most widely used feature selection approaches. In such approaches an optimal
subset of features can be obtained by performing an exhaustive search in the space, i.e.,
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evaluating all possible combinations of𝑚 out of𝐾 features to select𝑚 features. However,
the number of possible subsets grows exponentially with the number of candidate features
as it is required to evaluate 𝐾!

(𝐾−𝑚)!𝑚! di�erent subsets. For example, in our case, if we
decided to select �ve out of the available twenty-six features, we need to evaluate 65,780
di�erent subsets and this number grows into 230,230 for six features. Thus, the method
is impractical even for a moderate number of features. A more realistic approach relies
on a greedy search method to traverse the space.

Two commonly used and simple approaches in this category are the sequential forward
and sequential backward feature selection techniques, [62, 89]. Both are from the class
of Hill-climbing (also known as stepwise selection and elimination) techniques, [89, 90],
where the algorithm greedily searches for feature subsets by adding or removing features
iteratively while moving towards a state which is better than the current one with re-
spect a particular optimality rule. The sequential forward selection approach starts from
nothing and in each step adds one new feature to the current selected subset whereas
the backward method starts with all the available features and discards one at the time.
Despite their simplicity, both the sequential forward and backward selection methods
have some limitations. In the case of the backward method, once a feature is discarded,
there is no possibility for it to be reconsidered again. The opposite is true for the forward
procedure; there is no way of removing any of the selected features once it is included
in the subset. This is called the nesting e�ect. Therefore, they are suboptimal by their
nature. There are also other suboptimal and optimal (under di�erent assumptions) fea-
ture selection methods, where some of them are variants of the methods discussed above
while others are more advanced techniques. A more complete summary of generally used
feature selection methods can be found in [62, 89].

In a classi�cation task, di�erent optimality criteria can be used to evaluate the perfor-
mance of the di�erent subsets. One possibility is using some kind of class separability
measure which is independent of the classi�er used. Another possibility is using the
classi�cation performance of the subsets in discriminating the available classes. Feature
selection techniques which use the former approach are called filter techniques, while
those used the later approach are called wrapper techniques [62, 89].

7.2 Method

In this study, both the standard sequential forward and backward feature selection ap-
proaches are applied and compared to select the best subset of features. Besides their
simplicity, these two approaches examine the joint performance of the features by forming
di�erent subsets and this has two important advantages. One is that joint performance is
what we are really interested in demonstrating the bene�t of data fusion by combing fea-
tures from the four di�erent datasets. The other advantage is that since the performance
of the combination of features is evaluated, correlation will automatically be accounted
in the selection process. This is due to the fact that if a feature is highly correlated with
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any of the features in a preselected subset, it is more likely that adding it to the subset
will bring about no signi�cant improvement to the overall performance of the subset
except adding complexity. The criteria used to evaluate the performance of the di�erent
subsets in the selection process is the average classi�cation accuracy achieved by each of
them in discriminating the available classes. Therefore, both of them are implemented
as a wrapper techniques.

As a preprocessing step for our feature selection process, all the 26 features from the four
datasets are concatenated to form a single feature vector X; X = {𝐹𝑃 , 𝐹𝐿, 𝐹𝐶 , 𝐹𝑇𝑀},
where 𝐹𝑃 , 𝐹𝐿, 𝐹𝐶 and 𝐹𝑇𝑀 are the feature vectors from the P-band, L-band, C-band and
Landsat TM datasets, respectively. Next a new ground truth map is created by taking
an equal number of samples from each of the classes. Hence, each of the classes will be
represented by an equal number of testing samples in the computation of the classi�cation
accuracy, and thus the variation in size of the available classes will no longer in�uence the
feature selection process. The sample size is determined by the class with the smallest
number of pixels. For this data, the class with tree age 15-19 years was the smallest
with 636 samples. Therefore, the same number of pixels are randomly chosen from the
remaining six classes. Figure 7.1 shows the newly created ground truth map with an
equal number of samples.

Figure 7.1: Ground truth map with equal number of samples.

The sequential forward feature selection (SFFS) algorithm implemented here starts from
an empty set and adds one feature at a time until all the available features have been
added. At each step, the algorithm iteratively evaluates new subsets and adds the feature
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that, when added to the current subset, yields the highest classi�cation accuracy. Then,
the �nal subset that �rst achieves no less than 95% of the classi�cation accuracy obtained
by all the 26 features is selected.

Let F be the feature vector formed from the collection of best features added at each
step, then our SFFS algorithm is:

1. Start with empty set 𝐹0 = ∅; classi�cation accuracy is zero

2. Calculate the classi�cation accuracy for all combinations of 𝐹𝑘 and each remaining
feature 𝑅, i.e., 𝐹𝑘 + 𝑅

3. Choose the feature, 𝑅𝑚𝑎𝑥 that corresponds to the highest joint classi�cation accu-
racy and update the feature selection set to 𝐹𝑘+1 = 𝐹𝑘 + 𝑅𝑚𝑎𝑥

4. Repeat for all remaining features

5. Select the �nal number of features that preserves 95% of the classi�cation accuracy
obtained by all the 26 features

The sequential backward feature selection (SBFS) algorithm works in the opposite direc-
tion of SFFS. It starts with all the 26 features and sequentially removes one feature at a
time that least reduces the classi�cation accuracy of the subset. This time F will be the
feature vector formed from the remaining best features after removing one �bad� feature
at each step. The SBFS algorithm is:

1. Start with the set with all the 26 features 𝐹0 = X

2. Calculate the classi�cation accuracy of all possible subsets, 𝐹𝑘 − 𝑅 by removing
one feature (𝑅) at a time

3. Find the subset with the highest classi�cation accuracy. This subset is 𝐹𝑘+1 =
𝐹𝑘 − 𝑅𝑚𝑖𝑛, where 𝑅𝑚𝑖𝑛 is the feature that reduces least the joint classi�cation
accuracy.

4. Continue until the last feature is removed

5. Select the �nal number of features that preserves 95% of the classi�cation accuracy
obtained by all the 26 features

In both approaches, it is possible to halt the algorithm as soon as the prede�ned require-
ment (95% of the classi�cation accuracy obtained by all the 26 features) is achieved (at
step 4) without evaluating any more candidate subsets by traversing to the other end of
the search space. Here, the evaluation is done until the last feature is added/removed for
two reasons. The �rst one is that it might be interesting to see the performance of not
only the best few features but all the available 26 features. The second reason is that it
might also be interesting to check whether the two feature selection approaches consid-
ered here give exactly identical results all the way up to the last feature or not.
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7.3 Feature selection results for the discrimination of all the
seven classes

The results of both the SFFS and SBFS for all the twenty-six features in discriminating
all the available classes is presented in tables 7.2 and 7.3 respectively. The labelling of
all the 26 features is given in table 7.1 for ease of reference.

Table 7.1: Feature labels.

Features names Labels Features names Labels

P-band Mean radar backscatter 𝜇𝑃 C-band Non-Gaussianity measure 𝜈𝐶
P-band Non-Gaussianity measure 𝜈𝑃 C-band Cross-pol ratio 𝑓𝑥𝐶
P-band Cross-pol ratio 𝑓𝑥𝑃 C-band Co-pol ratio 𝑓𝑐𝐶
P-band Co-pol ratio 𝑓𝑐𝑃 C-band Correlation magnitude 𝑓𝑚𝐶

P-band Correlation magnitude 𝑓𝑚𝑃 C-band Correlation phase 𝑓𝑝𝐶
P-band Correlation phase 𝑓𝑝𝑃 Normalized difference vegetation index NDVI

L-band Mean radar backscatter 𝜇𝐿 Soil brightness index B

L-band Non-Gaussianity measure 𝜈𝐿 Greenness vegetation index G

L-band Cross-pol ratio 𝑓𝑥𝐿 Wetness W

L-band Co-pol ratio 𝑓𝑐𝐿 Perpendicular vegetation index PVI

L-band Correlation magnitude 𝑓𝑚𝐿 Triangular vegetation index TVI

L-band Correlation phase 𝑓𝑝𝐿 Soil adjusted vegetation index SAVI

C-band Mean radar backscatter 𝜇𝐶 Atmospherically resistant vegetation index ARVI

Table 7.2: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 + 𝑓𝑚𝐶 69.79±0.64 1.017

+ 𝜇𝑃 53.94 ± 0.41 0.786 + 𝜈𝐿 69.80±0.70 1.017

+ B 59.91±0.44 0.873 + 𝜈𝐶 69.78±0.61 1.017

+ NDVI 64.09±0.46 0.934 + 𝜈𝑃 69.65±0.81 1.015

+ fxP 66.68±0.56 0.972 + PVI 69.59±0.75 1.014

+ W 67.55±0.67 0.985 + 𝑓𝑐𝐿 69.33±0.67 1.011

+ 𝑓𝑐𝐶 68.22±0.65 0.994 + 𝜇𝐿 69.24±0.80 1.009

+ 𝑓𝑐𝑃 68.70±0.79 1.001 + 𝑓𝑝𝐿 69.16±0.92 1.008

+ TVI 68.79±0.70 1.003 + 𝑓𝑥𝐶 69.14±0.69 1.008

+ SAVI 69.35±0.60 1.011 + 𝑓𝑥𝐿 69.06±0.69 1.007

+ 𝜇𝐶 69.57±0.63 1.014 + ARVI 68.97±0.75 1.005

+ 𝑓𝑚𝐿 69.74±0.61 1.016 + 𝑓𝑝𝐶 68.81±0.78 1.003

+ G 69.79±0.64 1.017 + 𝑓𝑝𝑃 68.59±0.80 100

+ 𝑓𝑚𝑃 69.87±0.64 1.019
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Table 7.3: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All (26) 68.59±0.80 1.000 - 𝑓𝑚𝑃 69.79±0.64 1.017

- PVI 68.94±0.82 1.005 - G 69.74±0.62 1.017

- 𝜈𝐶 69.09±0.91 1.007 - 𝑓𝑚𝐿 69.57±0.63 1.014

- 𝑓𝑝𝑃 69.23±0.99 1.009 - 𝜇𝐶 69.35±0.60 1.011

- 𝑓𝑥𝐶 69.29±0.99 1.010 - 𝑓𝑐𝑃 68.81±0.61 1.003

- 𝑓𝑝𝐶 69.37±0.99 1.011 - SAVI 68.33±0.56 0.996

- ARVI 69.46±0.93 1.013 - TVI 68.21±0.64 0.994

- 𝑓𝑥𝐿 69.56±1.08 1.014 - 𝑓𝑐𝐶 67.54±0.67 0.985

- 𝑓𝑝𝐿 69.62±0.99 1.015 - W 66.68±0.56 0.972
- 𝜈𝐿 69.73±0.87 1.016 - fxP 64.09±0.46 0.934
- 𝜇𝐿 69.73±0.74 1.016 - NDVI 59.91±0.44 0.873
- 𝜈𝑃 69.76±0.75 1.017 - B 53.94 ± 0.41 0.786
- 𝑓𝑐𝐿 69.79±0.64 1.017 - 𝜇𝑃 0 0

- 𝑓𝑚𝐶 69.87±0.64 1.019

As can be seen from tables 7.2 and 7.3, all the greedily searched subsets, by adding/removing
a single feature at a time, are listed in the �rst and fourth columns. The corresponding
average classi�cation accuracies are reported in the second and �fth columns of the ta-
bles. These average classi�cation accuracies are also reported as a fraction of the total
classi�cation accuracy achieved by all the twenty-six features, which is 68.59%.

In the case of the SFFS approach, when the �rst best feature, which is the P-band mean
radar backscatter, is added to the empty set, the classi�cation accuracy has jumped
from 0 to 53.94% (table 7.2). The step-wise increase and decrease of the classi�cation
accuracies for both approaches are plotted in �gure 7.2 for ease of visualization. Then,
at each step, the next best feature with respect to improving the joint classi�cation
accuracy is added. As can be clearly seen from table 7.2, the joint performance has
continued increasing until the P-band correlation magnitude (𝑓𝑚𝑃 ) is added. Then it
starts to decrease until the last feature (𝑓𝑝𝑃 ) is added. For the decreasing trend, the
algorithm still �nds the feature that gives the maximum classi�cation accuracy, but this
corresponds to the least drop in accuracy. Here an important point can be noted

that classification performance can actually be improved by systematically

selecting features. We can see from the table that the subset from 𝜇𝑃 to 𝑓𝑚𝑃 has
achieved bigger accuracy (69.87%) compared to the accuracy of the total twenty-six
features (68.59%). Referring to the third column of the same table, no less than 95% of
the classi�cation accuracy can be retained by choosing a subset containing the �rst four
best features. Therefore, these are the selected features using the SFFS algorithm which
jointly perform best in discriminating among the seven classes. The features are listed
in table 7.4.
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In the SBFS approach the opposite is done by removing the worst (least important)
features one at a time starting from all until the last feature. As can be seen from
table 7.3 and the right panel of �gure 7.2, removing some of the �bad� features results
in a slight improvement to the classi�cation accuracy. In this approach also, we can see
that 95% of the classi�cation accuracy can be retained by keeping the last four features.
These features are the same features that are selected using the SFFS approach (table
7.4).

Figure 7.2: Step-wise increase and decrease of the classi�cation accuracies, SFFS (Left)
and SBFS (Right).

Table 7.4: Features selected using SFFS and SBFS for seven class discrimination.

Selected features

1 P-band Mean radar backscatter (𝜇𝑃 )

2 Soil brightness index ( B)

3 Normalized di�erence vegetation index (NDVI)

4 P-band Cross-pol ratio ( 𝑓𝑥𝑃 )

Comparing tables 7.2 and 7.3, it can be clearly seen that the two feature selection al-
gorithms give similar results in selecting only the �rst six best features. However, for
more number of features (more than six), the results from these two algorithms will no
longer be the same. This is due to the fact that SBFS could be fully in�uenced by the
interactions among features in the selection process while these interactions are ignored
in SFFS. Even though the ordering and the features are not the same, the average clas-
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si�cation accuracy is approximately equal in selecting identical number of features using
these two approaches.

The classi�cation result of the four selected features in discriminating the seven classes,
together with the ground truth map for comparison, is shown in �gure 7.3. These
best four features jointly achieve 74.15% of classi�cation accuracy when applied for the
whole scene. Comparing to the classi�cation accuracy of all the 26 features of table 6.1
of chapter 6, which was at 75.92%, the accuracy of the four features accounts about
97.67%.

Figure 7.3: Ground truth (left) and seven class classi�cation result (right) from the
selected four features (right) and ground truth map (left).

To easily visualize the joint performance of two features, the classi�cation result is also
illustrated in color-coded scatter plots with possible pair-wise combinations of the selected
four features. This is shown in �gure 7.4, and will be discussed in section 7.3.1.
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Figure 7.4: Color-coded scatter plots of possible pair-wise combinations of the four se-
lected features.

7.3.1 Discussions

In the discussions to follow, it should be kept in mind that the feature selection is done
based on evaluating the joint performance, and not on the basis of individual perfor-
mances. Therefore, other features might be better than some of the selected features in
terms of individual performances, but we do not really care about the individual perfor-
mances as our objective is to choose a subset with features that complement each other
best. As it is pointed out earlier, this also helps to automatically account for feature
dependence in the selection process. To strengthen this idea, all the twenty-six features
are ranked based on their individual performances and the result is shown in table 7.5.
The same training and testing pairs used for the selection process are also used here for
the ranking purpose, just for a fair comparison.
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Table 7.5: Individual rankings of all the twenty-six features.

Ranking Features Ranking Features

1 P-band mean radar 14 Soil adjusted
backscatter (𝜇𝑃 ) vegetation index (SAVI)

2 L-band mean 15 Normalized difference
radar backscatter (𝜇𝐿) vegetation index (NDVI)

3 P-band 16 Triangular vegetation index (TVI)
Cross-pol ratio ( 𝑓𝑥𝑃 )

4 Wetness (W) 17 C-band Cross-pol ratio (𝑓𝑥𝐶)
5 P-band Correlation 18 C-band Correlation

magnitude (𝑓𝑚𝑃 ) magnitude (𝑓𝑚𝐶)

6 Soil brightness index ( B) 19 P-band Correlation phase (𝑓𝑝𝑃 )
7 C-band Mean 20 C-band Co-pol ratio (𝑓𝑐𝐶)

radar backscatter ( 𝜇𝐶)

8 L-band Cross-pol ratio ( 𝑓𝑥𝐿) 21 L-band
correlation phase (𝑓𝑝𝐿)

9 L-band Correlation 22 L-band Non-Gaussianity measure (𝜈𝐿)
magnitude (𝑓𝑚𝐿)

10 P-band Co-pol ratio (𝑓𝑐𝑃 ) 23 L-band Co-pol ratio (𝑓𝑐𝐿)
11 Perpendicular 24 P-band Non-Gaussianity measure (𝜈𝑃 )

vegetation index (PVI)

12 Atmospherically resistant 25 C-band Non-Gaussianity measure (𝜈𝐶)
vegetation index (ARVI)

13 Greenness vegetation index (G) 26 C-band Correlation phase (𝑓𝑝𝐶)

It can be clearly seen from the table that the soil brightness index, the second best
feature in the selected subset, is ranked at the sixth position. The NDVI, the third best
in the selected subset is ranked at the �fteenth position and the P-band cross-pol ratio is
ranked at the third position. Therefore, when we say that the selected features are �best�,
it is based on their joint performances. Now, if we have to choose four features based on
the individual rankings, the �rst four features of table 7.5 are our candidates, and their
joint classi�cation accuracy is about 61.32%, which is smaller than the one achieved
by our selected subset (66.68%). Therefore, features with relatively higher individual
performances does not always mean that they have higher collective performance, and
this is primarily due to mutual correlation. This explains the reason why feature selection
results based on the individual performances are far from optimal.

Four out of the twenty-six features are found particularly useful to discriminate among the
seven classes (table 7.4). Two of the selected features, namely P-band mean radar

backscatter and P-band cross-pol ratio are from the P-band PolSAR dataset .
This is an expected result because the P-band dataset is potentially the best for forest
applications as it is discussed in chapter 6. The remaining two features, namely

the soil brightness index and the normalized difference vegetation index are

from the Landsat TM dataset .
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As it can be clearly seen from the top row scatter plots of �gure 7.4, the P-band mean
radar backscatter shows a remarkably good distinguishing capability among the di�erent
classes. It can e�ectively discriminate the bare soil from the forest. Except for some tree
age groups, it also shows relatively higher distinguishing ability among the di�erent tree
age categories. It is pointed out in section 5.1 that the mean radar backscatter represents
the intensity information from the observed target. This information is dependent on the
magnitude of the backscatter signal in radar systems, which in turn is highly dependent on
the surface roughness, the dielectric properties and the moisture content of the observed
target. Even though the scattering mechanisms are highly dependent on the surface
roughness, single bounce is the dominant type of scattering from the bare soil part, while
volume scattering is dominant from the forest. Because of these di�erent mechanisms, it
turns out that the bare soil is generally darker than forest in radar images. Therefore,
these di�erent scattering mechanisms in the two di�erent regions could potentially be
the basis for the higher performance of the mean radar backscatter in discriminating the
bare soil from the forest. The magnitude of the backscatter is also expected to vary
across the di�erent tree age categories. This is because, as the age of the tree increases,
there will be much more leaves, branches and twigs which results in an increase of the
backscatter with tree age. These variations across the di�erent tree age categories could
possibly be the potential reasons for the relatively higher performance of the mean radar
backscatter in tree age discrimination.

The next two features from our selected subset that are found useful in complementing
the P-band mean radar backscatter are the soil brightness index and the normalized
di�erence vegetation index respectively. This is an expected result for the reason that
SAR and optical data are highly complementary to each other, as it is brie�y discussed
in chapters 2 and 6. Referring to the scatter plots of �gure 7.4, even though it is not as
e�ective as the P-band mean radar backscatter, the soil brightness index can discriminate
the bare soil from the forest with relatively higher accuracy. This is due to the fact that
it is more sensitive to the soil part than the forest. From the scatter plot of P-band mean
radar backscatter and soil brightness index (a), it can be seen that the soil brightness
index can discriminate the light green cluster (part of the class with 33-41 years of old
trees) whereas the P-band mean radar backscatter cannot. Therefore it is selected as it
provides this important information that the P-band mean radar backscatter lacks. The
usefulness of the NDVI arises from the unique inverse relation relationship between the
RED and NIR re�ectance of vegetation (section 5.2). This unique information, which is
obtained from optical data only, when it is combined with SAR data, it has a potential
of adding value to the combined performance.

The last feature in the selected subset is the cross-pol ratio. Its relatively good perfor-
mance is related to its higher sensitivity to vegetation biomass. As the age of the tree
increases, more depolarization will be resulted from the many structures of trees; leaves,
branches and twigs. This in turn means an increase in the cross-pol return with tree age,
and this variation is the basis for its relatively good performance compared to the other
four PolSAR features. Generally it has low values in the bare soil part than that of the
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forest (�gure 5.1), and this information could be useful to discriminate the bare soil from
the forest too.

7.4 Feature selection results for forest age discrimination
only

As it has been discussed in chapter 6 and can be clearly seen from the scatter plots of 7.4,
discriminating the bare soil from the forest is more e�ective than that of discriminating
among the forest age categories. Therefore, the feature selection experiment using both
SFFS and SBFS algorithms is repeated here by masking out the bare soil part to check
whether we could end up with the same set of features or not. The ground truth map
after masking out the bare soil part is shown in �gure 7.5 for an equal number of samples
from each of the six classes.

Figure 7.5: Ground truth map with equal number of samples for tree age categories.

All the subsets generated using SFFS and SBFS approaches together with their corre-
sponding classi�cation accuracies are presented in tables 7.6 and 7.7, respectively.
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Table 7.6: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 +𝑓𝑚𝐿 66.30±0.74 1.012

+𝜇𝑃 46.50 ± 0.54 0.710 +𝑓𝑚𝑃 66.23±0.87 1.011

+B 53.62±0.42 0.819 +PVI 66.28±0.83 1.012

+NDVI 58.52±0.69 0.893 +𝑓𝑝𝐶 66.28±0.83 1.012

+fxP 61.79±0.60 0.943 +𝜈𝐶 66.30±0.72 1.012

+W 63.69±0.72 0.972 +𝑓𝑝𝑃 66.25±0.63 1.011

+𝜇𝐶 64.45±0.70 0.984 +𝑓𝑥𝐿 66.14±0.70 1.010

+𝑓𝑐𝐶 64.74±0.73 0.988 +𝑓𝑚𝐶 66.11±0.76 1.009

+𝑓𝑐𝑃 65.09±0.62 0.994 +𝜈𝐿 65.03±0.82 1.008

+TVI 65.33±0.52 0.997 +𝑓𝑥𝐶 65.93±0.73 1.007

+SAVI 65.72±0.41 1.003 +ARVI 65.74±0.82 1.004

+ 𝑓𝑐𝐿 65.91±0.43 1.006 +𝑓𝑝𝐿 65.57±0.83 1.001

+ 𝜇𝐿 66.01±0.52 1.008 +𝜈𝑃 65.49±0.78 1.000

+G 66.12±0.56 1.009

Table 7.7: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All 65.49±0.78 1.000 - 𝑓𝑥𝐿 66.03±0.55 1.008

- 𝑓𝑝𝐶 65.57 ± 0.83 1.001 - 𝜇𝐿 65.89±64 1.006

- 𝜈𝐿 65.66±0.88 1.002 - G 65.72±41 1.003

- ARVI 65.79±0.0.85 1.004 - 𝑓𝑐𝑃 65.40±0.64 0.998

- 𝑓𝑥𝐶 65.94±0.83 1.007 - 𝑓𝑐𝐶 64.91±0.68 0.991

- 𝑓𝑝𝐿 65.99±0.80 1.008 - SAVI 64.46±0.71 0.984

- 𝑓𝑚𝐶 66.13±0.83 1.010 - TVI 64.45±0.70 0.984

- 𝜈𝑃 66.20±0.87 1.011 - 𝜇𝐶 63.69±0.72 0.972
- 𝜈𝐶 66.30±0.83 1.012 - W 61.79±0.60 0.943
- 𝑓𝑚𝐿 66.30±0.66 1.012 - fxP 58.52±0.68 0.893
- 𝑓𝑝𝑃 66.23±0.77 1.011 - NDVI 53.62±0.42 0.819
- 𝑓𝑐𝐿 66.07±0.75 1.009 - B 46.50±0.54 0.710
- 𝑓𝑚𝑃 66.24±0.76 1.011 - 𝜇𝑃 0 0

- PVI 66.16±0.74 1.010

From tables 7.6 and 7.7, we can see that 95% of the classi�cation accuracy can be retained
by choosing a subset of �ve features. These �ve best features are identical in both the
SFFS and SBFS approaches and are listed in table 7.8. The selected �ve best features
are the same features ranked in the same order compared to the �rst �ve features of the
�rst experiment where all the seven classes treated. However, for tree age discrimination,
the �rst four best features are incapable of retaining 95% of the classi�cation accuracy of
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the total as they did in the �rst experiment. An additional �fth best feature, which is the
wetness, is required to do so. Therefore one more feature is found useful in retaining most
of the classi�cation information and discriminate among the tree age categories.

Table 7.8: Features selected using SFFS and SBFS for tree age discrimination.

Selected features

1 P-band Mean radar backscatter (𝜇𝑃 )

2 Soil brightness index ( B)

3 Normalized di�erence vegetation index (NDVI)

4 P-band Cross-pol ratio ( 𝑓𝑥𝑃 )

5 Wetness (W)

The classi�cation result of the �ve selected features in discriminating the tree age cate-
gories, together with the ground truth map for comparison, is shown in �gure 7.6. These
best �ve features jointly achieve 60.35% of classi�cation accuracy when applied for the
whole scene. Comparing to the classi�cation accuracy of all the 26 features of table
6.3 of chapter 6, which was at 63.08%, the accuracy of the �ve features accounts about
95.68%.

Figure 7.6: Ground truth (left) and tree age classi�cation result (right) from the selected
�ve features (right) and ground truth map (left).

As four of the selected features for tree age discrimination are the same as those selected
for the seven class case of the �rst experiment, the discussions given in section 7.3.1 with
respect to discriminating among the tree age categories are also valid here. Moisture
content di�erence among the di�erent tree age categories is the potential reason for the
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relatively higher performance of the wetness. As the age of the tree increases, it is natural
that more green biomass will be present in a given area or volume, and hence the moisture
content will increase with tree age.

7.5 Feature selection for soil versus forest only

In this case also, both the SFFS and SBFS algorithms are applied to all the twenty-six
features to select features which are best in discriminating the bare soil from the forest.
The ground truth map after merging all the tree age categories is shown in �gure 7.7 for
an equal number of samples from each of the two classes.

Figure 7.7: Ground truth map with equal number of samples for bare soil versus forest.

All the greedily searched subsets using the SFFS and SBFS algorithms are listed in tables
7.9 and 7.10 respectively.
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Table 7.9: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 + 𝜈𝐿 99.573±0.070 1.0005

+𝜇𝑃 99.047 ± 0.132 0.9952 + 𝜈𝐶 99.561±0.069 1.0004

+W 99.535±0.044 1.0001 + TVI 99.557±0.061 1.0003

+𝜇𝐿 99.582±0.028 1.0006 + 𝜇𝐶 99.571±0.052 1.0005

+𝑓𝑝𝑃 99.584±0.026 1.0006 + 𝑓𝑚𝐿 99.582±0.053 1.0006

+ARVI 99.589±0.045 1.0007 + 𝑓𝑚𝑃 99.588±0.061 1.0006

+𝑓𝑥𝐶 99.609±0.057 1.0009 + NDVI 99.589±0.064 1.0007

+𝑓𝑝𝐿 99.601±0.059 1.0008 + PVI 99.596±0.050 1.0007

+𝑓𝑝𝐶 99.599±0.061 1.0008 + G 99.589±0.047 1.0007

+𝑓𝑚𝐶 99.601±0.056 1.0008 + 𝑓𝑥𝐿 99.588±0.054 1.0006

+ 𝑓𝑐𝐿 99.595±0.045 1.0007 + 𝑓𝑥𝑃 99.577±0.064 1.0005

+ SAVI 99.595±0.049 1.0007 + 𝑓𝑐𝑃 99.577±0.064 1.0005

+ 𝜈𝑃 99.590±0.054 1.0007 + B 99.524±0.103 1.0000

+ 𝑓𝑐𝐶 99.581±0.058 1.0006

Table 7.10: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All 99.524 ± 0.103 1.0000 - 𝑓𝑝𝐶 99.621±0.034 1.0010

- B 99.557 ± 0.064 1.0003 - PVI 99.621±0.030 1.0010

- 𝑓𝑐𝑃 99.557±0.064 1.0003 - 𝑓𝑥𝑃 99.622±0.029 1.0010

- 𝜈𝐿 99.589±0.056 1.0007 - 𝑓𝑚𝐶 99.616±0.024 1.0009

- G 99.600±0.048 1.0008 - 𝜇𝐿 99.614±0.024 1.0009

- 𝑓𝑥𝐶 99.605±0.043 1.0008 - SAVI 99.605±0.024 1.0008

- 𝜈𝐶 99.606±0.035 1.0008 - 𝑓𝑝𝑃 99.587±0.034 1.0006

- ARVI 99.613±0.039 1.0009 - 𝑓𝑚𝑃 99.567±0.039 1.0004

- 𝜈𝑃 99.614±0.040 1.0009 - TVI 99.549±0.033 1.0003

- 𝑓𝑝𝐿 99.613±0.039 1.0009 - 𝜇𝐶 99.557±0.024 1.0003

- 𝑓𝑐𝐿 99.618±0.041 1.0009 - NDVI 99.535±0.044 1.0001

- 𝑓𝑥𝐿 99.619±0.023 1.0010 - W 99.047±0.132 0.9952

- 𝑓𝑝𝐶 99.627±0.019 1.0010 - 𝜇𝑃 0

- 𝑓𝑚𝐿 99.623±0.034 1.0010

From the two tables above we can see that only the �rst best feature is more than enough
to achieve the required 95% accuracy. The P-band mean radar backscatter is the best
feature from both SFFS and SBFS approaches which achieves an accuracy of 99.047%,
and is hence selected. This is about 99.5% of the total accuracy achieved by all the 26
features, which is 99.524%. Interestingly, the wetness is the next best feature identi�ed
which best complements the P-band mean radar backscatter. Together, they achieved
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the same classi�cation accuracy (99.535%) as compared to the accuracy of all (99.524%).
Therefore, the P-band mean radar backscatter and the wetness can e�ectively replace all
the twenty-six features in discriminating the bare soil from the forest. The classi�cation
result using the selected feature (𝜇𝑃 ) in discriminating the bare soil from the forest,
together with the ground truth map for comparison, is shown in �gure 7.8. Even though
it is not included in the selected subset, the wetness is also the �fth best feature for the
seven class case of the �rst experiment. Its relatively good performance in distinguishing
the bare soil from the forest is from the expected moisture content di�erence between
them. This was also re�ected in the wetness image of �gure 5.9 of chapter 5 that the
bare soil appeared brighter than the forest.

Figure 7.8: Ground truth (left) and classi�cation result (right) using the P-band.

7.6 Combining the three feature selection results

From the above three feature selection experiments, �ve best features are identi�ed in
retaining most of the classi�cation information for our application. These �ve features
are those listed in table 7.8. Four of them are identi�ed in the �rst experiment, and
one more feature, the wetness, is found useful for tree age discrimination. Even though
the wetness is not among the selected features in the �rst experiment, it was the �fth
best feature for the seven class case, see tables 7.2 and 7.3. Together with the P-band
mean radar backscatter, the wetness is also found to replace all the twenty-six features
to discriminate the bare soil from the forest. Therefore, these �ve features are our �nal
selection for the discrimination of all the available classes. The classi�cation result of
these �ve selected features in discriminating the seven classes, together with the ground
truth map for comparison, is shown in �gure 7.9. These best �ve features jointly achieve
74.78% of classi�cation accuracy when applied for the whole scene. Comparing to the
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classi�cation accuracy of all the 26 features of table 6.1 of chapter 6, which was at 75.92%,
the accuracy of the �ve features accounts about 98.50%. This is a big achievement

with respect to reducing the number of features and at the same time retaining

most of the classification information.

Figure 7.9: Ground truth map (left) and seven class classi�cation result (right) from the
selected �ve features.

7.7 Features selection for the combination of single frequency
PolSAR and optical dataset

From our �ve selected features, three of them are from the Landsat TM dataset, and two
of them are from the P-band PolSAR dataset. Therefore, no features are selected either
from the L- or C-band dataset. As it is pointed out in chapter 2, remote sensing from
space is the most cost e�ective and e�cient way of monitoring the earth. However, we
do not have P-band from space and therefore its usage has been limited to experimental
purposes. Currently, L-band is also unavailable from space. C-band is better in terms of
availability compared to the other two. Therefore, it is reasonable and might be interest-
ing to see whether the selected features will remain the same across the three frequencies
considered here or not. This might help to identify features from both the PolSAR and
Landsat TM datasets, which jointly perform best for forest applications irrespective of
the SAR frequency used. Therefore, feature selection is applied by combining each of the
P-, L- and C- band features at a time with the optical ones.
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7.7.1 Feature selection results for P-band and Landsat TM features

Both the SFFS and SBFS algorithms are applied to all the fourteen features from the
P-band and Landsat TM datasets. All the subsets generated from the SFFS and SBFS
algorithms together with their corresponding classi�cation accuracies are presented in
tables 7.11 and 7.12 respectively. The results from the two approaches are compared in
table 7.13.

Table 7.11: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 + SAVI 68.70±0.61 1.0111

+𝜇𝑃 53.94 ± 0.41 0.7938 + 𝑓𝑚𝑃 68.67±0.63 1.0106

+B 59.91±0.44 0.8817 + 𝑓𝑝𝑃 68.67±0.52 1.0106

+NDVI 64.09±0.46 0.9432 + G 68.61±0.66 1.0097

+fxP 66.68±0.55 0.9813 +𝜈𝑃 68.48±0.69 1.0078

+W 67.54±0.67 0.9939 + ARVI 68.22±0.74 1.0040

+ 𝑓𝑐𝑃 68.15±0.77 1.0029 +PVI 67.95±0.71 1.0000

+ TVI 68.28±0.58 1.0048

Table 7.12: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All (14) 67.95±0.71 1.0000 - TVI 68.16±0.76 1.0031

- PVI 68.22±0.74 1.0040 - 𝑓𝑐𝑃 67.55±0.67 0.9941

- ARVI 68.48±0.69 1.0078 - W 66.68±0.56 0.9814
- 𝜈𝑃 68.61±0.66 1.0097 - fxP 64.09±0.46 00.9432
- G 68.67±0.52 1.0106 -SAVI 59.91±0.44 0.8817
- 𝑓𝑝𝑃 68.67±0.63 1.0106 - B 53.94 ± 0.41 0.7938
- 𝑓𝑚𝑃 68.70±0.61 1.0111 - 𝜇𝑃 0 0

- NDVI 68.28±0.58 1.0049

Table 7.13: Comparing SFFS and SBFS results for P-band and Landsat TM features.

Ordering Forward (SFFS) Backward (SBFS)

1 P-band mean radar backscatter P-band mean radar backscatter

2 Soil brightness index Soil brightness index

3 NDVI Soil adjusted vegetation index

4 P-band cross-pol ratio P-band cross-pol ratio

Total accuracy 66.68±0.55(0.9813) 66.68±0.56(0.9814)
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7.7.2 Feature selection results for L-band and Landsat TM features

Both the SFFS and SBFS algorithms are applied to all the fourteen features from the
L-band and Landsat TM datasets. All the subsets generated using SFFS and SBFS
approaches together with their corresponding classi�cation accuracies are presented in
tables 7.14 and 7.15 respectively. The results from the two approaches are compared in
table 7.16.

Table 7.14: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 + 𝑓𝑚𝐿 52.37±0.62 1.0148

+𝜇𝐿 41.11 ± 0.59 0.7533 + 𝑓𝑝𝐿 52.29±0.76 1.0133

+G 47.09±0.68 0.9126 + 𝜈𝐿 52.18±0.86 1.0112

+W 49.99±0.63 0.9686 + NDVI 51.80±0.74 1.0037

+B 50.98±1.11 0.9879 + SAVI 52.28±0.75 1.0130

+𝑓𝑥𝐿 51.27±1.16 0.9934 + 𝑓𝑐𝐿 51.95±0.76 1.0068

+TVI 51.45±1.09 0.9969 +PVI 51.61±0.85 1.0000

+ ARVI 52.06±0.72 1.0088

Table 7.15: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All (14) 51.61±0.85 1.0000 - TVI 51.40±0.86 0.9959

- PVI 51.95±0.76 1.0068 - NDVI 51.28±1.08 0.9936

- 𝑓𝑐𝐿 52.28±0.75 1.0130 - 𝑓𝑥𝐿 50.48±0.95 0.9781

- 𝑓𝑝𝐿 52.46±0.79 1.0165 - W 49.80±0.75 0.9650
- ARVI 52.20±0.91 1.0115 - SAVI 45.98±0.66 0.8910
- 𝜈𝐿 52.21±0.64 1.0117 - B 41.11 ± 0.59 0.7533
- G 54.90±0.78 1.0079 - 𝜇𝐿 0 0

- 𝑓𝑚𝐿 51.76±0.77 1.0030

Table 7.16: Comparing SFFS and SBFS results for L-band and Landsat TM features.

Ordering Forward (SFFS) Backward (SBFS)

1 L-band mean radar backscatter L-band mean radar backscatter

2 Greenness Soil brightness index

3 Wetness Soil adjusted vegetation index

Total accuracy 49.99±0.63(0.9686) 49.80±0.75(0.96504)
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7.7.3 Feature selection results for C-band and Landsat TM features

Both the SFFS and SBFS algorithms are applied to all the fourteen features from the
C-band and Landsat TM datasets. All the greedily searched subsets using the SFFS and
SBFS algorithms together with their corresponding classi�cation accuracies are presented
in tables 7.17 and 7.18 respectively. The results from the two approaches are compared
in table 7.19.

Table 7.17: Forward feature selection results.

Subset by Average Fraction Subset by Average Fraction

adding one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

0 0 0 +𝑓𝑚𝐶 44.41±0.41 0.9839

+W 30.17 ± 0.19 0.6684 +ARVI 44.73±0.42 0.9909

+G 36.93±0.68 0.8182 +𝜈𝐶 45.06±0.41 0.9982

+𝜇𝐶 41.54±0.48 0.9203 +𝑓𝑝𝐶 45.09±0.41 0.9989

+fxC 42.08±0.49 0.9323 + NDVI 44.95±0.48 0.9958

+fcC 42.68±0.52 0.9455 + SAVI 45.55±0.45 1.0090

+B 43.41±0.59 0.96161 +PVI 45.14±0.61 1.0000

+TVI 43.93±0.64 0.9732

Table 7.18: Backward feature selection results.

Subset by Average Fraction Subset by Average Fraction

removing one classification of the adding one classification of the
at a time accuracy total at a time accuracy total

All (14) 45.14±0.61 1.000 - 𝑓𝑐𝐶 43.99±0.49 0.9746

- PVI 45.55±0.45 1.0091 - 𝑓𝑥𝐶 43.30±0.61 0.9592
- 𝑓𝑝𝐶 55.54±0.49 1.0089 - TVI 41.84±0.33 0.9268
- ARVI 45.46±0.42 1.0072 - SAVI 40.79±0.74 0.9037
- 𝜈𝐶 45.32±0.48 1.0040 - NDVI 36.35±0.58 0.8054
- B 44.95±0.64 0.9958 - 𝜇𝐶 30.17±0.19 0.6684
- G 44.91±0.51 0.9950 - W 0 0

- 𝑓𝑚𝐶 44.78±0.40 0.9921
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Table 7.19: Comparing SFFS and SBFS results for C-band and Landsat TM features.

Ordering Forward (SFFS) Backward (SBFS)

1 Wetness Wetness

2 Greenness C-band mean radar backscatter

3 C-band mean radar backscatter NDVI

4 C-band cross-pol ratio Soil adjusted vegetation index

5 C-band co-pol ratio Triangular vegetation index

6 Soil brightness index

Total accuracy 43.41±0.59(0.9616) 43.30±0.61(0.95.92)

7.7.4 Discussions

From the above three cases, it can be clearly seen from their respective results that each
of the SFFS and SBFS algorithms give di�erent subsets of features. Therefore it is a
good time to critically investigate these two approaches to be able to make the decision
easier.

For the �rst case, where the selection is applied on the P-band and Landsat TM features,
we can see from table 7.13 that four features are suggested by both the SFFS and SBFS
approaches in preserving 95% of the classi�cation information. However, the SAVI is
chosen by the SBFS algorithm instead of the NDVI, which is included in the subset
proposed by the SFFS approach. Except for this di�erence, the remaining features are
identical with the same order and the same classi�cation accuracy value. It looks that the
NDVI and SAVI can be replaced each other without a�ecting the classi�cation accuracy.
This is from the fact that these two features are highly correlated. This high correlation
is depicted in the color-coded scatter plots (i) of �gure 7.10. Therefore it can be said that
the two approaches are still giving the same result in choosing the few best features and
we can take either of the subsets proposed by the two approaches as our �nal choice.
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Figure 7.10: Color-coded scatter plots of possible pair-wise combinations of �ve features.

For the second case where the selection is applied on the L-band and Landsat TM features,
we can see from table 7.16 that the SFFS and SBFS methods give di�erent results (except
𝜇𝐿). Even though the features identi�ed by the two approaches are di�erent, the average
classi�cation accuracy is approximately equal (very small di�erence, in favour of the
forward) in preserving 95% of the classi�cation information. The scatter plots of possible
pair-wise combinations of the �ve features of table 7.16 are plotted in �gure 7.11 for ease
of visualization.
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Figure 7.11: Color-coded scatter plots of possible pair-wise combinations of the �ve
features.

As can be seen from the above scatter plot (a), the L-band mean radar backscatter has a
de�ciency of e�ectively discriminating some of the tree age categories. Especially, it has a
di�culty in isolating the light green cluster (33−41) from the dark green (>41), and the
red (15− 19) from the purple (11-14) ones. Therefore, in the feature selection process, it
seeks for best complementary features that help in solving this problem. The �rst feature
suggested by the SFFS algorithm in solving this problem is the greenness while the soil
brightness index is the one suggested by the SBFS algorithm. From tables 7.14 and 7.15,
the greenness adds more value to the accuracy of 𝜇𝐿 than the soil brightness index did.
Therefore, in this case, the forward is better in selecting two features than the backward
approach. The relatively higher performance of the greenness has also re�ected in the
scatter plots. It can be clearly seen that the size of the light green cluster that can be
distinguished from the remaining tree age groups (a) using the greenness is bigger than
that of the top light green cluster in (c) that can be distinguished using the soil brightness
index. It is also reasonable for the greenness to have relatively good performance with
respect to distinguishing the tree age categories than the soil brightness index as it is
intended to highlight the green biomass. As the age of the tree increases so does the
amount of green biomass, and therefore the value of the greenness is expected to increase
with tree age.

From its nature, the forward approach has the potential of evaluating a large number
of states near the empty set, however towards the full set only small number of subsets
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will be evaluated since most features have already been selected. Therefore, the SFFS
approach is better in selecting relatively smaller number of features (near the empty
set). On the other hand, the backward approach has more potential of evaluating a large
number of states near the full set than near the empty set. Therefore, the SBFS approach
is better in selecting relatively large number of features (near the full set). This means
that it may have relatively lower performance in selecting very few features compared to
the SFFS algorithm. The opposite is true for the SFFS approach in selecting large number
of features. The limitation of the SBFS approach in selecting a few best features is due
to the fact that it is evaluating di�erent subsets starting from the back by removing one
at a time. There is a possibility of some of the individually �good� features to be thrown
away at early stages in favour of a stronger �mutual bene�t� combination, and which
are themselves removed later on. As it can be clearly seen from table 7.15, this is what
exactly happened to the greenness in our SBFS experiment. The greenness is removed at
an early stage while it can perform better than any of the remaining features when it is
combined with the �rst best feature (𝜇𝐿). As it is discussed in the introduction section of
this chapter, both the forward and backward approaches are su�ering from this �nesting�
limitation of being unable to reconsider previous decisions. However, it will not be a big
problem for the forward approach in selecting the �rst few best features for the reason
that the algorithm is able to make better decisions near the empty set by evaluating
many di�erent combinations of the available features. Comparing tables 7.14 and 7.15,
we can see that slightly better or approximately equal accuracy values are achieved by
the SFFS algorithm in selecting the �rst few features compared to the SBFS algorithm.
Therefore, from the above discussions and from our objective, selecting only few features
which jointly perform best, the SFFS approach is better for our application.

Also in the last case where the selection is applied on the C-band and Landsat TM
features, we can see from table 7.19 that the SFFS and SBFS methods give di�erent
results. In the case of SFFS approach, six features are identi�ed in preserving 95% of
the classi�cation information whereas �ve features are identi�ed in the SBFS approach.
However, it can be seen from tables 7.17 and 7.18 that slightly higher accuracy values
are obtained in the SFFS than the SBFS in choosing smaller number of features (up
to four features). This agrees with the above explanation that the SFFS approach is
better in identifying those few best features than the SBFS approach. Here, unlike the
�rst two cases, two of the optical features, wetness and greenness ranked on top of the
mean radar backscatter. This is due to the fact that, as it is found in chapter 6, the
C-band dataset generally has poorer performance than the optical one. However, the
mean radar backscatter is still the best SAR feature in complementing with the optical
features.

Empirical comparisons between these two sequential feature selection algorithms can be
found in [91, 92]. In [91], it is reported that the SFFS approach is better when the
optimal number of selected features is smaller while the backward is better if otherwise.
This agrees with our results. In [92], an initial investigation was done to compare these
two features selection algorithms. Their preliminary results show that the performance
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of the two approaches is dependent on the number of the available features. It is reported
that the forward performs better than the backward when the number of the available
features is small (e.g., 10) where as the backward is better for 30 or more features. As it
is mentioned in these two references, results from a related work in [93] showed that the
backward approach often outperforms the forward one. However, our results show that,
irrespective of the number of the available features used, the two approaches sometimes
give identical results in selecting the few best features and sometimes not. When there is
a di�erence in the outputs from these two algorithms, the SFFS approach gives slightly
better classi�cation accuracy values than the SBFS approach.

Since we have now found that the SFFS approach �ts to our objective, the features that
are identi�ed using this approach are taken as our �nal selection results with respect to
the above three cases. The features selected are listed in tables 7.20, 7.21 and 7.22 for
each of the three cases.

Table 7.20: The selected features for P-band and Landsat TM.

Selected features

1 P-band mean radar backscatter

2 Soil brightness index

3 NDVI

4 P-band cross-pol ratio

Table 7.21: The selected features for L-band and Landsat TM.

Selected features

1 L-band Mean radar backscatter

2 Greenness vegetation index

3 Wetness

Table 7.22: The selected features for C-band and Landsat TM.

Selected features

1 Wetness

2 Greenness

3 C-band mean radar backscatter

4 C-band cross-pol ratio

5 C-band co-pol ratio

6 Soil brightness index

Comparing the above three results, we can see that the mean radar backscatter is the
�rst feature selected in the P-and L-band cases, and also it has got a third place in the
C-band case. Therefore, it is the best SAR feature irrespective of the SAR frequency
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used. In the P- and C-band cases, the cross-pol ratio is the forth best feature among the
selected features. Even though it is not included in selected subset, it can be clearly seen
from table 7.14 that it is the next best PolSAR feature in the L-band case too. Therefore,
it is the best PolSAR feature next to the mean radar backscatter. The reasons for the
relatively higher performance of these two PolSAR features has already explained in
section 7.3.1.

In general, four optical features, namely the wetness, the soil brightness index, the green-
ness and the normalized di�erence vegetation index are identi�ed. The wetness is the
�rst best feature identi�ed for the C-band case and also the third best features for the
L-band case. Even though it is not included in the selected subset, it can be clearly seen
from table 7.11 that it is the �fth best feature in the ranking for the P-band case too.
Therefore, it is one of the best optical features found useful for our application. The soil
brightness index is one of the selected features for the P-and C-band cases. It is also the
fourth best feature for the L-band case (table 7.14). Therefore, it is the other best opti-
cal feature found useful in complementing the PolSAR features. The NDVI is identi�ed
as one of the best complementary features for the P-band case only. As it can be seen
from tables 7.14 and 7.17, it is ranked in the tails for the L- and C-band cases. On the
other hand the greenness is found particularly useful for the L- and C- band cases than
P-band. The reasons for the relatively higher performance of the soil brightness index
and the NDVI is explained in section 7.3.1 where as the explanation for the wetness is
given in sections 7.4 and 7.5. One more point to add about the soil brightness index is
that, in addition to highlighting and discriminating the bare soil part from the forest,
it is observed from the scatter plots of �gures 7.4, 7.10 and 7.11 that this feature has a
potential of discriminating among some of the tree age categories. One potential reason
for this is that the pixels are fairly large and are able to measure a mixture of tree and
ground. The proportion of each will change as the trees grow and spread branches with
age, and this might cause a change in the value of the soil brightness index with tree age.
The greenness has already been discussed at the beginning of this section. Finally, for
the C-band and Landsat TM case, a sixth feature, namely the co-pol ratio is included
in the selected subset in preserving 95% of the classi�cation accuracy. However, this
feature is not consistently appearing in the best subset for all the other cases, and it
looks that it is included for this particular case to ful�l the 95% classi�cation accuracy
requirement.

7.8 Chapter summary

In summary, two feature selection approaches namely the sequential forward and back-
ward feature selection approaches are applied and compared all the way up to the end of
the chapter. In some cases, these two approaches give identical results in selecting the
few best features. However, in other cases they give di�erent results even in selecting the
few best features. When they give di�erent results, the forward approach provides small
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improvements to the classi�cation accuracies of the �rst few best features compared to
the backward approach. As this is somewhat advantageous with respect to identifying
the �rst few best features, only the features selection results from the forward approach
are considered.

From the results above, we have seen that systematic feature selection is an important
process in identifying and selecting the few best features. In all the experiments, six or
fewer features are identi�ed that jointly perform best to preserve most of the classi�cation
information. We have also seen that when systematically applied, feature selection can
improve the classi�cation performance.

The mean radar backscatter is the best feature from all the PolSAR features. The cross-
pol ratio is the next best feature found useful from the PolSAR dataset. Two optical
features, namely the wetness and the soil brightness index are found best in comple-
menting the selected PolSAR features, irrespective of the SAR frequency used. However,
the normalized di�erence vegetation index is found speci�cally useful in complementing
the P-band features. On the other hand the greenness is found particularly useful in
complementing the L-and C-band PolSAR features.
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Chapter 8

Conclusion and future work

8.1 Conclusion

In this study, the bene�t of SAR and optical data fusion for forest applications is inves-
tigated by extracting and selecting di�erent polarimetric SAR and multi-spectral optical
features.

The work started by choosing a convenient data fusion level that can retain the sensor
speci�c information from each of the datasets considered. It is found that feature level
fusion is a convenient fusion method to retain the sensor speci�c information and to
evaluate and select the best combination of features from di�erent data sources.

In the preprocessing stage, the datasets are co-aligned and di�erent radiometric cor-
rections are applied. In general, it is of interest to note that image registration is a
fundamental step prior to fusing datasets from several sources. In particular, since SAR
and optical sensors have di�erent imaging geometries and resolutions, image registration
is a vital step in combining datasets from these two sensors.

In this study, a total of twenty-six features are extracted; six from each of the three
PolSAR datasets and eight from the optical one. Of all the twenty-six features, some of
them show appreciable contrast among the di�erent classes and are capable of forming
separable clusters and some of them do not. Several of them are also found useful to
easily interpret the scene visually and in terms of its biophysical parameters. Moreover,
high correlation is found among some of the features, particularly among some of the
vegetation indices. Therefore, at the feature extraction stage, a clue has been found
that most of the class discriminatory information might be embedded in few of the
features.

A supervised maximum likelihood Bayesian classi�cation scheme is applied to evaluate
and compare the classi�cation performance of each of the four datasets and their di�erent
combinations. The classi�cation accuracy (in percentage) is used to quantitatively eval-
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uate the performances. From the PolSAR datasets, it is found that P-band has the best
whereas C-band has the poorest classi�cation performances with respect to our appli-
cation. L-band has performed moderately. The Landsat TM dataset has slightly lower
performance than the L-band dataset but a far better performance than the C-band
dataset. In evaluating the classi�cation performances of the fusion results, it is found
that combining the Landsat TM features with any of the three PolSAR datasets (P-,
L- or C-band) results in a much better performance than any of them used alone. The
improvement to the classi�cation accuracy is as big as 12%. All the best classi�cation
performances from the fusion datasets involve P-band. This shows that P-band is the
one that can be trusted for forest applications. Therefore when it is available, priority
should be given to the use of it. Moreover, our results show that the combined use of
Landsat TM and L-band is as good as the P-band, and the combined use of Landsat TM
and C-band is as good as L-band. Therefore, whenever data at a longer wavelength is
not available, which is often the case, equivalent accuracy may be obtained by combining
an optical dataset with the available shorter SAR band. This strong complementariness
of SAR and optical datasets leads to a recommendation that attention should be given
to the combined use of them when they are available.

It is found that discriminating the bare soil from the forest is performed at a higher
accuracy than discriminating among the di�erent tree age categories. Hence, data fusion
might not be necessary for this forest/non-forest mapping case. Our results show that it
can be done with a very high accuracy by using P- or L-bands. Even, the C-band or the
Landsat TM dataset alone or their combination showed a great potential to discriminate
the bare soil from the forest. Therefore, they can be used whenever the longer wavelength
bands are not available.

In the feature selection stage, the two standard sequential forward and backward feature
selection algorithms are applied and compared to select the best subset of features from
the available set. In some cases, these two approaches give identical results in selecting
the few best features. However, in other cases they give di�erent results even in selecting
the few best features. When they give di�erent results, slightly better classi�cation
accuracy values are obtained from the forward approach than the backward one. As this
is somewhat advantageous whenever the goal is to identify the �rst few best features,
only the feature selection results from the forward approach are considered.

Two groups of feature selection experiments have been done for two di�erent objectives.
The �rst group of experiments is done to investigate those few best features from the
available set that can discriminate the di�erent classes. In this case, our main objective is
to reduce the number of features as much as possible and retain most of the classi�cation
information at the same time. In our case �most of the classi�cation information� is
de�ned as 95% of the classi�cation performance obtained by all the available features.
Five features; two P-band features and three Landsat TM features are identi�ed. The
two P-band features are the P-band mean radar backscatter and the P-band cross-pol
ratio, whereas the three optical features are the NDVI, the wetness and the soil brightness
index. The joint classi�cation performance of these �ve features accounts 98.50% of the
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classi�cation performance of all the twenty-six features. This is a big achievement with
respect to reducing the number of features and at the same time retaining most of the
classi�cation information. Another point to mention is that the P-band mean radar
backscatter alone is found to discriminate the bare soil from the forest with almost the
same classi�cation accuracy obtained by all the twenty-six features. Its classi�cation
accuracy accounts about 99.50% of the classi�cation accuracy of the whole set. This also
shows the incredible advantage of extracting and selecting features. Therefore, whenever
a very large volume of data is available, feature extraction and selection not only helpful
to better understand the scene but also can reduce processing time and memory. Even
though it is not our primary interest, an additional advantage of feature selection found
in the process is that systematically selecting features can also improve the classi�cation
performance.

In the second group of experiments, feature selection is performed for a related but
slightly di�erent objective; to identify those few best PolSAR and optical features that
jointly perform best independent of the SAR frequency used. It is found that two PolSAR
features and two optical features are best complementary to each other irrespective of
the frequency of SAR used. The �rst best PolSAR feature found is the mean radar
backscatter, and the second one is the cross-pol ratio. The two Landsat TM features
are the wetness and the soil brightness index. Two other Landsat features, namely the
NDVI and the greenness are found useful in complementing speci�c SAR frequencies. It
is found that the NDVI best complements the P-band features whereas the greenness
best complements the L- and C-band features. These best features identi�ed from both
datasets are found useful to interpret the forest in terms of its scattering mechanisms.
Therefore, they can be reasonably expected to be used for other forest applications
too.

8.2 Future work

In the future we believe, based on the insight gained from this work, several experimental
works can be done as an easy extension of this study to improve the existing results and
to investigate more new results. The Nezer forest is a well monitored mono-species
forest with no signi�cant slope. Therefore, �rst, it is of our primary interest to test
the results obtained from this work for forest of more complex nature, such as tropical
forests or any other forest of heterogeneous tree species. In terms of type, only fourteen;
six PolSAR and eight optical features are studied in this project. However there are
more Polarimetric SAR features, particularly those features that can be derived from
the di�erent polarimetric target decomposition theorems, and more vegetation indices
that can be derived from both multi-spectral and hyperspectral datasets. Therefore, it is
also of our interest to investigate the combination of these PolSAR and optical features
for di�erent forest applications. It is pointed out in the feature selection chapter that
both the sequential forward and backward feature selection algorithms are su�ering from
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the so called the �nesting e�ect�, and therefore they are suboptimal by their natures.
Therefore, it is also of interest to investigate more reliable feature selection algorithms;
both new and existing ones. Finally, both the fusion and the feature selection results
might also be improved by using more robust classi�ers. Therefore. it is also of interest
to investigate other classi�ers in the future.
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