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Abstract. In this paper, we study how sea surface temperature varia-11

tions in the North Atlantic and the Norwegian Seas are correlated with the12

climate in the Northern Hemisphere in late Holocene. The analysis is per-13

formed by testing statistical hypotheses through novel scale-space method-14

ologies. In late Holocene, the proposed techniques reveal that the climate de-15

velopment in the subpolar North Atlantic has been incoherent with the de-16

velopment in the Norwegian Sea and the Northern Hemisphere. A prominent17

discrepancy between the three analyzed series is identified for the periods18

associated with the Medieval Warm Period and the Little Ice Age. A diver-19

gence between the oceanic series and the global Northern Hemisphere tem-20

perature estimate detected in the 20th century is in line with the inferred im-21

print of recent climate change which suggests accentuated warming in par-22
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ticular over continental regions. Overall, the results obtained by scale-space23

analysis underscores the significance of the northern North Atlantic in shap-24

ing the climate globally, mainly through changes in the strength and struc-25

ture of the Atlantic meridional overturning circulation.26
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1. Introduction

A best possible understanding of present and past climate is of utmost27

importance for producing reliable predictions of future climate scenarios.28

Today we face changes in the climate all over the world and the observed29

changes at different locations can show large discrepancies. Here we focus30

on a particular area of interest by investigating how the trends in sea31

surface temperature (SST) in the North Atlantic and the Nordic Seas are32

related with the climate development in the Northern Hemisphere during33

late Holocene.34

To gain insight into this question, we utilize the theory [e.g. Bjerknes,35

1964] that variability of SST in the North Atlantic and the Nordic Seas36

has a profound effect on climate in the Northern Hemisphere due to heat37

release to the atmosphere from the North Atlantic Current (NAC). The38

NAC plays an important role in the Atlantic Meridional Overturning Cir-39

culation (AMOC), which is an essential component of the global climate40

system [Wellinga and Wood, 2002], transporting heat northward via the41

NAC and ventilating the world ocean through the North Atlantic Deep42

Water (NADW) formation. The AMOC and regional climate are closely43

linked [e.g. Latif et al., 2004] and known to vary in a broad range of time-44

scales [e.g. Thornalley et al., 2009]. The short-term variability is primarily45

driven by the atmosphere [Marshall et al., 2001], whereas at longer time-46
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scales, the role of the ocean becomes more important [e.g. Bjerknes, 1964;47

Timmermann et al., 1998; Knight et al., 2005].48

Historical records and proxy climate data from the Northern Hemisphere49

have provided evidence for the most recent major climate anomalies, such50

as the warm Medieval Warm Period (MWP) between 800 and 1400 AD51

[e.g. Lamb, 1965; Bradley et al., 2003; Mann and Jones, 2003; Berner et52

al., 2011], and the following colder era, the Little Ice Age (LIA) between53

1400 and 1900 AD [Grove, 1988; Bradley and Jones, 1993; Moberg et al.,54

2005; Mann et al., 2008]. Several theories have been proposed to explain55

the possible cause for these anomalies, such as long-term variability in56

total solar irradiance [Shindell et al., 2001], sulfate aerosols ejected into57

the atmosphere by volcanism [Crowley, 2000], and changes in large-scale58

ocean circulation [Broecker, 2000; Crowley, 2000].59

The aim of this paper is to analyze the SST variability in the subpo-60

lar North Atlantic and the Nordic Seas in late Holocene and to obtain a61

better understanding of how the variability in these SSTs correlates with62

the Northern Hemisphere temperatures. We start out by performing a63

statistical comparison of two 1200-year-long SST proxy records from the64

Reykjanes Ridge, in the subpolar North Atlantic, and the Vøring Plateau,65

in the Norwegian Sea. Specifically, we want to test whether there have66

been different climatological developments at the Reykjanes ridge and the67

Vøring plateu for the last 1200 years of the Holocene. If such differences68

are found we would like to give a characterization of when and at what69
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time scales they have occurred. In addition, we would like to test if there70

are occasions where changes at both locations have been of the same type,71

but one has changed more rapidly than the other. Moreover, we would like72

to give a good characterization of how these two SST series relate to the73

Northern Hemisphere temperature, presented by Mann et al. [2008], for74

the same time period. Such exploratory data analyses can give new insight75

into the interpretation of the climatological phenomena observed during76

this period.77

New insights into the phenomena underlying these data sets can be ob-78

tained using the methods of time series analysis [e.g. Box and Jenkins,79

1970; Brockwell and Davis, 1991 and Shumway and Stoffer, 2000]. A de-80

tailed description of the data sets analyzed will be given in Section 4 but81

an important difference between the three time series should be noted al-82

ready here, namely that the Northern Hemisphere data set is sampled on a83

regular grid as five year means while the two SST series are unevenly sam-84

pled. We note that compared to the extensive literature on the analysis of85

evenly sampled signals, fewer papers address unevenly sampled series, e.g.86

Lomb [1976] and Scargle [1982]. Many of the methods for unevenly sampled87

data are based on interpolation [e.g. Quahabi et al., 1998; Dowski, 1998].88

An alternative approach, frequently used for nonstationary signals, is to89

explicitly or implicitly use sliding windows, such as short-time FFT and90

time-varying multitaper methods, see e.g. Bayram and Baraniuk [2000]91

and Thomson [2000].92
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Recently, an important focus in time series analysis has been analysis on93

several time horizons or scales. A pioneering scale-space analysis of den-94

sities and regression curves was given by Chaudhuri and Marron [1999].95

Their work has in recent years been extended to a large number of situa-96

tions, see e.g. Godtliebsen et al. [2002, 2003, 2004], Park et al. [2004, 2007],97

Erästö and Holmström [2005, 2007], Hannig and Lee [2005], Hannig and98

Marron [2006] and Olsen et al. [2008]. For more references on statistical99

scale-space methods, see Holmström [2010a] for a recent review. We view100

scale-space methods as particularly useful in climatology since the salient101

features in a time series may depend heavily on the time horizon it is ana-102

lyzed on. Scale-space methodologies have in recent years become a useful103

tool also for geologists, glaciologists and oceanographers; see e.g. Berner104

et al. [2008] and Miettinen et al. [2011].105

A pairwise scale-space comparison of time series was given by Park and106

Kang [2008]. Here, we develop a technique which is similar to their ap-107

proach but there are two important differences. First, we compare slopes108

instead of means since that is more natural in climatology where time-series109

may exhibit non-stationary behavior with persistent changes in the mean110

value. Second, we describe methods based both on classical statistical and111

Bayesian ideas whereas Park and Kang [2008] give a procedure motivated112

from a classical point of view only. The motivation for introducing the113

Bayesian approach is to see whether two different statistical paradigms114

give essentially the same results for the data sets analyzed. Such an agree-115
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ment would be reassuring, bolstering the credibility of the results obtained.116

Another reason for introducing the Bayesian approach is that, in a scale117

space context, it can more easily handle complexities such as serial corre-118

lation in the time series. The classical scale space methodology used in the119

comparison is still important, not least because of its much lower threshold120

for new users.121

The paper is organized as follows. In Section 2, we describe our122

statistical model and give a short outline of the scale-space idea. In123

Section 3, a description of the methodologies developed for pairwise124

comparison of time series is given. A description of the climatologi-125

cal data and the results obtained are given in Section 4. A discussion126

is provided in Section 5. An Appendix contains many of the details127

of the Bayesian approach. Matlab functions used for our analyses can128

be downloaded from http://www.unc.edu/∼marron/marron software.html129

and http://mathstat.helsinki.fi/bsizer/.130

2. Model, assumptions and scale-space background

Recall that our aim is a comparison of two time series. We assume that

time series k, where k is 1 or 2, follows the simple model

yk,i = mk(xk,i) + σk(xk,i)εk,i, k = 1, 2; i = 1, ..., nk, (1)

where mk and σk denote the unknown regression function and noise stan-131

dard deviation function of time series k, respectively. The xk,i denote the132

possibly unevenly sampled time points where observations yk,i exist. Note133
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that the sampling in the two time series typically is not the same. The134

εk,i denote independently distributed random errors with mean 0 and vari-135

ance 1. In the Bayesian model the errors are assumed to be Gaussian with136

possible correlations within each time series. There are nk observations in137

time series k. In the data analyses considered in this paper, mk(xk,i) is the138

true past temperature at time xk,i, yk,i is its proxy-based reconstruction,139

and σk(xk,i)εk,i represents the error in the reconstruction.140

For convenience of the reader, we next describe briefly the idea in scale-141

space methodologies. The notion of “scale” in our scale-space analyses142

always refers “time-scale”. However, the methods developed could con-143

ceivably be applied also in other situations, such as in analysis of spatial144

data where features in different spatial scales would be of interest.145

To keep things simple, we assume that we have observed just one time146

series following the model in equation (1). A traditional analysis will search147

for the underlying true m through a “smooth” estimate m̂h where the pa-148

rameter h controls the degree of smoothness. See e.g. Fan and Gijbels149

[1996] for more details. Then, inference about m is based on m̂h. A major150

disadvantage with this approach is that m̂h is a biased estimator of m.151

The novel idea in a scale-space analysis is that we do not focus on the152

search for the underlying true m. Instead, we study scale-space versions or153

smooths of m, denoted by mh. By this procedure, the estimators m̂h are154

unbiased estimators of mh. Hence, we avoid the bias problems that tradi-155

tional smoothing methods suffer from. Moreover, we avoid the search for156
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an optimal smoothing level since in a scale-space analysis “all” scales are157

considered important. Similarly, in a Bayesian scale-space approach, infer-158

ence is based on the distribution of the smooth mh, given the observations159

yi.160

3. Pairwise Scale-Space Comparison

In this section we describe two differently motivated scale-space method-161

ologies for comparing two time series following the model given in Section 2.162

3.1. A Classical Approach

Our approach here is a direct application of the original SiZer method-

ology developed by Chaudhuri and Marron [1999]. For time series k, at a

particular point x0 and a given scale h, m̂k,h(x0) is obtained by fitting the

line

l(x) = βk,0 + βk,1(x0 − x)

locally to the data (xk,i, yk,i). In fact, m̂k,h(x0) = β̂k,0, where (β̂k,0, β̂k,1)

minimizes

nk∑

i=1

[yk,i − (βk,0 + βk,1(x0 − xk,i))]
2Kh(x0 − xk,i),

Kh(·) =
1

h
K(

·

h
),

and K is a kernel function, typically a symmetric probability density func-

tion. Here, we use a Gaussian kernel. The hypothesis we would like to

test, for a given scale h, at the point x0, is

H0 : β1,1(x0) = β2,1(x0) against H1 : β1,1(x0) 6= β2,1(x0).
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We do this by rejecting H0 if

|β̂1,1(x0)− β̂2,1(x0)|

ŜD(β̂1,1(x0)− β̂2,1(x0))
> q (2)

where we use the plausible assumption

Var(β̂1,1(x0)− β̂2,1(x0)) = Var(β̂1,1(x0)) + Var(β̂2,1(x0))

to estimate the denominator in equation (2), and q is a suitable quantile.

The value of q is decided in the same way as in Chaudhuri and Marron

[1999] with

ESSh(x0) = min{ESS1,h(x0),ESS2,h(x0)}

where ESSk,h(x0) denotes the effective sample size of time series k for scale163

h and location x0. The motivation for this approach is that it will be a164

conservative choice in the sense that we will have more confidence in the165

features found by our methodology.166

In SiZer analyses the results of inferences are visualized with so-called167

family plots and significance or feature maps, examples of which are shown168

in Figure 1. In a significance map, a pixel (x, s) corresponding to time x and169

scale s = log10(h) is colored blue or red depending on whether the slope170

of the smooth of the true underlying temperature curve is significantly171

positive or negative, respectively. Purple indicates non-significance and172

pixels are colored gray if the data are too sparse to make any conclusions.173

The SiZer maps for pairwise comparisons (middle panels of Figs. 2 - 4) are174

interpreted analogously except now inferences are made on the slope of a175
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difference between two time series. The level of significance in all SiZer176

analyses is 0.05.177

3.2. A Bayesian Approach

The Bayesian approach is based on the BSiZer methodology described178

in Erästö and Holmström [2005, 2007] and Holmström [2010b]. Denote179

by yk = [yk,1, . . . , yk,nk
]T the observed time series k, k = 1, 2. Let180

x1 < x2 < · · · < xn be a grid of time points where one wants to an-181

alyze the difference between the slopes of the smooths m1,h and m2,h of182

the underlying unobserved curves. Let m′

k,h = [m′

k,h(x1), . . . ,m
′

k,h(xn)]
T

183

be the vector of slopes of mk,h computed on this grid. Our Bayesian scale184

space analysis uses the posterior distribution of m′

1,h−m′

2,h given the data185

y1, y2 to make inferences about the credible features in the difference be-186

tween the slopes of m1,h and m2,h, for a range of time scales h. As in the187

classical SiZer approach, we also make an independence assumption about188

the two time series which allows us to obtain a sample from this posterior189

by sampling separately from the posterior distributions of m′

1,h and m′

2,h190

and then simply subtracting the samples. The full details of the Bayesian191

method are given in the Appendix.192

An analog of a SiZer significance map can be obtained by choosing a

credibility level 0 < α < 0.5 and coloring a map pixel (xj, s) corresponding

to time xj and scale s = log10(h) blue or red according to whether

P
{
m′

1,h(xj)−m′

2,h(xj) > 0 | y1,y2

}
≥ 1− α

D R A F T February 2, 2012, 6:41pm D R A F T



GODTLIEBSEN ET AL.: SCALE-SPACE COMPARISON OF TIME SERIES X - 13

or

P
{
m′

1,h(xj)−m′

2,h(xj) < 0 | y1,y2

}
≥ 1− α,

and purple otherwise, where the probabilities are computed from the gener-193

ated sample of slope differences. However, instead of using such pointwise194

inference, the maps are in fact drawn based on the joint posterior probabil-195

ities over the grid points xj’s, where a method based on highest pointwise196

probabilities was used (cf. Erästö and Holmström [2005]). We have chosen197

α = 0.05 in all analyses.198

Note that we use the same symbol h for the scale space smoothing param-199

eter both in the classical and the Bayesian methods although its technical200

role in the two approaches is quite different. In the classical SiZer h is201

the standard deviation (or width in the time domain) of the Gaussian ker-202

nel used whereas in the Bayesian BSiZer it controls the roughness penalty203

in spline smoothing (see the Appendix). Although a spline smoother can204

be interpreted as an approximate kernel smoother, the relevant smoothing205

scale ranges of the two methods have very different magnitudes.206

4. Results

4.1. Data sets

The two SST series used in this study are diatom based August SST207

reconstructions with an uneven sampling resolution of 2 − 10 years from208

marine sediment cores Rapid 21-COM (hereafter Rapid) from the eastern209

flank of the Reykjanes Ridge, subpolar North Atlantic [Miettinen et al.,210

2011; Miettinen et al., 2012], and CR 948/2011 (hereafter CR) from the211
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Vøring Plateau, the Norwegian Sea [Andersen et al., 2004; Berner et al.,212

2011]. These two SST series were selected, because a) they represent the213

highest-resolution SST reconstructions from the northern North Atlantic214

for the last 1200 years, and b) they are located in critical areas in relation215

to the NAC, which has an essential role on the North Atlantic climate,216

i.e., core Rapid 21-COM is influenced by the western branch of the NAC217

in the south of Iceland, and core CR948/2011 by the eastern branch of218

the NAC in the Norwegian Sea. The SST reconstructions are based on219

marine planktonic diatoms and transfer functions. Marine diatoms have220

proven to be good indicators of surface water conditions in the region221

[e.g. Koc-Karpuz and Schrader, 1990; Andersen et al., 2004; Berner et222

al., 2008]. A training data set consisting of 139 surface samples with 52223

diatom species and modern August SSTs from the Nordic Seas and the224

North Atlantic [Andersen et al., 2004] was utilized to convert downcore225

diatom counts to quantitative SST using the weighted averaging partial226

least squares (WA-PLS) transfer function method [ter-Braak and Juggins,227

1993]. The WA-PLS diatom transfer function has a RMSE of 0.75 ◦C, a228

maximum bias of 0.44 ◦C and R2 of 0.96. More details can be found in229

[Miettinen et al., 2011; Miettinen et al., 2012; Berner et al., 2011].230

The Northern Hemisphere surface temperature (hereafter NHem) recon-231

struction originally named as NH EIV Land+Ocean [Mann et al., 2008]. It232

is based on a multiple proxy database consisting of tree-rings, marine sed-233

iments, speleothems, lacustrine sediments, ice cores, corals, and historical234
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documentary series [Mann et al., 2008]. This proxy database represents a235

significant extension of the database used in related earlier studies [Mann236

et al., 1998, 1999; Juckes et al., 2007]. See Mann et al. [2008] for further237

details about this data set.238

4.2. Rapid

To get an idea about what significant features can be found in the Rapid239

time series on different time scales, a SiZer analysis was performed and240

the result is shown on the first row of Fig. 1. The immediate and overall241

feature found is an increase in summer SST over the data set, manifested242

by the color blue for all locations on scales covering the whole period.243

A closer look at the feature map reveals some features at a centennial244

time scale. At year 1000 AD, there is a significant increase in the SST245

reconstruction while there is an abrupt decrease in the SST just after year246

1700 AD. Furthermore, there is evidence in the data of a peak in the SST247

around 1870 AD. This feature seems to be very clear and manifested on248

scales ranging from 10 to 100 years.249

4.3. CR

From the SiZer analysis of the CR time series from the Vøring Plateau250

displayed in the middle row of Fig. 1, it is clear that, in contrast to the251

findings for the Reykjanes Ridge, there has been a decrease in temperature252

on time scales covering the whole period. On scales of length around 100253

years, the temperature has decreased more abruptly around years 900,254
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1100, and 1400 AD. At scales of length 500 years, there is an increasing255

trend from around year 1500 AD to the present.256

4.4. Nhem

In the last row of Fig. 1, the SiZer analysis reveals a millennial-scale257

decrease in the surface temperature of the Northern Hemisphere. At scales258

of 10 to 100 years, several features typically associated with major climate259

transitions of the last Millennium are flagged as significant. In particular,260

these are the peaks around years 850, 1050, and 1400 AD. A pronounced261

temperature maximum centered at approximately 1050 AD corresponding262

to the Medieval Warm Period (MWP, Lamb [1965]; Bradley et al. [2003])263

is detected as significant on scales up to 500 years which is a reflection of264

a lasting positive surface temperature anomaly from around year 950 to265

year 1100 AD . Finally, the SiZer map indicates that there is an abrupt266

decrease in the temperature around year 1420 signifying the onset of the267

Little Ice Age (LIA, Moberg et al. [2005]; Mann et al. [2008]). This is a268

strong feature, visible at scales ranging from 10 to 200 years.269

4.5. Rapid vs. CR

By comparing the regional Rapid and CR summer SST reconstructions,270

we see that the two different methodologies yield very similar results (Fig.271

2). Both approaches reveal that the record for Rapid has a significantly272

larger slope (blue color in Fig. 2) than the record for CR, i.e., in a long term273

perspective for the last 1200 years, the SST record for Rapid shows a clear274
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warming trend compared with CR, which demonstrates a less pronounced275

cooling tendency. On a shorter time scale, a blue area over a broad range276

of scales can be seen around 1400 and 1800 AD showing the most distinct277

periods when Rapid is increasing (warming) and CR decreasing (cooling).278

Analysis of the maps displayed in Figs. 1 and 2 proves that the pairwise279

scale-space comparison adds important knowledge about the characteristics280

of the two time series. Note that around year 1800 AD the maps obtained281

by separate analyses of Rapid and CR (Fig.1) are highlighted blue at a282

broad range of time scales signifying the period of statistically significant283

SST increase detected in both series. The pairwise comparison displayed284

in Fig. 2 also show blue for some scales at this location. The implication285

of this is that the temperature in Rapid is increasing significantly faster286

than in CR, a fact that is not clear from the maps of the SiZer analyses of287

Fig. 1 alone.288

Finally, we note that the Bayesian approach reveals some features that289

are not captured by the classical SiZer approach. The feature flagged290

around 1200 AD is present only on very small scales. This potential event291

occurs in the gray area of the classical approach, indicating that inference292

cannot be performed with this methodology. The same can be stated293

about the feature around 850 AD. For scales of length around 300 years,294

the Bayesian approach flags a red area just before 1700 AD. By looking at295

the observed data in the top panel of Figure 2, there is a vague indication296

of increase in CR while Rapid is neither increasing nor decreasing. The297
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feature is, however, so vague that it is debatable whether it is actually there298

or not. It is therefore clear that the agreement between the two approaches299

is very good.300

4.6. Rapid vs. NHem

The comparison of a regional-scale Rapid and global NHem (Fig. 3)301

series yields results qualitatively similar to the previous analysis between302

Rapid and CR, indicating an increasing trend for Rapid and a decreasing303

trend for NHem. Also, the most distinct periods of significantly different304

temporal evolution of surface temperatures are evident at around 1400 and305

1800 AD. However, the trends are reversed for the last century. Whereas306

Rapid series shows slow cooling, NHem demonstrates a rapid warming307

trend associated with anthropogenic forcing as indicated by a red area308

over a broad range of scales. Moreover, a short period of cooling Rapid but309

warming NHem can be seen around 1750 AD, which is not clear enough to310

be flagged as significant by classical SiZer. It, however, appears as credible311

in the Bayesian analysis, as indicated by the red area in the credibility312

map.313

From Figs. 1 and 3 it can be seen that around 1800 AD a similar phe-314

nomenon, as described for the comparison of Rapid and CR, is present.315

This means that also in the comparison of Rapid and NHem, it is clear316

that the pairwise scale-space comparison complements the information ob-317

tained by the two single time series scale-space analyses.318
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In addition to the discrepancy observed around 1750, there are some319

other small differences between the classical and the Bayesian analyses but320

again, many of them occur at scales that are gray regions in the classical321

approach. Thus, overall, the agreement between the two approaches is322

remarkably good also in this case.323

4.7. CR vs. NHem

The results obtained by comparing CR and NHem (Fig. 4) show dis-324

tinct differences compared with earlier combinations. First, the regional325

temperature anomalies are more or less congruent with the global climate326

development, e.g. the first part of the record until ca. 1400 AD is charac-327

terized by the highest SSTs in CR, as well as higher than average surface328

temperatures in NHem. Secondly, in both reconstructions, the color purple329

over a broad range of time scales indicates that the derivative is not found330

to be significantly different from zero. This indicates that the slopes of CR331

and NHem series in the considered temporal resolution are in phase for332

most of the investigated period, i.e., they are characterized by a decreas-333

ing (cooling) long term trend for the last 1200 years. However, significant334

differences can be seen in shorter time scales. Red color in a broad range335

of scales from 800 to 1100 AD indicates a clear cooling trend for CR but336

a lagged warming trend for NHem suggesting the northern North Atlantic337

origin of the MWP . Similar periods of the regional surface temperature338

evolution significantly different from the global climate development can339

be seen around 1400 AD and in the last century. The opposite situation,340
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namely a stronger warming trend for CR can be seen from around 1500 to341

1750 AD.342

By comparing Figs. 1 and 4, we infer again that the pairwise comparison343

contributes additional information around years 900, 1400, and 1900 AD.344

At approximately 900 and 1400 AD the single time series analyses show345

a significant decrease of the surface temperature. Note, however, that the346

pairwise comparison also flags red at this (these) position(s) suggesting that347

the decrease in the regional CR surface temperature series is significantly348

steeper than in NHem. After 1900, the separate analyses of CR and NHem349

flag blue indicating significantly increasing temperatures. But, the increase350

in CR series appears to be significantly slower than in NHem and the result351

in the pairwise comparison map is therefore an area flagged as red. From352

Figure 4 we can see again that for the comparison of these two data sets,353

the two different statistical approaches show essentially the same feature354

maps.355

5. Discussion and conclusions

We have analyzed the pairwise differences in climate proxy time series us-356

ing two statistical scale-space paradigms. The original SiZer technique uses357

classical, ”frequentist” statistical reasoning based hypothesis testing while358

the BSiZer method is based on Bayesian inference that uses posterior prob-359

abilities. The regression models employed by the two approaches were also360

slightly different with SiZer assuming independent errors while BSiZer as-361

sumes Gaussian errors with possible temporal correlations. Further, SiZer362
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estimates errors from smoothing residuals while in the Bayesian setting one363

is able to use prior knowledge e.g. in the form of estimated errors for the364

reconstructions (cf. the Appendix). The strategies for simultaneous infer-365

ence or multiple hypothesis testing of features for sets of time points are366

also different. Despite these contrasts, the two methods produce remark-367

ably similar feature analyses of pairwise differences in the reconstructed368

temperature time series considered, a reassuring fact that increases our369

confidence in the robustness of the results. We noted that many of the370

differences in the feature maps actually occur at least partly in the gray371

areas of the SiZer maps where this method is unable to produce results due372

to lack of sufficient data. Here the combination of data and prior informa-373

tion helps the Bayesian method and explains the difference in the results.374

Posterior analysis of the error covariance structure also suggests that the375

simpler independent error model of SiZer is probably sufficient here, as the376

posterior distributions of the off-diagonal elements of the error covariance377

matrices were highly concentrated near zero.378

The results from both statistical methods show statistically significant379

features from millennial to centennial time scales. The three analyzed380

series display regional-scale contrasts in climate development in the north-381

ern North Atlantic (CR SST vs. Rapid SST) as well as pronounced dis-382

crepancies between the regional and global-scale climate variations (North383

Atlantic records vs. NHem). We note that the difference in seasonal repre-384

sentation between the reconstructions can to some extent bias the inference385
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that follows from our analysis. One can expect, however, that due to the386

longer time-scales mainly considered here, and because of the negligible387

relative changes in seasonal orbital forcing over the analyzed 1200-year388

long period when compared with the entire Holocene [e.g. Wanner et al.,389

2008], summer and annual mean temperature anomalies are in fact coher-390

ent. Besides, the estimate of the Northern Hemisphere surface temperature391

is largely based on tree ring and latewood density data [e.g. Mann et al.,392

2008] which are reflective of summer conditions. This suggests that, just393

like the SST reconstructions from the northern North Atlantic, the NHem394

series may itself be biased towards the summer season.395

A preliminary analysis of the results obtained underscores the signifi-396

cance of the northern North Atlantic in shaping the climate globally, mainly397

through the changes in the strength and structure of the Atlantic merid-398

ional overturning circulation (MOC) [e.g. Latif et al., 2004; Manabe and399

Stouffer, 1998]. A millennial scale progressive synchronous cooling demon-400

strated by the CR and NHem series until the end of the 1800s signifies401

a lasting weakening of the eastern branch of the MOC associated with a402

decreased influx of warm Atlantic waters northward to the Arctic via the403

North Atlantic Current [Thornalley et al., 2009]. Although the relative404

roles of various causal factors, both external and internal, behind these405

changes are still controversial, it had to involve major reorganization in406

oceanic and atmospheric circulation [e.g. Trouet et al., 2009; Mann et al.,407

2009].408
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In shorter, centennial to multicentennial time scales, CR SST series from409

the Norwegian Sea tends to lead NHem temperatures as can be inferred410

from the earlier termination of the MWP (flagged red between ca 900-411

1100 AD in Fig. 4). A delayed response of ca. 50 years to decreasing412

SST registered in CR in the Norwegian Sea also characterizes the onset413

of the LIA in the NHem series (Fig. 4) at around 1450 AD. We note414

that the origin of this lag could be related to a delayed shift in the North415

Atlantic Oscillation (NAO) phase in response to persistent anomalies in416

regional sea surface temperatures [e.g. Trouet et al., 2009; Swingedouw et417

al., 2010; Miettinen et al., 2012]. It is notable that during the LIA, CR418

series shows generally negative SST anomalies superimposed on a positive419

trend which is steeper than the one observed in the NHem series (flagged420

blue during 1500-1800 AD in Fig. 4). This (colder, but warming SST)421

could suggest that NHem temperatures respond to rising SST only after422

passing a threshold in the ocean-atmosphere system.423

Rapid summer SST series displaying a persistent positive trend through-424

out the considered time interval seems to stand apart from the variability425

recorded in CR and NHem records. Miettinen et al. [2012] however sug-426

gested that the observed statistically significant opposite climate tenden-427

cies between the sites in the subpolar North Atlantic and the Norwegian428

Sea is a surface expression of the lasting changes in the relative strength429

of the eastern and western branches of the MOC, with a possible ampli-430

fication through an atmospheric feedback. This apparent SST seesaw in431
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the northern North Atlantic might have an effect on two major anomalies432

of the European climate of the past Millennium: MWP and LIA. During433

the MWP, warming of the sea surface in the Norwegian Sea occurred in434

parallel with cooling in the northern subpolar North Atlantic, whereas the435

opposite pattern emerged during the LIA.436

A divergence between the series detected in the 20th century is in line437

with the inferred imprint of the recent warming which is generally associ-438

ated with anthropogenic forcing. Both instrumental data and model based439

studies agree on accentuated warming in particular over continental re-440

gions [e.g. Karoly and Wu, 2005; Knutson et al., 2006; Trenberth et al.,441

2007]. A less pronounced oceanic SST increase is likely to be related to442

greater evaporation and its heat storage. The recent atmospheric circula-443

tion changes, in particular a more positive NAO phase, may also contribute444

to a moderation of warming trends in subpolar North Atlantic, specifically445

in the Rapid core region, in the winter half-year. One should also note446

a distinctive seasonality of the warming pattern with maximum warming447

in winter and spring [Knutson et al., 2006] which is most likely another448

forcing factor for a much steeper slope revealed in the NHem record in the449

twentieth century.450

Appendix A: Details of the Bayesian Approach

A1. The model

Write (1) in the form yk,i = mk(xk,i)+εk,i, hence absorbing the variances

in the variables εk,i. Denote εk = [εk,1, . . . , εk,nk
]T and, as a slight exten-
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sion of the model (1), assume that εk ∼ N(0,Σk), where Σk is a general

covariance matrix that allows the errors to be correlated. The likelihood

of yk is then the Gaussian

p(yk|mk,Σk) ∝ |Σk|
−

1

2 exp

(
−
1

2
(yk −mk)

TΣ−1
k (yk −mk)

)
,

where mk = [mk(xk,1), . . . ,mk(xk,nk
)]T . We assume an inverse Wishart

prior for Σk,

p(Σk) ∝ |Σk|
−(

νk+n+1

2
) exp

(
−tr(W kΣ

−1
k )

)
, (A1)

where the scale matrix W k is of the homoscedastic form σ2
kI and the451

degrees of freedom νk is selected so that the prior is rather uninformative.452

For mk we use a prior that penalizes for roughness in the second deriva-

tive of the smooth underlying curve mk. This idea can be conveniently

implemented by assuming that mk is a natural cubic spline, i.e., a twice

continuously differentiable curve that consists of cubic polynomial pieces

[e.g. Green and Silverman, 1994]. Thus, let the interval [a, b] contain the

points xk,i, i = 1, . . . , nk. The spline mk is then uniquely determined by

its values mk at the knot sequence xk,1, . . . , xk,nk
because these values de-

termine the interpolating spline uniquely. The prior we use for mk is the

improper Gaussian density

p(mk|κk) ∝ κ
nk−2

2

k exp
(
−
κk

2
mT

kLkmk

)
, (A2)

where Lk is a matrix such that

mT
kLkmk =

∫ b

a

[m′′

k(x)]
2dx
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and κk > 0 controls the level of roughness penalty. The parameter κk > 0453

can be fixed or one can consider it unknown and in that case we specify a454

Gamma prior for it.455

The joint posterior p(mk,Σk, κk|yk) given the data yk is now obtained

from Bayes’ theorem,

p(mk,Σk, κk|yk) ∝ p(Σk)p(mk|κk)p(κk)p(yk|mk,Σk). (A3)

We assume that the observations y1 and y2 are conditionally independent

given the underlying curvesm1, m2, and other model parameters and that,

for the two time series, these parameters also are independent a priori.

Then the triples (m1,Σ1, κ1) and (m2,Σ2, κ2) are independent given the

data y1, y2,

p(m1,Σ1, κ1,m2,Σ2, κ2|y1,y2) = p(m1,Σ1, κ1|y1)p(m2,Σ2, κ2|y2).

We can therefore obtain a sample from the posterior p(m1,m2|y1,y2) by456

using Gibbs samplers to generate samples separately from p(m1,Σ1, κ1|y1)457

and p(m2,Σ2, κ2|y2) and keeping only the parts that correspond tom1 and458

m2. To get a sample of the slope vectors m′

k,h = [m′

k,h(x1), . . . ,m
′

k,h(xn)]
T

459

of the smoothmk,h of the curvemk one first smooths the sample of themk’s460

by multiplying the sample vectors by the matrix (I + hLk)
−1, effectively461

a discrete spline smoother. This produces a sample of smooths mk,h =462

[mk,h(xk,1), . . . ,mk,h(xk,nk
)]T and a second multiplication by an appropriate463

matrix then produces a sample of the slope vectors m′

k,h (cf. Green and464

Silverman [1994]). Finally, a sample from the posterior distribution of the465
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slope difference m′

1,h − m′

2,h is obtained by forming pairwise differences466

between samples of m′

1,h and m′

2,h.467

A2. Selection of priors

The classical SiZer estimates the errors in (1) from residuals of the468

smoothed time series. In the Bayesian setting one tries to utilize any prior469

knowledge one might have about the magnitude of the errors.470

The prior distribution (A1) of Σk has the mean

E(Σk) = (νk − nk − 1)−1W k,

where, as noted above, νk is the parameter (degrees of freedom) that defines471

the tightness (informativeness) of the prior and nk is the length of the time472

series yk. For the prior parameter W k we used a diagonal scale matrix473

W k = wkInk
such that E(Σk) = σ2

kInk
, where σk is a fixed value. For474

the time series Rapid and CR described in Sections 4.2 and 4.3 we used475

the value σk = 0.75, an estimated root mean square error of prediction476

(RMSEP) reported in Miettinen at al., [2012]. For the time series NHem477

described Section 4.4 we took σk = 0.15, a value estimated from the error478

bars in Figure S5a of the Supplement to Mann et al. [2008]. Since now479

σ2
kInk

= (νk − nk − 1)−1wkInk
, we have wk/σ

2
k = νk − nk − 1. We took480

wk = 5 and wk = 0.5 for the first two and the third time series, respectively,481

which corresponds to degrees of freedom νk of 149, 219, and 264 for the482

three time series. With these choices the prior 95% highest density intervals483

for the diagonal elements of Σk were approximately [0.45, 1.15], [0.5, 1.15]484
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and [0.11, 0.19] for the three time series and therefore wide enough to allow485

also the data to have an effect on the posterior errors. It turned out that,486

with very vague priors, the posterior errors of the first two time series were487

smaller than the prior values which suggests that the values σk = 0.75 used488

probably is a bit too large for these temperature reconstructions and that489

the credibility analysis of their features therefore tends to be somewhat490

conservative. In contrast, the posterior errors of the third reconstruction491

were very similar to their prior values.492

We used the Gamma(1,1) prior for the parameter κk in (A2) in order493

not to smooth out the finest details in the reconstructions. However, after494

testing several different priors for κk we concluded that both the marginal495

posterior distribution of κk and the credibility maps produced were quite496

insensitive to a any particular reasonable prior choice.497
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Erästö, P., and L. Holmström (2007), Bayesian analysis of features in a539

scatter plot with dependent observations and errors in predictors, Journal540

of Statistical Computation and Simulation, 77, 421-431.541

Fan, J., and I. Gijbels (1996), Local polynomical modelling and its appli-542

cations, Chapman and Hall, London.543

Godtliebsen, F., J. S. Marron, and P. Chaudhuri (2002), Significance in544

scale-space for bivariate density estimation, Journal of Computational and545

Graphical Statistics, 10, 1-21.546

Godtliebsen, F., J. S. Marron, and P. Chaudhuri (2004), Significance in547

scale-space, Image and Vision Computing, 22, 1093-1104.548

D R A F T February 2, 2012, 6:41pm D R A F T



GODTLIEBSEN ET AL.: SCALE-SPACE COMPARISON OF TIME SERIES X - 31

Godtliebsen, F., L. R. Olsen, and J.-G. Winther (2003), Recent devel-549

opments in time series analysis: Examples of use in climate research, Geo-550

physical Research Letters, 30, 1654-1657.551

Green, P. J., and B. W. Silverman (1994), Nonparametric Regression552

and Generalized Linear Models. A roughness penalty approach, Chapman553

& Hall, London.554

Grove, J. M. (1988), The Little Ice Age, Methuen, 520 pp.555

Hannig, J., and T. Lee (2005), Robust SiZer for exploration of regression556

structures and outlier detection. Journal of Computational and Graphical557

Statistics, 15, 101-117.558

Hannig, J., and J. S. Marron (2006), Advanced distribution theory for559

SiZer, Journal of the American Statistical Association, 101, 484-499.560
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Figure 1. SiZer analyses of the three reconstructed temperature time series

considered in the paper: Reykjanes Ridge SST (Rapid), Vøring Plateau SST (CR)

and average Northern Hemisphere surface air temperature (NHem). Horizontal

time scales indicate calendar years. On each row, the left panel displays a time

series of reconstructed past temperatures (dots) together with a family of smooths.

The right panel shows a SiZer significance map where, for a given time x and scale

s = log10(h), a pixel (x, s) is colored blue or red depending on whether the slope

of the smooth of the true underlying temperature curve is significantly positive

or negative, respectively. Purple indicates non-significance and pixels are colored

gray if the data are too sparse to make any conclusions. The parallel distance

between the dotted lines indicates the effective size of the smoothing kernel used

for a particular scale, and hence gives an idea of the corresponding time-scale

involved at that level of smoothing. The smoothing level corresponding to the red

curve in the left panel is indicated by a horizontal line in the map.
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Figure 2. Scale-space comparison of Reykjanes Ridge (Rapid) and Vøring

Plateau SST (CR). Horizontal time scales indicate calendar years. Top panel:

the two reconstructed temperature time series; Middle panel: SiZer significance

analysis of the slope of the difference Rapid - CR. Blue (red) for each time and

scale indicates whether the slope of the smooth of the true underlying temperature

curve is significantly positive (negative). Purple indicates non-significance and

pixels are colored gray if the data are too sparse to make any conclusions. Bottom

panel: Bayesian credibility map of the slope of the difference Rapid - CR. The

BSiZer credibility map is interpreted analogously with blue (red) color at a pixel

indicating a credibly positive (negative) slope, respectively and purple indicating

no credible change.
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Figure 3. Scale-space comparison of Reykjanes Ridge SST (Rapid) and average

Northern Hemisphere surface air temperature (NHem). Horizontal time scales in-

dicate calendar years. Top panel: the two reconstructed temperature time series.

Middle panel: SiZer significance analysis of the slope of the difference Rapid -

NHem. Blue (red) for each time and scale indicates whether the slope of the

smooth of the true underlying temperature curve is significantly positive (nega-

tive). Purple indicates non-significance and pixels are colored gray if the data are

too sparse to make any conclusions. Bottom panel: Bayesian credibility map of

the slope of the difference Rapid - NHem. The BSiZer credibility map is inter-

preted analogously with blue (red) color at a pixel indicating a credibly positive

(negative) slope, respectively and purple indicating no credible change.
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Figure 4. Scale-space comparison of Vøring Plateau SST (CR) and average

Northern Hemisphere surface air temperature (NHem). Horizontal time scales

indicate calendar years. Top panel: the two reconstructed temperature time series.

Middle panel: SiZer significance analysis of the slope of the difference CR - NHem.

Blue (red) for each time and scale indicates whether the slope of the smooth of

the true underlying temperature curve is significantly positive (negative). Purple

indicates non-significance and pixels are colored gray if the data are too sparse

to make any conclusions. Bottom panel: Bayesian credibility map of the slope of

the difference CR - NHem. The BSiZer credibility map is interpreted analogously

with blue (red) color at a pixel indicating a credibly positive (negative) slope,

respectively and purple indicating no credible change.
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