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ON THE LOGARITHMIC GRADIENT OF POINCARE METRIC
HuanNg XINZHONG (ﬁﬁ%k# - BEER)
SHIGEYOSHI OwaA GE# K - BT RMER)

I, INTRODUCTION, Let D c ( be a simply connected domain with at
least two boundary points and let £(z) be a conformal mapping of

B = {z:|z] < 1} onto ]). The poincaré metric of [) is defined by
(1) EEIE @] = () = 1/ - 1212, ze¢B.

This definition is independent of the choice of conformal mapping and
because of this convenient choices available. Namely, let w ¢ ) and choose

the conformal mapping so that £(0) = w. Then

(2) AD(w) = 1/|£'(0)].

If f£(z) is a conformal mapping of a domain G onto [) then, from (1) and (2),
we have

(3) XD(f(Z))lf'(Z)I = XG(Z), zel(.

Given z ¢ [), let d(z,3])) denote the distance from z to 3]}, it is well-known
that

(&) 1/4 < d(z,GD)AD(z) <1, z e ].

Osgood proved in [1] the following

THEOREM A, If Dc C is simply connected and if £ is analytic and

univalent in ) then
(5 [£"(2)/£'(2) | < SAD(z)
for all z ¢ ). The inequality is sharp.

THEOREM B, If D is a proper subdomain of ( and if f is analytic

~and univalent in ) then
(6) | £ (z)/£'(2)| < 4/d(z,3D), =z e D.

The inequality is sharp in the sense that the equality holds for [) = B

and £(z) = z/(1 - z)2.
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Our Theorem 1l generalizes the above Theorems A and B, which reveals

the relationship of (5) and (6).

THEOREM [, If D¢ C is simply connected domain with at least two
boundary points and f(z) is analytic and univalent in ) then
£''(2) 4
‘ £' (z) d(z,3])

for all z ¢ [), and the inequality is sharp.

)]

A

[45 A d(z,aD)AD(z) - 2d(z,3D)AD(z) -1

For a differentiable function u we shall use the familiar operator

u, = (ux - iuy)/2, z=x + 1iy.
If w = £(z) is a conformal mapping of a domain (G onto [) then from (3)
(8) logADOf + log|f'| = 1ogAG.
Differentiating with respect to z and using the chain rule leads to
(9 ((long)wof)f 4+ £V/2E = (1ong)z.

This relation also holds in the case when G = B and £ is analytic covering
- map onto a multiply connected domain. When [) is simply connected, Osgood

'also estimated for ]VlogADl = 2](logAD)z| and obtained the following

THEOREM (., If D < ( is simply connected then

[

(10) ]VlogAD(z)l 4AD(z),

I~

(11) _ lVlong(z)] 4/3d(z,3])

for all z ¢ ). Both inequalities are sharp.

Osgood commented that the extremal cases in Theorem C are quite
different and neither inequality implies the other, this is true despite
the sharp relations (4) between the Poincaré metric and the distance to
the boundary. Moreover, there are some works concerning with the estimate
of Poincaré metric (see, for example, [2] and [3]). Our second result
shows that there is indeed some relationship between (10) and (11), it can

be unified into an inequality, and (10), (l1) are the special cases of it.
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We prove that

THEOREM 2, If D ¢ C is simply connected then

(12) lVlogAD(z)[ < [4 ~[d(z,aD))\D(z) - 3d(z,8D)AD(z) - l]

d(z,3])

for all z ¢ )), and the inequality is sharp.

REMARK, Inequalities (10) and (11) in Theorem C also can be

derived from Theorem 2.
In the case of multiply connected domain, Osgood proved that
THEOREM D,  If D c.C is any domain then

(13) [Vlogh (2)| < 2/d(z,3])

for all z ¢ ].

Osgood remarked that it is an open question whether the constant 2
in (13) is sharp, but he showed that the constant 2 can not in general

be replaced by 4/3. In this case we prove that

THEOREM 3, 1f D ¢ C is any domain then there is a constant a > 0

such that

< a/d(z,3])

(14) IVlogAD(z)l

for all z ¢ D, where 1.425 < a < 2.

2. THE PROOFS OF RESULTS. We need the following Theorem E, see
[4] for the proof.
" THEOREM E, Let S,, 1/4 < d 2 1, denote the class of functions
2

£(z) = z + a,2" + .., , regular and univalent in B where d = infla|,

f(z) # o in the unit disk. Then

2 .

a,(d) = glax{la2|}=——-(l-,,]3 Y3 A d - D).
€S4q d

THE PROOF OF THEOREM I: Fix z ¢ [) and choose a conformal mapping g

of B onto D with g(0) = z. Then fsg is a conformal mapping of B onto £(])).
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Lét Tf(z) = £"(z)/f'(z), we have Tf,g(W) = Tf(g(W))g'(W) + Tg(W) and

R GO L ORI C)
g = - -
£ (2) (£og) ' (0) 2 (0)
Hence,
£ (2) £"(0)
(15) d(z, D) g (0)| < 4d(z,3D) + d(z,aD)l |

£'(2) g' (0)
Let F(w) = (g(w) - z)/g'(0), then F(w) is a conformal mapping in B, and
F'(0) - 1 =F(0) =0, it is easily to see that dF(O,BF(B)) = d(z,3D)/|g' (0) ],

F"(0) = g"(0)/g'(0), thus, by Theorem E, we have

d(z,3D) |g"(0)/g"' (0)| = d;(0,3F(B)) |g" (0)F"(0) |

< 4lg'(0) [(1 - J &0, 3F(BY) (3 N dp(0,3F(BYY - 1)
l+ .
- e 4 NIEIMA D - 3d(z,3D)A (=) - 11{

which, comb;ned with (15), implies (7).

The equality in (7) holds, because for every d, X > 0 with 1/4 < dx < 1,
there exist a domain [), a function f and z € ) such that AD(Z) = X\ and
d(z,3]) d. To show this, let ¢ be a conformal mapping of B onto [), then
|T¢(0)| < 20(A(4(0))d(¢(0),3D)) with &(t) = 2(1 -J € )BTt - L)/t.

Therefore, for every d, A > 0 with 1/4 < dx < 1, there exist a domain ]

A

and a conformal mapping h satisfying AD(h(O)) = A, d(h(0),3])) = d, and
T, (0) = ZQ(XD(h(O))d(h(O),BD)). If we choose conformal mappings g of B
~onto ) so that Tg(O) = 2¢(d)), AD(g(O)) = A and d(g(0),3])) = d, and h of

B onto D' so that T, (0) = -4, then f = hOg'l which maps ]) onto ]}’

#

satisfies g'(O)Tf(g(O)) 'Th(O)'- Tg(O) = -4 - 29(dr). So if we set g(0) = z,
then we have le(z)I = AD(z)(4 + ZQ(dA)), AD(z) = A and d(z,3])) = d,

which is (7) with equality. This completes the proof of Theorem 1.

REMARK, It is easy to see that Theorem 1 is the generalization of

Theorems A and B.
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THE PROOF OF THEOREM 2: Fix z ¢ J, let w = £(t) is the conformal

mapping of B onto [) such that £(0) = z. Then, from (9), we have

2|(1Ong(f(t)))wl = |£"(0)/£'(0)||1/£'(0)]. To estimate the value of
d(z,3D) |1/£'(0)||£"(0)/£'(0)|, we consider the function
F(t) = (£(t) - 2)/£'(Q) =t + a e 4 ..., let 3F = F(3B), we get

2
d(z,3])) = d(0,3E)|£'(0)|, and then d(£(0),aD)|1/£'(0)||£"(0)/£'(0)]| =

Zd(O,eE)]azl, by Theorem E, we obtain

d(z,3D) [1/£'(0) | [£7(0)/£'(0)| < 4(1 - Jd(0,3E) )(3 Jd(0,3F) - 1)

it

4C1 - d(z,BD)XD(Z) )3 N d(z,0l)A (z) - 1)

4(4 Aﬁd(z,aD)AD(z) - 3d(z,8D)lD(z) - 1).

The extremal function fd(z) given in Theorem E makes the inequality (12)

becomes to equality for [) = fd(B) and z = 0, thus (12) is sharp.

REMARK, ~ Let y = d(z,3D)A (2), then 1/4 ¢y < 1, and put
F(y) =4y -3y -1, it is easy to find that F(y) < F(4/9) = 1/3.

Therefore, we derive |VlogAD(z)| < 4/3d(z,3])), z € D..Moreover, putting

(12) into the following

[Vilogh (2) | 4KD(Z)['J 1/d(z, DA -3 - l/d(z,aD)AD(Z)},

A

and let y = l/d(z,aD)AD(z), then 1 <y < 4. For the function
F(y) =4,y -3 -y, we have F(y)

lVlong(z)] < 4AD(Z), z ¢ ). This gives that Theorem 2 generalizes

F(4) = 1, thus we again obtain

A

Theorem C.

Now we will give an application of Theorem 2. If ]) is simply connected
and y is a hyperbolic geodesic in JJ, let Ke and SN denote the euclidean
and hyperbolic curvatures of y, the relation between Ke and K, at any
point zy €Y is that |

(16) : Ke = Ap<p + alogAD/an

where 3/9n is the derivative in the normal direction at the point zy €Y

(see [1], page 455). Then by (12) and (16),
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kg (2) = alogAD(z)/an < |VlogAD(z)|

4

for z € y. At points where Ke(Z) # 0,

l/Ke(Z) > d(z,aD)/4(4'M'd(z,SD)XD(z) - 3d(z,3D)AD(Z) - 1) > 3d(z,3]) /4,

thus, the euclidean circle of curvature to y at z actually protrudes quite
far over 3], and it also has deep relation with d(z,BD)AD(z). Hence (12)

is also sharﬁ form of Jérgensen’s [5] result in the simply connected case.

THE-PROOF OF THEOREM 3: Let D be the image domain of B* = B-{0}
under £(z) = 1/2(z + 1/2z), it is shown in [6] that X x(z) = 1/2|z|log(1l/|z|),

B
and we calculate, from (9), that

((logAD)wof(z))f'(z) + £'"(2)/2£'(z) = (logX X(z))é = -1/2z + 1/2zlog(1l/|z]).

B
Thus we have
2 ( £'"(z) 1 1
2((logh ) *£(2)) = : S — 4 ‘ ]
D f'(z) Zf{(z)' 2z 2zlog(l/]z])

Let z = ir, 0 < r < 1, we find that d(£(ir),3)) = (1/r - r)/2 and

2r(1 - r?) 1 1 1
: L |

d(£(ir),aD) |Vlogh (£(ir))| = >
. 1 +r r(l + ") 2r 2rlog(l/r)

Let r = 1/2e, we get‘d(f(i/Ze),aD)|VlogAD(f(i/2e))|‘= 1.4253363.

This shows that the constant a in Theorem 3 must be in 1.4253363 < a < 2.
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