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We present the first gauge-origin independent formulation of Jones birefringence at the Hartree–Fock
level of theory. Gauge-origin independence is achieved through the use of London atomic orbitals.
The implementation is based on a recently proposed atomic orbital-based response theory formula-
tion that allows for the use of both time- and perturbation-dependent basis sets [Thorvaldsen, Ruud,
Kristensen, Jørgensen, and Coriani, J. Chem. Phys. 129, 214108 (2008)]. We present the detailed
expressions for the response functions entering the Jones birefringence when London atomic orbitals
are used. The implementation is tested on a set of polar and dipolar molecules at the Hartree–Fock
level of theory. It is demonstrated that London orbitals lead to much improved basis-set convergence,
and that the use of small, conventional basis sets may lead to the wrong sign for the calculated bire-
fringence. For large basis sets, London orbitals and conventional basis sets converge to the same
results. © 2011 American Institute of Physics. [doi:10.1063/1.3645182]

I. INTRODUCTION

When linearly polarized monochromatic light passes
through a sample exposed to external uniform electric and
magnetic induction fields that are applied parallel to each
other and perpendicular to the direction of propagation of the
light beam, an anisotropy of the refractive index of the sam-
ple is observed. This anisotropy in the refractive index was
first theoretically predicted in 1948 by Jones,1 from which
the anisotropy now bears its name, Jones birefringence. The
first experimental observations of Jones birefringence in liq-
uids was made by Rikken and co-workers more than 50 years
later, at the start of this century.2–5

The theory of Jones birefringence was developed by Gra-
ham and Raab.6 The birefringence is bilinear in the elec-
tric and magnetic induction field strengths, but with the pairs
of axes for these induction field strengths bisecting those
used in the more common Kerr7, 8 and Cotton–Mouton9, 10

birefringences. We note that the so-called “Magneto-electric
birefringence”11, 12 from a theoretical point of view is equiv-
alent to Jones birefringence,13 even though the experimental
setup differs in the two experiments. As such, the results we
obtain here will be applicable to both these birefringences.

The first ab initio studies of Jones birefringence was
presented by Rizzo and Coriani, who also identified the
relevant response functions entering the expression for the
birefringence.14 In their first study, Rizzo and Coriani cal-
culated the observable quantity of Jones birefringence, the
anisotropy of the refractive index for the light polarized at
+45◦ and −45◦ with respect to the direction of polarization
of the light in Jones birefringence, in the atomic systems
He, Ne, Ar, Kr as well as the linear non-dipolar molecules
H2, N2, C2H2, and the dipolar molecule CO. These calcu-
lations were performed at the coupled-cluster level of the-
ory including single and double excitations15–17 using the

a)Electronic mail: kenneth.ruud@uit.no.

Hartree–Fock and coupled-cluster implementations of the
quadratic and cubic response theories.18–26 The authors more
recently extended their study of Jones birefringence to larger
molecules27, 28 using density functional response theory.29, 30

We recently explored the effects of a solvent, modeled by a
polarizable dielectric continuum model (PCM),31–33 on the
Jones birefringence,34 building on the extensions of the PCM
to quadratic and cubic response functions.35–37 The field of
ab initio calculations of Jones birefringence (as well as other
birefringences) has been reviewed several times by Rizzo and
co-workers.38–40

In this paper, we present the extension of our analytic
scheme for the calculation of derivatives of the electronic
quasienergy for time- and perturbation-dependent basis
sets41 to the study of Jones birefringence using London
atomic orbitals (LAOs). The use of London atomic orbitals42

ensures that the calculated birefringence is origin indepen-
dent, in contrast to earlier theoretical calculations of Jones
birefringence, and particular attention will here be given to
investigate the convergence of the numerical results with and
without London orbitals. Results will be presented for two
non-dipolar molecules, carbon tetrachloride and naphthalene,
and the dipolar molecule chlorobenzene.

The remainder of the paper is organized as follows:
In Sec. II, we will briefly summarize the theory for Jones
birefringence and the relationship between the observable
anisotropy in the refractive index to the molecular response
functions and quasienergy derivatives. In Sec. III, we will
describe our quasienergy derivative theory for calculating
the relevant energy derivatives using time-dependent London
atomic orbitals43 to ensure gauge-origin independence of the
observable Jones birefringence. This derivation will follow
very closely our previous implementation of the relevant ten-
sors determining the Cotton–Mouton effect.44 In Sec. IV, we
will briefly summarize the computational details, before we
present and discuss our results in Sec. V, with an empha-
sis on demonstrating the gauge-origin independence of our

0021-9606/2011/135(13)/134114/10/$30.00 © 2011 American Institute of Physics135, 134114-1
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formalism and the improvements observed in basis-set con-
vergence when LAOs are used. Finally, in Sec. VI we give
some concluding remarks.

II. THEORY

When linearly polarized monochromatic light interacts
with a molecule in the presence of both an external elec-
tric field and a magnetic induction field applied parallel to
each other and perpendicular to the direction of the propa-
gating light beam, an anisotropy of the refractive index will
be observed.1 The specific birefringence [!n] observed for a
gas with molar volume Vm and unit electric and unit magnetic
fields may be written as

[!n] = (n−45◦ − n+45◦ )Vm

MExBx

= NA

30ε0c0M
×

{
J0 + JT

T

}

= [!n(0)] + [!n(T )]
T

, (1)

where NA is Avogadro’s number, M is the molar mass, ε0 is
the electric constant, c0 is the speed of light in vacuo, and
T is the temperature. We have, here, assumed that the radia-
tion field is propagating in the z direction, and that the elec-
tric and magnetic fields have been applied in the x direction,
using Ex and Bx to represent the x components of the elec-
tric E and magnetic B fields, respectively. If the molar mass
is given in g mol−1, and the quantity inside the curly brack-
ets is computed in atomic units, [!n] is obtained in units of
cm4 g−1 V−1 T−1 from

[!n] ≈ 2.25681×10−19 × 1
M[g mol−1]

×
{
J0 + JT

T

}
[a.u.].

(2)
This equation is valid for a gas with molar volume Vm, for
which the density of the gas ρ is given by M/Vm.

It is customary to report the Jones birefringence in terms
of a Jones constant kJ , defined through the relation3

!n = n−45◦ − n+45◦ = kJ λ EEE · BBB (3)

and involving explicitly the wavelength of the radiation, λ.
Here, kJ is given as

kJ = NAρ

30ε0c0Mλ
×

{
J0 + JT

T

}

≈ 2.25681 × 10−12 × ρ[g cm−3]
λ[nm] × M[g mol−1]

×
{
J0 + JT

T

}
[a.u.], (4)

with the resulting value of the Jones constant being given
in units of V−1 T−1 when the density of the gas ρ, molar
mass, and wavelength is given in the SI units specified above
in square parentheses, with the quantity in graph parentheses
computed in atomic units.

Rizzo and co-workers14, 34 showed that the quantities J0

and JT can be related to a set of the cubic and quadratic re-
sponse functions, respectively,

J0 = G(3)
para + G(3)

dia + A′,(3), (5)

JT = 1
kB

[
G(2)

para + G(2)
dia + A′,(2)], (6)

where kB is the Boltzmann constant.
The quantities appearing in Eqs. (5) and (6) are defined as

(using Einstein’s summation convention over repeated Greek
indices)

G(3)
para = 3G

para
αβαβ + 3G

para
αββα − 2G

para
ααββ, (7)

G(3)
dia = 3Gdia

αβαβ + 3Gdia
αββα − 2Gdia

ααββ, (8)

A′,(3) = −ω

2
εαβγ (a′

αβδδγ + a′
αβδγ δ), (9)

G(2)
para = µα

(
3G

para
αββ + 3G

para
βαβ − 2G

para
ββα

)
, (10)

G(2)
dia = µα

(
3Gdia

αββ + 3Gdia
βαβ − 2Gdia

ββα

)
, (11)

A′,(2) = −ω

2
εαβγ (µγ a′

αβδδ + µδa
′
αβδγ ), (12)

where ω is the circular frequency of the radiation, and µα is
the α component of the permanent electric dipole moment.
We have also introduced the Levi-Civita alternating tensor
εαβγ . We note that from Eqs. (6) and (10)–(12) that JT van-
ishes for a non-dipolar molecule and G

para
αβγ , Gdia

αβγ , and a′
αβγ δ

do, therefore, not have to be computed in this case.
The tensors defined in Eqs. (7)–(12) correspond to a

set of general frequency-dependent hyperpolarizabilties, see
Refs. 14 and 34,

a′
αβγ δ(−ω; ω, 0) = a′

αγβδ(−ω; ω, 0)

= −&〈〈µ̂α; q̂βγ , m̂δ〉〉ω,0

= i〈〈µ̂α; q̂βγ , m̂δ〉〉ω,0, (13)

a′
αβγ δε(−ω; ω, 0, 0) = a′

αγβδε(−ω; ω, 0, 0)

= &〈〈µ̂α; q̂βγ , m̂δ, µ̂ε〉〉ω,0,0

= −i〈〈µ̂α; q̂βγ , m̂δ, µ̂ε〉〉ω,0,0, (14)

G
para
αβγ (−ω; ω, 0) = )〈〈µ̂α; m̂β , m̂γ 〉〉ω,0

= 〈〈µ̂α; m̂β, m̂γ 〉〉ω,0, (15)

G
para
αβγ δ(−ω; ω, 0, 0) = −)〈〈µ̂α; m̂β, m̂γ , µ̂δ〉〉ω,0,0

= −〈〈µ̂α; m̂β , m̂γ , µ̂δ〉〉ω,0,0, (16)

Gdia
αβγ (−ω; ω) = −)〈〈µ̂α; ξ̂ dia

βγ 〉〉ω = −〈〈µ̂α; ξ̂ dia
βγ 〉〉ω, (17)
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Gdia
αβγ δ(−ω; ω, 0) = )〈〈µ̂α; ξ̂ dia

βγ , µ̂δ〉〉ω,0 = 〈〈µ̂α; ξ̂ dia
βγ , µ̂δ〉〉ω,0,

(18)

where the last equalities hold for real electronic reference
wavefunctions. In these equations, we have in addition to the
electric dipole operator µ̂ also introduced the magnetic dipole
(m̂) and, in order to follow the derivation of Graham and
Raab,6 the traced electric quadrupole (q̂) operators, defined
as, respectively,

µ̂α = −
∑

i

riα, (19)

q̂αβ = −
∑

i

riαriβ, (20)

m̂α = −1
2

∑

i

((r i−O) × pi)α,

= −1
2

∑

i

εαβγ (riβ−Oβ)piγ = −1
2

∑

i

liα,O, (21)

ξ̂ dia
αβ = 1

4

∑

i

((riα−Oα)(riβ−Oβ) − |r i−O|2δαβ), (22)

where the summations run over the electrons, and the stan-
dard notation for Cartesian components of the position (riα),
linear momentum (p̂iα), and angular momentum (about the
origin O, l̂iα,O) operators of electron i is used. In Eqs. (21)
and (22), we have explicitly indicated that the magnetic mo-
ment and diamagnetic susceptibility operators depend on a
gauge-origin O. In the limit of a complete basis, for vari-
ational wavefunctions, calculated molecular magnetic prop-
erties will be independent of this choice of gauge origin,
whereas calculations using finite basis sets in general dis-
play a dependence on the choice of gauge origin.45, 46 Note
that we have omitted nuclear contributions to these operators,
which do not contribute to the quadratic and cubic response
functions.

Equations (13)–(18) have previously been used to cal-
culate Jones birefringence at the density-functional level
of theory,27, 28 including also the effects of a dielectric
medium,34 as well as at the coupled-cluster level of theory.14

However, these studies have only used conventional basis sets,
and the results were, therefore, not formally gauge-origin in-
dependent, although fairly large basis sets were used in these
studies in order to reduce the gauge-origin dependence of the
results and to achieve near basis-set limit results.

Before proceeding, let us first consider the relation of
the tensors in Eqs. (13)–(18) to tensors that appear in other
birefringences, as these will give us valuable guidelines
for the evaluation of the various hyperpolarizability tensors
when London orbitals are used in the calculation. We first
note that Eqs. (15)–(18) correspond to the same tensors that
appear in the calculation of the first and second electric-field
derivatives of the magnetizability, the latter appearing in
the calculation of the Cotton–Mouton effect,44, 47 the main
difference being that whereas all magnetic fields appearing in
the Cotton–Mouton effect are static, one of the magnetic field
components will be frequency-dependent in the case of Jones
birefringence, with also the introduction of a static electric
field. We may, therefore, build on our previous analytic

implementation of the Cotton–Mouton constants44 when
deriving an expression for Jones birefringence in which also
time-periodic London atomic orbitals are used.43

The polarizabilities in Eqs. (13) and (14) can be consid-
ered as the magnetic-field derivatives of the electric dipole–
electric quadrupole polarizability and the electric dipole–
electric quadrupole–electric dipole hyperpolarizability. These
undifferentiated polarizabilities appear in the calculation of
Buckingham birefringence.48, 49 We previously presented a
gauge-origin independent approach for calculating Bucking-
ham birefringence using London atomic orbitals50 and we will
also build on this derivation in order to derive computable ex-
pressions for the tensors in Eqs. (13) and (14).

In Sec. III, we will derive the working equations for the
Jones birefringence building on our open-ended scheme for
the calculation of quasienergy derivatives using both time-
and perturbation-dependent basis sets.41 The derivation will
follow very closely the derivations already presented for the
Cotton–Mouton44 and Buckingham birefringences.50

III. METHODOLOGY

In order to derive variational formulas for the response
functions in Eqs. (13)–(18), we employ the quasienergy
derivative method.24, 41, 51 Given a time-independent Hamilto-
nian Ĥ , a (time-)periodic external potential operator V̂ t , and a
periodic wavefunction ψ(t), both with period T = 2π/ω, the
quasienergy is determined by the time-averaged expectation
value

Q(ψ) = 1
T

∫ t0+T

t0

〈ψ |Ĥ + V̂ t − i
∂

∂t
|ψ〉dt, (23)

where t0 is arbitrary since the integrand is periodic. It follows
from the Hermiticity of Ĥ and V̂ t and the normalization of
ψ , that Q is real valued. In our case, the external potential
consists of (dipole- and quadrupole-) interactions with an in-
homogeneous electric field and (dipole-) interaction with a
homogeneous magnetic field,52

V t = −
∑

α

Fαµ̂α − 1
2

∑

αβ

Gαβ q̂αβ

−
∑

α

Bαm̂α − 1
2

∑

αβ

BαBβ ξ̂ dia
αβ . (24)

The fields F(t), G(t), and B(t) are parameterized as having a
static- and a frequency-dependent component

Fα(t) = F0α + Fωαe−iωt + F ∗
ωαe+iωt , (25)

Gαβ(t) = G0αβ + Gωαβe−iωt + G∗
ωαβe+iωt , (26)

Bα(t) = B0α + Bωαe−iωt + B∗
ωαe+iωt , (27)

in which the coefficients will serve as perturbation parame-
ters. Here, F0 and B0 are the applied static electric and mag-
netic fields, while Fω, Gω, and Bω are determined by the po-
larization, phase, and amplitude of the light beam. No static
electric field gradient is applied in the Jones experiment, and
G0 is only included here for generality.
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In order to ensure gauge-origin independence of our cal-
culated results also in the case of finite basis sets, we will
employ London atomic orbitals (LAOs, also known as gauge-
including atomic orbitals, GIAOs). The LAOs are magnetic-
field dependent, and in this case also time-dependent, and are
defined as42, 43

χµ(r; B)= exp
(

− i

2
B(t) × (RK(µ)− O) · r

)
Xµ(r− RK(µ)),

(28)
where Xµ is an ordinary Cartesian or spherical Gaussian- or
Slater-type orbital, and K(µ) denotes the atom at which χµ is
centered.

The advantage of the quasienergy in Eq. (23) is that
variations in ψ (differentiation with respect to ψ) gives the
time-dependent Schrödinger equation as a variational con-
dition. Therefore (for variational ψ), perturbation by (dif-
ferentiation with respect to) any field strength gives the
corresponding observable of the time-dependent system

dQ

dF ∗
ωα

= ∂Q

∂F ∗
ωα

= {〈ψ | − e+iωt µ̂α|ψ〉}T = −〈µα〉−ω ,

(29)
where we have introduced the short-hand notation {. . .}T
= 1/T

∫ t0+T

t0
. . . dt for time-averaging. This expression, thus,

corresponds to the time-averaged Hellmann–Feynman the-
orem. Moreover, additional differentiations with respect to
field strengths give derivatives of these observables, i.e., re-
sponse functions, when evaluated at V̂ t = 0,

d2Q

dF ∗
ωαdFωβ

= − d

dFωβ

〈µα〉−ω =+〈〈µ̂α; µ̂β〉〉ω. (30)

Note that the sign changes due to the opposite sign conven-
tions for potential and moment operators.

Equation (23) is not readily applied to the Hartree–Fock
model, for which the energy is given in terms of atomic-
orbital density matrix coefficients Dµν , one-electron integrals
hµν and two-electron integrals gµνρδ ,

EHF(D) = Tr hD + 1
2

Tr G(D)D + hnuc, (31)

hµν = 〈χµ| − 1
2
∇2 −

∑

K

ZK

|RK − r|
|χν〉, (32)

Gµν(D) =
∑

ρσ

(gµνρσ − gµσρν)Dσρ, (33)

gµνρσ =
∫∫

χ∗
µ(x1)χν(x1)

1
r12

χ∗
ρ (x2)χσ (x2)dx1dx2, (34)

where hnuc is the nuclear repulsion energy, which does not
contribute to the response functions studied in this paper.

Fortunately, however, observables such as Eq. (29) can be
conveniently formulated in terms of D, the external potential
integrals Vµν = 〈χµ|V̂ t |χν〉, the external potential of the nu-
clei vnuc (which will not concern us), the anti-symmetric time-
differentiation integrals Tµν = 〈χµ|∂χν/∂t〉 − 〈∂χµ/dt |χν〉,

and the overlap integrals Sµν = 〈χµ|χν〉 (see Ref. 41),

dQ

d Bω

=
{

∂EHF(D)
∂ Bω

+ Tr
∂V
∂ Bω

D + ∂vnuc

∂ Bω

− i

2
Tr

∂T
∂ Bω

D − Tr
∂S

∂ Bω

W
}

T

, (35)

W = DFD + i

2
∂D
∂t

SD − i

2
DS

∂D
∂t

, (36)

F = h + G(D) + V − i

2
T, (37)

dQ

dGω

=
{

Tr
∂V

∂Gω

D + ∂vnuc

∂Gω

}

T

, (38)

where we have introduced the so-called energy-weighted den-
sity matrix W and the Fock matrix F. We note the close simi-
larity in structure between the expression for the quasienergy
derivative in Eq. (35), and the expression introduced by Pulay
for the molecular (geometrical) gradient for the Hartree–Fock
model in the AO basis.53 The form of the expression is the
same, but Eq. (35) is generalized to account for externally ap-
plied fields (V, vnuc), time-dependence of the density matrix
(∂D/∂t), as well as time-dependence of the basis set χµ(T).
Notice also in Eq. (38) that for fields which do not enter the
basis functions, Eq. (35) takes the simpler form of an elec-
tronic expectation value plus a nuclear contribution.

From Eqs. (35) and (38), we may now derive formulas for
the linear, quadratic, and cubic response functions by further
differentiation, while taking into account the dependence of D
on the fields, and using the idempotency and self-consistency
conditions which apply to D,

0 = DSD − D, (39)

0 = FDS − SDF − i

2
S

∂DS
∂t

− i

2
∂SD
∂t

S. (40)

Repeated differentiation of Eq. (35) produces a large
number of terms. We will therefore adopt the following more
concise superscript notation to denote perturbed quantities
(field-strength derivatives), evaluated at zero fields (V̂ t = 0),
and stripped of their time dependence (e.g., 1/e−iωt ),

DBω = 1
e−iωt

dD
d Bω

∣∣∣∣
V̂ t=0

, (41)

VGB = 1
e−iωt

1
1

∂2V
∂Gω∂ B0

∣∣∣∣
V̂ t=0

, (42)

GBB = 1
e−iωt

1
1

∂2G
∂ Bω∂ B0

∣∣∣∣
V̂ t=0

, (43)

WF ∗
ωF0 = 1

e+iωt

1
1

d2W
d F∗

ωd F0

∣∣∣∣
V̂ t=0

, (44)

where (1/1) indicates that the second derivative applies to a
static perturbing field. Note here that frequencies are omit-
ted in the notation for perturbed integrals which are in-
dependent of frequencies (all except T). Comparing with
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Eqs. (13)–(18) and (24), we make the following identification
of the quadratic response functions:

G
para
αβγ + Gdia

αβγ = 〈〈µ̂α; m̂β , m̂γ 〉〉ω,0

−
〈〈
µ̂α; ξ̂ dia

βγ

〉〉
ω

= QBωβF ∗
ωαB0γ , (45)

a′
αβγ δ = i〈〈µ̂α; q̂βγ , m̂δ〉〉ω,0 = −i QGωβγ F ∗

ωαB0δ (46)

and obtain the corresponding formulas by differentiating Eqs.
(35) and (38),

QBωF ∗
ωB0 Tr= VBBF D + VBF DB0

+
(

hBB + VBB − i

2
TBωB0 + GBB(D)

)
DF ∗

ω

+
(

hB + VB − i

2
TBω + GB(D)

)
DF ∗

ωB0

+ GB(DF ∗
ω )DB0 − SBBWF ∗

ω − SBWF ∗
ωB0 , (47)

QGωF ∗
ωB0 Tr= VGBDF ∗

ω + VGDF ∗
ωB0 , (48)

where by Tr= we indicate that a trace is to be taken of the matrix
products on the right-hand side. Explicit formulas for matrices
WF ∗

ω and WF ∗
ωB0 are obtained from Eq. (36),

WF ∗
ω = DF ∗

ω

(
F − ω

2
S
)

D+DFF ∗
ω D+D

(
F+ω

2
S
)

DF ∗
ω , (49)

WF ∗
ωB0 = DF ∗

ωB0

(
F − ω

2
S
)

D + 1
2

DFF ∗
ωB0 D + DB0 FF ∗

ω D

+ DF ∗
ω

((
FB0 − ω

2
SB

)
D +

(
F − ω

2
S
)

DB0

)
+ h.c.,

(50)

where h.c. is a short-hand notation for all the preceding
terms with the matrix products in reverse order and oppo-
site sign on the frequency factors ω/2. The six first-order and
nine second-order perturbed density matrices are determined
by solving a set of linear response equations, either in the
atomic or the molecular orbital basis.19, 54–57 The specific case
of determining perturbed densities for external frequency-
dependent magnetic fields, when using London atomic or-
bitals, have been described in detail in our previous work on
the Cotton–Mouton effect,44 and the interested reader is re-
ferred to this paper for more information about the details of
the approach.

For the two cubic response functions, the identifications
are

G
para
αβγ δ + Gdia

αβγ δ = −〈〈µ̂α; m̂β , m̂γ , µ̂δ〉〉ω,0,0

+ 〈〈µ̂α; ξ̂ dia
βγ , µ̂δ〉〉ω,0 = QBωβF ∗

ωαB0γ F0δ ,

(51)

a′
αβγ δε = −i〈〈µ̂α; q̂βγ , m̂δ, µ̂ε〉〉ω,0,0 = −i QGωβγ F ∗

ωαB0δF0ε .

(52)

In principle, these fourth-order quasienergy derivatives can
be obtained by differentiating Eqs. (35) and (38) three times,
and this is the approach used for instance in the open-ended

scheme for higher-order electric polarizabilities,41, 58–61 as
well as in the calculation of geometrical derivatives of elec-
tric (hyper)polarizabilities. This approach, often referred to
as the n+1 rule,62, 63 is advantageous when one of the ap-
plied perturbations has many more components than the other
perturbations, for instance, the number of geometrical distor-
tions in a large molecule versus the three components of the
electric field, since one can avoid having to solve any per-
turbed equations for the perturbation with a large number of
components.

However, when the number of components is fairly sim-
ilar for the different applied perturbations as is the case for
Jones birefringence where the fields have either three or six
independent components each, it is in general much more ad-
vantageous to use the so-called 2n+1 rule, which for Jones
birefringence implies that only first- and second-order per-
turbed densities need to be determined.

Although the quasienergy Q is variational, its derivative
dQ/d Bω is by itself not variational (in D), and we may, there-
fore, not apply the 2n+1 rule directly (by omitting higher or-
der terms). However, as presented in Ref. 41, Eq. (35) can be
made variational by adding Lagrange multipliers (L, X) for
the two equations D must satisfy

dQ

d Bω

→ dQ

d Bω

− {Tr LP}T − {Tr XY}T , (53)

where P denotes the idempotency expression in Eq. (39) and
Y denotes the self-consistency expression in Eq. (40). The
Lagrange multipliers can be expressed in terms of the solution
of the corresponding first-order equation for dD/d Bω,41

L= dF
d Bω

DS −
(

FD − i

2
∂S
∂t

D − iS
∂D
∂t

)
∂S

∂ Bω

+ SD
dF

d Bω

− ∂S
∂ Bω

(
DF+ i

2
D

∂S
∂t

+i
∂D
∂t

S
)

− dF
d Bω

,

(54)

X = dD
d Bω

SD − DS
dD
d Bω

. (55)

Differentiating the variational Lagrangian expression in
Eq. (53) three times, and omitting terms containing third-
order matrices, we obtain

QBωF ∗
ωB0F0 Tr= VBBF DF0 + VBBF DF ∗

ω

+
(

hBB + VBB − i

2
TBωB0 + GBB(D)

)
DF ∗

ωF0

+ GBB (DF ∗
ω )DF0 + VBF DB0F0 + VBF DF ∗

ωB0

+ GB (DF ∗
ω )DB0F0 + GB(DB0 )DF ∗

ωF0

+ GB (DBω )DF ∗
ωF0 + GB(DF ∗

ωB0 )DF0

− SBBWF ∗
ωF0 − SBWF ∗

ωB0F0

2′

− LBω
PF ∗

ωB0F0

2′ − XBω
YF ∗

ωB0F0

2′ , (56)

QGωF ∗
ωB0F0 Tr= VGBDF ∗

ωF0 + GB(DGω )DF ∗
ωF0

− LGω
PF ∗

ωB0F0

2′ − XGω
YF ∗

ωB0F0

2′ , (57)
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where the subscript 2′ denotes that only contributions up
to second order are included in those matrices, in accor-
dance with the 2n+1 rule. As before, the matrices WF ∗

ωF0 and
WF ∗

ωB0F0

2′ are determined from Eq. (36),

WF ∗
ωF0 = DF ∗

ωF0

(
F − ω

2
S
)

D

+ 1
2

DFF ∗
ωF0 D + DF0 FF ∗

ω D

+ DF ∗
ω

(
FF0 D +

(
F − ω

2
S
)

DF0

)
+ h.c., (58)

WF ∗
ωB0F0

2′ = DF ∗
ωB0

(
FF0 D +

(
F − ω

2
S
)

DF0

)
+ DF0 FF ∗

ωB0 D

+ DF ∗
ωF0

((
FB0 − ω

2
SB

)
D +

(
F − ω

2
S
)

DB0

)

+ DFF ∗
ω DB0F0

+ DF ∗
ω

(
FB0F0 D + FF0 DB0 +

(
FB0 − ω

2
SB

)
DF0

+
(

F − ω

2
S
)

DB0F0

)

+ DB0 (FF ∗
ωF0 D + FF ∗

ω DF0 ) + h.c. (59)

The Lagrange multipliers LBω
, XBω

, LGω
, and XGω

are deter-
mined by evaluating Eqs. (54) and (55) for V̂ t = 0,

LBω
= FBω DS + SDFBω − FBω − FDSB − SBDF,

XBω
= DBω SD − DSDBω , (60)

LGω
= FGω DS + SDFGω − FGω , (61)

XGω
= DGω SD − DSDGω . (62)

Finally, the residuals of the third-order equations with up to
second-order contributions, PF ∗

ωB0F0

2′ and YF ∗
ωB0F0

2′ , are obtained
from Eqs. (39) and (40),

PF ∗
ωB0F0

2′ =
(
DB0 S + DSB

)
DF ∗

ωF0 + DF0 SDF ∗
ωB0

+ DF ∗
ω (SBDF0 + SDB0F0 ) + h.c., (63)

YF ∗
ωB0F0

2′ = (FF ∗
ωF0 DB0 + FB0F0 DF ∗

ω + FB0F
∗
ω DF0

+ FF0 DB0F
∗
ω + FF ∗

ω DB0F0 + FB0 DF ∗
ωF0 )S

+ (FF ∗
ωF0 D + FF0 DF ∗

ω + FF ∗
ω DF0

+ (F − ωS)DF ∗
ωF0 )SB − h.c. (64)

IV. COMPUTATIONAL DETAILS

Calculations have been carried out for carbon tetra-
chloride (CCl4), chlorobenzene (C6H5Cl), and naphthalene
(C10H8).

All geometries were optimized at the density-functional
level of theory, using the three-parameter exchange func-
tional of Becke64 in combination with the Lee–Yang–Parr

correlation functional,65 commonly referred to as the B3LYP
functional,66 and using Dunning’s correlation-consistent basis
set of triple-zeta quality (cc-pVTZ).67, 68 For a higher order
molecular property such as Jones birefringence, the choice
of basis set is important in order to obtain reliable results.
In many of our earlier studies of nonlinear birefringences,
the strength of the augmented correlation-consistent basis sets
have been demonstrated.

Here, we present a study of the effects of using London
orbitals on the basis-set convergence of the property. The de-
pendence of the different cubic response function contribu-
tions to the temperature-independent contribution of the Jones
birefringence is illustrated for CCl4 using the aug- and daug-
cc-pVXZ basis sets. For naphthalene, we also test the origin
independence of the results with respect to a shift of the coor-
dinate system. Results are presented for two choices of gauge
origin, the first one with the origin at the molecule center-of-
mass and the second with the origin at the center of one of the
aromatic rings.

The wavelength λ = 632.8 nm, as used in experiment,
was selected. The calculations were carried out using a paral-
lel version69, 70 of the DALTON 2.0 program.71

V. RESULTS AND DISCUSSIONS

We have collected the results for the two temperature-
independent contributions to the Jones birefringence of car-
bon tetrachloride in Table I. In the table, we report the results
obtained both with conventional basis sets and with London
atomic orbitals. We note from the table the very strong basis-
set dependence of the calculated results, in particular for the
conventional basis set, where two sets of diffuse basis func-
tions appear to be mandatory (the daug-cc-pVXZ basis set)
in order to get results that are reasonably close to the appar-
ent basis-set limit. Only the results obtained with the daug-

TABLE I. Results for the Jones birefringence of CCl4 as obtained with and
without London atomic orbitals for different correlation-consistent basis sets.
For the calculations using a conventional basis set, the carbon atom has been
selected as gauge origin. All results reported in atomic units for a wavelength
of 632.8 nm.

Basis set G(3)
para+ G(3)

dia A′,(3) J0

London atomic orbitals

aug-cc-pVDZ 6979.6 –296.3 6683.3
aug-cc-pVTZ 5306.9 –314.7 4992.2
aug-cc-pVQZ 4220.3 –315.9 3904.4
daug-cc-pVDZ 4307.6 –292.8 4014.8
daug-cc-pVTZ 4102.8 –319.2 3783.6
daug-cc-pVQZ 4014.4 –320.6 3693.8

Conventional basis set

aug-cc-pVDZ –4198.9 –107.3 –4306.2
aug-cc-pVTZ –650.3 –162.6 –812.9
aug-cc-pVQZ 2605.6 –223.1 2382.4
daug-cc-pVDZ –483.7 –210.9 –694.6
daug-cc-pVTZ 3728.1 –295.5 3432.6
daug-cc-pVQZ 4001.8 –310.4 3691.4
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cc-pVQZ basis are in reasonably good agreement for both
London atomic orbitals and conventional basis functions.

The basis-set convergence is fairly slow also when Lon-
don atomic orbitals are used, the results obtained with the
aug-cc-pVQZ basis set still being about 5% too large com-
pared to the estimated basis-set limit for J0 of ∼3700 a.u.
The results in Table I suggest that even when London atomic
orbitals are used, two sets of diffuse functions are desirable
in order to ensure that the results are close to the basis-set
limit. To some extent, this result is not too surprising, as it is
well known that the improvements in basis-set convergence
obtained when London atomic orbitals are used to calculate
the magnetic dipole operator for frequency-dependent pertur-
bations is limited.72 As the G(3) tensor involves a frequency-
dependent magnetic dipole operator, this may reflect this ex-
pected slow basis-set convergence.

At the same time, the very strong basis-set dependence of
the Jones birefringence contrasts with our observation for the
Cotton–Mouton effect,44 where only a limited improvement
in basis-set convergence was observed. It is particularly inter-
esting to note that the slow basis-set convergence of the Jones
birefringence is dominated by the G(3) contribution which, ex-
cept for the introduction of a frequency on the magnetic-field
component, bears very strong resemblance to the second hy-
permagnetizability tensor that determines the Cotton–Mouton
effect, for which the importance of London atomic orbitals
were found to be negligible. In the case of our results for G(3)

in Table I, we in particular, note that a wrong sign is obtained
for this contribution when small conventional basis sets are
used. Due to the dominance of this contribution to the over-
all anisotropy of the refractive index, an incorrectly predicted
sign of the observable Jones birefringence is also obtained,
a result which very clearly demonstrates the need for Lon-
don orbitals in the calculation of Jones birefringence. Inde-
pendently of the choice of basis set, a correctly predicted sign
is obtained for the Jones birefringence of CCl4 when London
atomic orbitals are used.

The origin of the variation in basis-set dependence of cal-
culated linear and nonlinear molecular properties involving
external or internal sources of electric or magnetic fields re-
mains unclear,44, 50, 72–74 and it appears that only numerical in-
vestigations will be able to reveal the basis-set improvements
that can be expected from the use of London atomic orbitals
in the calculation of properties involving static or frequency-
dependent magnetic field perturbations.

A problem with the use of basis sets with very diffuse ba-
sis functions is that one often experience problems with linear
dependencies in the basis sets. As such, the much improved
basis-set convergence for the Jones birefringence when LAOs
are used gives us confidence that we may be able to attack
also larger molecules using only the augmented correlation-
consistent basis sets. In Table II, we report our results ob-
tained using these basis sets for the naphthalene molecule.
For the conventional basis sets, we report the calculated Jones
birefringence using both the centre of mass and the centre of
one of the aromatic rings in the molecule as gauge origin.

We note from Table II that the difference in basis-set
convergence for the London and no-London orbital results is
smaller than was the case for CCl4, and in general slightly

TABLE II. Results for the Jones birefringence of naphthalene (C10H8) as
obtained with and without London atomic orbitals for different augmented
correlation-consistent basis sets. For the calculations using a conventional
basis set, results are reported both using the center of mass and the center of
one of the aromatic rings as gauge origin. All results reported in atomic units
for a wavelength of 632.8 nm.

Basis set G(3)
para +G(3)

dia A′,(3) J0

London atomic orbitals

aug-cc-pVDZ 16538.1 –1030.7 15507.4
aug-cc-pVTZ 12693.2 –1068.3 11624.9
aug-cc-pVQZ 11556.9 –1046.8 10510.0

Conventional basis set, center of mass gauge origin

aug-cc-pVDZ 4995.2 –528.8 4466.4
aug-cc-pVTZ 9360.3 –750.5 8609.8
aug-cc-pVQZ 10598.8 –878.1 9720.7

Conventional basis set, center of aromatic ring as gauge origin

aug-cc-pVDZ 3053.0 –480.6 2572.4
aug-cc-pVTZ 8731.0 –724.4 8006.6
aug-cc-pVQZ 10393.2 –864.2 9529.0

better, in particular with respect to the quality of the results
obtained without London orbitals. Part of the reason for this
improved basis-set convergence can be traced to the fact that
basis functions on neighbouring atoms act as diffuse polariz-
ing functions in the basis describing the electron density of a
particular nucleus, making it less critical to use a very diffuse
basis set for larger molecules.

Although the basis-set convergence of the conventional
basis set is improved in naphthalene compared to tetra-
chloromethane, the basis-set convergence of the A′,(3) contri-
bution remains very poor. In contrast, as was also the case for
CCl4, the London atomic orbital results for this term shows
very little basis-set dependence, making the basis-set depen-
dence entirely due to the G(3) term when London atomic or-
bitals are used.

In Table II, we report the results for two different gauge
origins, the center of mass and the center of one of the aro-
matic rings, in the calculations using conventional basis sets.
We do not report the numbers for the London atomic orbital
calculations, even though in general the G(3) and A′,(3) con-
tributions are origin dependent even when using LAOs, al-
though the final observable birefringence is not. However, for
a nonpolar molecule with inversion symmetry, the origin de-
pendence of the individual contributing terms vanish for ex-
act states, as discussed by Rizzo and Coriani,14 and thus also
when London atomic orbitals are used.

The dependence of the results obtained with conventional
basis sets on the choice of gauge origin is quite strong for the
aug-cc-pVDZ basis set, reducing quickly as the quality of the
basis set is improved. In accordance with the observed basis-
set convergence, the G(3) term displays a much stronger basis-
set dependence than the A′,(3) term, and thus the observed
origin dependence of J0 is thus largely dependent on G(3)

only.
Let us now turn our attention to a dipolar molecule,

chlorobenzene, for which we will then also have contributions
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TABLE III. Results for the Jones birefringence of chlorobenzene as ob-
tained with and without London atomic orbitals for different augmented
correlation-consistent basis sets. All results reported in atomic units for a
wavelength of 632.8 nm.

Basis set G(3)
para+ G(3)

dia A′,(3) J0 G(2)
para+ G(2)

dia A′,(2) JT

London atomic orbitals

aug-cc-pVDZ 10908.5 –555.4 10353.1 –49.7 8.4 –41.3
aug-cc-pVTZ 7057.6 –595.9 6461.7 –51.3 8.1 –43.2
aug-cc-pVQZ 5655.2 –607.9 5047.3 –51.6 8.0 –43.6

Conventional basis sets

aug-cc-pVDZ –800.3 –313.3 –1113.6 –77.3 9.3 –68.0
aug-cc-pVTZ 2660.1 –422.6 2237.5 –59.6 8.5 –51.1
aug-cc-pVQZ 4399.9 –503.2 3896.7 –48.2 8.1 –40.1

from the temperature-dependent contribution to the Jones
birefringence. The results obtained both with and without
London atomic orbitals for the temperature-dependent and
temperature-independent contributions for this molecule, us-
ing the augmented correlation-consistent basis sets, are col-
lected in Table III.

As was the case for tetrachloromethane, the use of Lon-
don atomic orbitals is important in order to ensure a correct
sign for the Jones birefringence, as we note that the con-
tribution from G(3) to the temperature-independent contribu-
tion of the observable birefringence has the wrong sign when
the aug-cc-pVDZ basis set is used with conventional basis
sets. The trends observed for carbon tetrachloride and naph-
thalene prevail for this molecule, with a fairly strong basis-
set dependence being observed also for the G(3) contribu-
tion when LAOs are used, whereas LAOs largely remove any
basis-set dependence of the A′,(3) contribution. As such, the
temperature-independent contribution displays a fairly strong
basis-set dependence when using London orbitals, and an
aug-cc-pVQZ basis set is recommended in order to get re-
sults close to the basis-set limit when using London orbitals.
For conventional basis sets, the aug-cc-pVQZ basis still gives
a temperature-independent contribution to the Jones birefrin-
gence which is too small by about 20% if we assume that the
LAO aug-cc-pVQZ results are close to the basis-set limit.

Considering the temperature-dependent contribution to
the Jones birefringence, we note that London atomic orbitals
give results that are largely independent of the size of the ba-
sis set, whereas the conventional basis displays a rather slow
basis-set convergence. As is the case for the temperature-
independent contribution, the G(2) contribution dominates
the temperature-dependent contribution to the Jones birefrin-
gence and shows the largest basis-set dependence. Indeed, the
A′,(2) contribution to JT is largely independent of basis set

quality and good agreement is obtained for this contribution
both with and without the use of London atomic orbitals, the
difference being about 15% for the aug-cc-pVDZ basis set,
and negligible for the larger basis sets.

When LAOs are employed, the G(2) contribution is
largely basis set independent, with a small difference with re-
spect to the estimated basis-set limit results of about 5% ob-
served for the aug-cc-pVDZ basis set. In contrast, the results
obtained for this contribution are reduced by more than 30%
when going from the aug-cc-pVDZ basis set to the aug-cc-
pVQZ basis set when conventional basis functions are used.
Because of the dominance of the G(2) contribution to the
temperature-dependent part of the Jones constant, and the par-
tial cancellation of the G(2) and A′,(2) terms, an even stronger
basis-set dependence is observed for the total temperature-
dependent contribution when conventional basis sets are used,
from −68.0 a.u. to −40.1 a.u. when going from the aug-cc-
pVDZ to the aug-cc-pVQZ basis set. We finally note that the
results in Table II indicate that the LAO and conventional ba-
sis set results do not appear to converge to the basis-set limit.
We believe this is due to basis set artifacts, the aug-cc-pVQZ
basis set not being fully saturated, in particular in the out-of-
plane direction, to allow for basis-set limit results to be ob-
tained when conventional basis sets are used.

In Table IV, we have collected the results obtained
for the observable birefringence in terms of the Jones con-
stant kJ . The Jones birefringence of tetrachloromethane and
chlorobenzene have been measured by Roth and Rikken,3, 5

although only upper bounds could be experimentally ob-
tained. Our results are within the upper bound of the experi-
mental observation. We note, however, that solvent effects, as
modeled by a dielectric continuum model, can be substantial,
as demonstrated in an earlier work,34 and thus our estimates
given in Table IV can be expected to be too small. For the
Jones birefringence of naphthalene, we are not aware of any
experimental observations. Our results suggest that naphtha-
lene has a too small Jones birefringence to allow it to be ex-
perimentally measurable within the current experimental de-
tection limits.

VI. SUMMARY

We have presented the first gauge-origin independent im-
plementation of Jones birefringence. The birefringence in-
volves several third- and fourth-order mixed electric dipole,
magnetic dipole and electric quadrupole polarizabilities, and
gauge-origin independence has been ensured through the
use of time-periodic London atomic orbitals.42, 43 The non-
linear response functions that appear in the expression for
Jones birefringence show many similarities to the response

TABLE IV. Jones constants for the molecules investigated in this work calculated at the aug-cc-pVQZ level of theory using London atomic orbitals. A
wavelength of 632.8 nm has been used. For chlorobenzene, a temperature of 294.15 K has been used. Experimental data taken from Ref. 3.

Molecule M ρ J0 × 10−3 kB × JT × 10−6 !n(0) × 1018 !n(T ) × 1013 !n × 1018 kJ kJ exp

CCl4 153.82 1.594 3.904 5.728 5.728 0.144 < 3
C6H5Cl 112.56 1.106 5.047 –13.769 10.120 –0.276 –83.7348 –1.4635 < 2
C10H8 128.17 1.145 10.51 18.506 18.506 0.335
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functions appearing in the calculation of the Cotton–Mouton
effect, which has facilitated the extension of our recent imple-
mentation of the gauge-origin independent calculation of the
Cotton–Mouton effect44 to the calculation of Jones birefrin-
gence using the general framework for higher order deriva-
tives using time- and perturbation-dependent basis sets.41

In contrast to our study of basis-set dependence of the
Cotton–Mouton effect, we find that London atomic orbitals
are necessary in order to obtain results that are close to the
basis-set limit. For small molecules, a basis set of daug-cc-
pVDZ is sufficient to ensure basis-set limit results when Lon-
don atomic orbitals are used. However, as this basis set in
general can be expected to give problems with linear depen-
dence, a fairly good result can also be obtained using the aug-
cc-pVTZ basis set. In order to reach results of a similar qual-
ity when using conventional basis sets, a basis set of at least
aug-cc-pVQZ quality appears to be needed.

There are not many reports of experimental observa-
tions of Jones birefringence in the literature,3, 5 and for the
molecules so far studied theoretically in the literature,27, 28, 34

only experimental upper bounds could be established. With
the formalism presented here, we are in a position to at-
tack much larger molecules for which the Jones constant has
been experimentally measured. Such a study will lend con-
fidence not only to the theoretical calculations, but also to
the experimental observations. However, we have previously
noted that solvent effects appear to be significant for the Jones
birefringence,34 and further work is needed in order to es-
tablish the importance of electron correlation for the Jones
birefringence.27, 28 We expect in the future to build on our re-
cently proposed scheme for calculating the necessary deriva-
tives of exchange–correlation functionals using automatic dif-
ferentiation techniques60 to address the question of electron
correlation effects on the Jones birefringence.
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