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Abstract

An operating system must ensure that no hosted service can cause
the service level agreement of another to be violated. If control is incom-
plete, no amount of over-provisioning can compensate for it and there will
inevitably be ways to circumvent policy enforcement. Still, competing
services are often consolidated on the same machine to reduce operational
costs. This article presents design principles for constructing operating
systems where all resource consumption is under scheduler control. The
viability of the principles serving as a design-foundation is substantiated
through the implementation of a new operating system kernel that pro-
vides commodity operating system abstractions. Using this kernel, the
efficacy of the principles is experimentally corroborated.

1 Introduction

Application service providers and hosted services typically run services on shared
machines to reduce operational costs [2,3,14,15,21,56,63]. The performance of
one service is then vulnerable to load surges in other services. So, a provider
might violate service-level agreements (SLAs), leading to lost customers or mon-
etary penalties [43,44].

The conventional approach to meeting performance guarantees has been to
quantify software and hardware requirements meticulously and then to impose
admission control and resource reservation. This works well if loads can be
anticipated. But hosted services typically are subject to unpredictable load
surges and time-varying resource demands. To accommodate such high variance
by using reservations causes hardware utilization to suffer.
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An operating system kernel where no hosted service can cause the SLA of
another to be violated is called an isolation kernel [51]. The kernel typically
provides instrumentation for attributing resource usage to individual hosted ser-
vices and employs schedulers that use this usage information for enforcing SLAs.
CcpU, memory, disk access, and network bandwidth are among the resources that
must be scheduled—to ignore any risks violating an SLA. For example, an SLA
guaranteeing some specified level of file system throughput can be violated when
there is insufficient CPU time to handle file 1/0, insufficient memory to buffer
file data, or insufficient disk bandwidth to read or write file blocks.

This article presents a new isolation kernel, Vortex. Vortex implements
fine-grained accounting and scheduling of system resources. It defines an ab-
straction for encapsulating resources, a system structure that allows resources to
be scheduled individually or in a coordinated fashion, and a common interface
to resource-usage accounting and attribution.

Three design principles served as a foundation for the design:

(1) Measure all resource consumption. If hosted services can consume re-
sources whose usage is not measured, then resource sharing policies can
be circumvented. Consumption of resources is, to the extent possible,
attributed by Vortex to the hosted service making the demands®.

(2) Identify the unit to be scheduled with the unit of attribution. Consider a
worker thread handling asynchronous 1/0 requests on behalf of multiple
hosted services (an approach used in Windows). If this worker thread
is the unit being scheduled, then the scheduler has no control over which
1/0 requests are handled, even if resource consumption could be retrospec-
tively attributed to the corresponding hosted service(s). Better control can
be achieved by directly scheduling the individual 1/0 requests instead of
the worker thread. That is, a one-to-one correspondence is established
between the unit of scheduling and the unit of attribution.

(3) Employ fine-grained scheduling. This allows less error in attribution and
increases opportunities for sharing.

The rest of this article is organized as follows. In Section 2 we outline the key
elements of the Vortex architecture and discuss implications of our three design
principles. Section 3 gives a detailed exposition of important elements in our
implementation of Vortex on the x86 platform. Section 4 presents an evaluation
of the implementation, using different benchmark applications to determine if
our Vortex implementation instantiates our design principles. Related work
appears in Section 5, and Section 6 offers some conclusions.

1Some resource consumption is hard to attribute at the time of consumption and must
be attributed a posteriori. Examples include: cpu time devoted to processing interrupts and
demultiplexing incoming network packets.
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Figure 1: Summary of key architecture elements.

2 Kernel architecture

2.1 Architecture overview

Figure 1 depicts the key elements of the Vortex architecture. Each resource
corresponds to a fine-grained software component, exporting an interface for
access to and use of hardware or software, such as an 1/0 device, a network
protocol layer, or a layer in a file system.

Higher-level kernel abstractions and functionality are implemented by con-
figuring resources into a resource grid, where resources exchange resource request
messages. A resource request message specifies parameters and a function to
invoke at the interface of the destination resource. The servicing of a request is
asynchronous to the sending resource.

Schedulers may be interpositioned between resources. Requests received
by a scheduler may be buffered and/or dispatched to a resource in any order
consistent with inter-request dependencies.

To account for resource consumption, execution in response to a request is
monitored. The monitoring is performed external to a resource, using instru-
mentation code that measures CPU and memory consumption to execute the
request, perhaps determining those values retrospectively. After each request is
executed, its resource consumption is reported to the dispatching scheduler.

All resource requests specify an activity to which resource consumption is
attributed. If a resource sends request ro as part of handling request 71, then the
activity of 7o is inherited from r1. Computations involving multiple resources
can thus be identified as belonging to one activity. An activity can be a process,
a collection of processes, or some processing within a single process.



In Vortex, we focused on supporting conventional operating system abstrac-
tions, where an activity typically is associated with a process.

2.2 Measure all resource consumption

The cpU consumption incurred by a disk device driver to handle a request for
reading 10 sectors on a disk is typically the same as would be needed for a request
to read 20 sectors. But memory usage differs for these two requests. Moreover,
the actual elapsed time for executing the two requests will vary, depending
on the contents of disk controller cache, the position of disk heads, rotational
position, etc. Thus, a disk is an example of a resource that, for effective control,
requires a scheduler with access to information that is not easily captured in
software, but could be predicted by software. For example, the contents of the
disk controller cache might not be accessible but can be estimated by knowledge
of its size and observations of how long it takes to complete requests.

To give schedulers access to hidden information, Vortex uses resource con-
sumption records. These are extensible data structures describing the resource
consumption incurred by executing a resource request. Fields concerning basic
resource consumption are set by Vortex instrumentation code, and additional
fields are attached by instrumentation code inside the resource itself. For exam-
ple, records describing resource consumption when executing a disk read request
could include cpU and memory usage along with additional information: how
long it took to complete the request, and the size of the queue of pending re-
quests at the disk controller. This additional information would be supplied by
instrumentation code running in the disk driver.

Measurement and attribution of resource consumption are separate tasks.
Measurement is always retrospective whereas attribution may or may not be
known in advance of the request processing. For example, when a read request
is submitted to a disk driver, the activity to attribute is typically known in
advance, but resource consumption might not be available until after request
execution completes. Another example is interrupt processing or early network
packet processing, where the activity to attribute is difficult to deduce until
processing completes. If resource use must be predicted, then a scheduler can
use heuristics based on history to estimate resource consumption.

If attribution cannot be determined, for example if an activity cannot be
associated with some network packet processing, SLAs might be violated. No
amount of instrumentation, scheduling, or over-provisioning, can ensure that an
sLA will be satisfied in the face of unanticipated load. The implication is that an
isolation kernel implementation must make assumptions about the environment.

2.3 Identify the unit to be scheduled with the unit of at-
tribution

Our architecture requires schedulers to control execution of individual requests,
where each request specifies at most one activity for attribution of resource con-



sumption®. Notice, however, that even if each request is identified with some
activity, then attribution ambiguity remains possible. Consider a file block cache
that optimizes memory utilization by sharing identical file blocks across activi-
ties. If two activities access the same file block, then the resource consumption
incurred by fetching and caching the block could conceivably be attributed to
either activity. The scheduler should therefore be aware of the sharing. In prac-
tice, this is accomplished by recording resource consumption records produced
when a file block is fetched and cached, and having these records available to
schedulers.

Timely execution of a request must be ensured, and sharing can cause com-
plications here. Consider a file block request made when an identical file block
is already scheduled for fetch to satisfy some other activity. 1/0 utilization is
improved by delaying this second fetch request until the fetch for the first com-
pletes. But, depending on the scheduler, the pending fetch could be scheduled
sooner if performed in context of the requesting activity. So, timely execution
requires knowledge of a second request, and using priority inheritance tech-
niques [57]. Our policies for attribution and scheduling must accommodate
such nuance.

2.4 Employ fine-grained scheduling

A scheduler might not be able to predict what resource consumption will result
from a scheduling decision. For example, a file is typically implemented using a
file block cache, file system code, a volume manager, and a device driver layer.
Each employs caching, and a file system request could traverse all or only a
subset of the layers. A scheduler is unlikely to know in advance what layers a
file request will traverse nor what is cached at the time a request is made. Thus,
considering file requests as the unit of scheduling might entangle resources that
a scheduler would want to control separately. For example, a scheduler might
want to control requests to the file block cache based on memory consumption,
whereas the amount of data transferred might be a desirable metric at the disk
driver level. To disentangle resource consumption, the Vortex kernel is divided
into many fine-grained resources that can be controlled separately.

An increased number of resources implies a corresponding increase in the
number of requests that have to be scheduled. This increases scheduling over-
head. To reduce overhead, our architecture executes all requests to completion.
Once a scheduler dispatches a request to a resource, the processing of that re-
quest is never preempted. The absence of preemption implies that requests can
be dispatched with little overhead.

Our architecture expects resources to handle concurrent execution of re-
quests, as needed on a multi-core machine. Consequently, resources use syn-
chronization mechanisms to protect their shared state. Absence of preemption
simplifies things considerably. A system that did have support for preemption

2Hardware restrictions might limit a scheduler to controlling execution of an aggregate of
requests. For example, the hardware might not support identifying activities with separate
interrupt vectors.
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Figure 2: Requests are placed in request queues.

of request execution would have to release locks before returning control to the
scheduler or risk deadlocks due to priority inversion [57]. So, a scheduler in such
a system would have to make allowances for increased request execution time in
the case of contested locks. Vortex schedulers need not be concerned with such
complications.

3 Kernel implementation

3.1 Scheduler toolkit

Vortex employs a toolkit that encapsulates and automates tasks common across
schedulers. The toolkit provides implementations for aggregation of request
messages, inter-scheduler communication, management of resource consumption
records, resource naming, and inter-core/CPU communication and management.

The toolkit provides request queues as containers for requests that require
a specific resource, as illustrated in Figure 2. Whenever a resource sends a
request, the toolkit locates an existing request queue or creates a new one, on
which the request will be queued. A scheduler can read, reorder, and modify the
queue. A typical scenario arises with disk requests, where the order in which
requests are forwarded to the disk is re-ordered to reduce disk head movement.

Dependencies among requests are specified by assigning dependency labels
to requests. Schedulers ensure that requests with the same dependency label
are executed in the order made. Requests belonging to different activities are
always considered independent, as are requests sent from different resources.
As such, a resource can generate dependency labels by using a simple counter,
which is concatenated with the sending-resource identifier and the identifier of
the activity to attribute.

Each request is represented using a data structure containing: the desti-
nation resource, the sending resource, the activity to attribute, a dependency
label, an affinity label, and a description of which function to invoke in the
destination resource (along with parameters to that function).

Figure 3 illustrates the different steps involved from when a request is sent
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Figure 3: Steps when sending and executing a request.

until it is executed in the receiving resource. Sending a request follows three
steps in Figure 3(a) where (1) the scheduler associated with the queue is notified,
(2) the request is queued, and (3) the scheduler is given an opportunity to
request CPU time from a CPU multiplexor before control is returned back to the
sending resource.

Then, as depicted in Figure 3(b), execution of a request follows four steps
where (1) the cPU multiplexor decides to allot CPU time to a particular resource,
(2) the governing scheduler is consulted for a decision as to what request(s) to
dispatch to the resource, (3) the selected request(s) are dispatched and executed
to completion, and (4) resource consumption records are made available to the
governing scheduler at some, possibly later, point.

A scheduler can be configured to request resources from another scheduler
instead of from a CPU multiplexor. This provides a means to control other
shared resources. For example, 1/0 devices are typically attached to a host
computer through an 1/0 bus that can be shared with other 1/0 devices. This
bus may, in turn, be part of a hierarchy of shared buses, terminating at an
interface to main memory. If the aggregate capacity of connected 1/0 devices
exceeds the capacity of the bus hierarchy, then the capacity of any single 1/0
device will vary depending on current bus load. Utilizing the ability to configure
schedulers to request resources from another scheduler, an 1/0 bus scheduler can
be introduced without the need to manifest the 1/0 busses as preceding resources
in the resource grid.

More details on scheduler implementation can be found in the Appendix.

3.1.1 Scheduling multi-core architectures

In a multi-core system, one CPU multiplexor is assigned to each core. Each
multiplexor controls how the core is scheduled. To efficiently exploit multi-core
architectures, certain sets of requests are best executed on the same core or on
cores that can efficiently communicate. For example, we improve cache hits if
requests that result in access to the same data structures are executed on the
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Figure 4: Scheduler requesting CPU time from four cPU multiplexors.

same core.

To convey information about data locality, resources attach affinity labels to
requests. Affinity labels give hints about ¢PU multiplexor preferences; if a cPU
multiplexor recently has executed a request with a particular affinity label, new
requests with the same affinity label should preferably be executed by the same
cpU multiplexor.

The toolkit consults the scheduler preceding a resource to obtain a CpU
multiplezor binding for an affinity label. The returned binding is cached by the
toolkit until an expiration specified by the scheduler; until expiration, subse-
quent requests with the same affinity label are executed by the selected cPU
multiplexor. The toolkit ensures that (1) requests are only executed by the cpu
multiplexor selected by the governing scheduler, (2) cpu time is only requested
from selected cpu multiplexors, and (3) a CPU multiplexor only dequeues eligible
requests.

Figure 4 illustrates a scheduler requesting CPU time from four CPU multi-
plexors. One way to instantiate this configuration is to allow scheduler and
queue state to be accessed concurrently by all four ¢PU multiplexors on both
request queue and dequeue paths. This design risks synchronization bottlenecks
and excessive inter-core exchanges of scheduler and queue state. To mitigate
this risk, the toolkit always instantiates multi-core configurations with separate
request queues per core, as illustrated in Figure 5. In addition, the toolkit pro-
motes a scheduler structure that separates shared and core-specific state. For
example, a round-robin scheduler would maintain per-core state about regis-
tered clients (i.e. request queues) along with a shared counter for creating a
CcPU multiplexor binding. Similarly, a weighted fair queueing (WFQ) [18] sched-
uler would maintain per-core state about clients but rely on a more complex
strategy for deciding how affinity labels are bound to cPU multiplexors®. Un-

30ur wrq implementation inspects per-core state to decide which cpu multiplexor should
handle an affinity label; one load sharing algorithm that we have implemented assigns the
label to the core at which the corresponding activity has proportionally received the least
resources.
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Figure 5: Separate scheduler state and request queues per core.

der this structure, sharing typically only occurs when requests are sent from
one core and queued for execution on another, and when a scheduler inspects
shared state to select a CPU multiplexor for an affinity label.

With separate request queues per core, execution-order constraints imposed
by dependency labels are tricky to satisfy. If requests with the same dependency
label are queued to different cPU multiplexors, then load imbalance among
the cpuU multiplexors could result in violating execution order dependencies.
This is prevented in Vortex by requiring resources to assign the same affinity
label to dependent requests, causing dependent requests to have the same cpPuU
multiplexor binding, hence be placed in the same request queue.

Another complication, which is handled by the toolkit, is expiration of a CPU
multiplexor binding. If a binding expires while there are queued requests, then
the toolkit will, in one atomic action, obtain a new binding from the governing
scheduler, move affected requests to a potentially new queue, and update its
cpU multiplexor binding cache.

3.1.2 Scheduler configuration

A configuration file provides the toolkit with information it needs for instanti-
ating schedulers in a resource grid. The configuration file describes the type of
scheduler to use at each resource, as well as describing configuration parameters.
The process of instantiating these schedulers is fully automated: at boot time,
the toolkit reads the configuration file and instantiates schedulers.

The toolkit maintains a repository of all available schedulers. Schedulers
in this repository are compiled as part of the kernel. Each scheduler is named
according to the type of algorithm it implements. For example, our wrQ sched-
uler falls into the category proportional share schedulers and is, as such, named
“propshare.wfq”. The name of a scheduler is used in a configuration file to specify



<?xml version="1.0"7>
<schedulerconfig>
<!—— CPU Multiplexors ——>
<cpumultiplexor tag="cpumux0">
<core> 0 </core>
<algorithm> propshare.wfq </algorithm>
< /cpumultiplexor>
<cpumultiplexor tag="cpumux1">
<core> 1 </core>

<algorithm> propshare.wfq </algorithm>
< /cpumultiplexor>
<!—— Resource schedulers ——>
<resourcescheduler>

<resource> resource.tcp </resource>
<algorithm> propshare.round—robin </algorithm>
<cpumultiplexor>
<tag> cpumux0 </tag>
<share> 20 </share>
< /cpumultiplexor>
<cpumultiplexor>
<tag> cpumuxl </tag>
<share> 40 </share>
< /cpumultiplexor>
< /resourcescheduler>
<resourcescheduler>
<resource> resource.thread </resource>
<algorithm> priority.strict </algorithm>
<cpumultiplexor>
<tag> cpumux0 </tag>
<share> 40 </share>
< /cpumultiplexor>
< /resourcescheduler>
< /schedulerconfig>

Figure 6: Excerpt from a scheduler configuration file.

the particular scheduler to associate with a resource.

Figure 6 contains excerpts from a configuration file, where a round-robin
scheduler is selected for the TCP Resource and a strict-priority scheduler is
selected for the Thread Resource*. The TCP scheduler is configured to request
CPU time from both cPU multiplexor 0 and cpu multiplexor 1; the Thread
Resource only requests CpU time from CPU multiplexor 0. The configuration
of Figure 6 is an example of an asymmetric configuration, i.e. a configuration
where resources are configured to use only subsets of the available cores. Such
configurations are fully supported by the toolkit. This allows deployments with
some cores dedicated to resources, where scaling through fine-grained locking or
avoidance of shared data structures is difficult. Typical examples are resources
that govern 1/0 devices using memory-based data structures to specify DMA
operations.

4The Thread Resource provides a thread abstraction for processes.
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The toolkit does not analyze scheduler composition, so a configuration may
contain flaws. For example, if a resource is scheduled using an earliest deadline
first [41] algorithm and CPU time is requested from a CPU multiplexor using a
WFQ algorithm, then the resource scheduler can make no real-time assumptions
about deadlines. Reasoning about correctness requires a formalization of the
behavior of each scheduler, and then an analysis of the interaction between
behaviors. See [22,25,37,40, 54, 55] for work in this direction.

3.2 Virtual memory management

The Vortex virtual memory management (VMM) architecture is depicted in Fig-
ure 7. The Address Space Resource (ASR) implements logic for constructing
and maintaining page tables and also provides an interface for allocating and
controlling translations for regions of an address space. ASR is used by other
resources to export and make data objects accessible in a process address space.
For example, the Executable Resource (ER) uses the ASR interface to export the
segments of an executable file (text, data, BSS, etc.) into the pertinent regions
of the address space.

Page faults are directed to the ASrR. To handle one of these, ASR determines
whether the faulting address is in a region allocated by some resource and, if
s0, sends a request for data to the resource responsible for that address. When
receiving such a request, resources are required to respond with data already
cached in the resource, by allocating memory from the memory multiplexor or
by retrieving the data from other resources. For ER, further communication
with the File Cache Resource (FCR) is typically performed to retrieve data from
the executable file.

The Swap Resource (SR) provides an interface for preserving objects on sec-
ondary storage. Resources use SR whenever reclaimed memory contains objects
not easily reconstructed from other sources. For example, text can be re-read
from an executable, but modified heap and BSS memory must be preserved for

11



future reference.

Reclaiming memory

Whether additional memory is needed when executing a request is difficult for
the sending resource to determine without access to state that is internal to the
receiving resource. For example, the receiving resource might use caching to
speedup request processing. Therefore, resources allocate memory from the
memory multiplexor when needed, typically as part of executing a request.
Available memory being low or the corresponding activity exceeding its memory
budget, causes the memory multiplexor to reject an allocation. In such cases,
memory reclamation actions must be initiated to ensure eventual execution of
the original request.

The memory multiplexor decides what physical memory to reclaim. A re-
source must be prepared to relinquish references to allocated memory upon re-
ceiving memory reclamation requests from the memory multiplexor. For voiding
references to the physical memory specified in a reclamation request, resources
are required to determine what that memory is used for. To maintain this
correspondence, the memory multiplexor interface allows resources to associate
cookies with memory allocations. An associated cookie is returned with each
memory reclamation request; this cookie aids in locating references to the mem-
ory being reclaimed. For example, when FCR allocates memory for a file block, a
reference to the file serves as the cookie. That way, if the memory is reclaimed,
then the cookie enables the FCR to update its internal data structures.

Our implementation associates a separate activity with each process, so the
reclamation policy of the memory multiplexor differentiates among processes.
By inspecting allocation requests, the memory multiplexor can determine how
much memory each resource consumes on behalf of a particular activity. Still,
making reclamation decisions conducive to improved performance typically re-
quires additional information. For example, if frequently used memory in the
process heap is reclaimed then performance will erode. Likewise, reclaiming
process text memory will result in poor performance.

To obtain needed additional information, the memory multiplexor relies
on resource instrumentation, to produce resource information records. These
records provide memory usage statistics and other pertinent information. For
example, ASR regularly collects the modified and access bits stored by page ta-
bles. Similarly, ASR informs the memory multiplexor whether memory has been
modified.

The act of reclaiming memory might require updates in resources other than
the one that initially allocated the memory. For example, ER relies on FCR to
cache segments of the executable file. Moreover, ER uses ASR in order to insert
page table translations for those segments. Hence, memory for caching segments
is initially allocated for FCR, but references to that cache ultimately exist in both
the FCR and the ASR. In order to reclaim this memory, updates in ASR and FCR
are needed. The memory multiplexor offers an interface for this. Using the
interface, ASR causes the memory multiplexor to direct reclamation requests to

12



the ASR. Upon receiving a reclamation request, ASR performs the necessary
page table updates and forwards the request to the resource responsible for
the corresponding region. In the case of executable segments, ER will in turn
perform its internal bookkeeping and then forward the request to the FCR.

Associating a single activity with all vMM-related requests from a process
does not prohibit a scheduler from treating various types of process requests
differently. We have implemented schedulers for FCR that reorder and delay
queues according to the sending resource; this allows Vortex to favor demand-
paging traffic over regular 1/0 traffic from a process. It reduces the time before
memory is freed for reuse and also the duration a process is blocked awaiting
arrival of pages not present.

3.3 I/0O

Vortex implements the POSIX asynchronous 1/0 interface. This interface sup-
ports asynchronous transfer of data between buffers in a process address space
and a kernel supported 1/0 resource. Each 1/0 operation is described by a data
structure that specifies a descriptor on which the operation is to be performed, a
pointer to a data buffer, and some indication of how the calling process/thread
should be notified once the operation terminates.

3.3.1 Asynchronous I/O

The POSIX asynchronous 1/0 interface is largely implemented by the asyn-
chronous 1/0 resource (AIOR). AIOR abstracts each 1/0 operation in terms of a
source resource that produces data and a sink resource that consumes data. The
source corresponds to the provider of data for a region in the process address
space in the case of writes, and it corresponds to any 1/0 resource for reads.
The sink is analogous. The AIOR orchestrates data flow from source to sink.

AIOR requests data from a source resource by sending it a READ request. The
source in turn responds with a READ _DONE request containing the target data.
A similar protocol is used when interacting with sink resources. AIOR writes
data to a sink by sending a WRITE request to it, and the sink signals that the
data has been consumed by sending a WRITE _DONE request back. Sources and
sinks may use other resources to satisfy a READ or WRITE request or to interact
with a hardware device.

1/0 operations can execute concurrently. Prefetching and overlapping intro-
duce ordering constraints among requests belonging to the same 1/0 operation,
because data must arrive at a sink in the order sent by a source. AIOR solves this
problem by assigning the same dependency label to all requests derived from the
same 1/0 operation. Thus, multi-core parallelization occurs at the granularity
of 1/0 operations.

Similar to Vortex’ VMM system, AIOR sets the activity binding of derived
requests to the requesting process. By inheritance, all other requests generated
as part of the 1/0 operation will then point to the same process.

13



3.3.2 Interrupts

Interrupts are integral to the operation of many 1/0 devices. A resource that
operates such an 1/0 device must register with the Interrupt Resource to receive
interrupts originating from the device. Interrupts are initially captured by a low-
level Interrupt Resource handler, which creates and sends a resource request
describing the interrupt to the appropriate resource.

Resource consumption for interrupts is attributed retrospectively. For the
low-level handler, instrumentation code creates resource records to return CPU
time to any interrupted activity. Similarly, instrumentation code in the resource
receiving the interrupt request produces resource records for retrospective at-
tribution, if the causing activity can be deduced.

3.4 The process, system calls, and threads

A resource may export routines in its interface that should be accessible not
only to other resources but also to processes. Such functions are exposed as
Vortex system calls. The resource programmer achieves exposure by using a
stub generation facility that, for each function, creates a stub for converting
a system call into a resource request message sent to the resource. The stub
also decouples system call arguments from any process-dependent context. For
example, the stub translates virtual memory pointers to their corresponding
physical memory pointers, causing page faults if necessary to bring data pre-
served by the Swap Resource into physical memory. Reference counting ensures
the physical memory pointers are valid for the duration of the call®.

System call messages from a process originate from the Process Resource
(PrR). The PR implements the conventional process abstraction, using ASR to
handle address space operations. To implement process execution contexts, the
PR uses the Thread Resource (TR). TR provides an interface for conventional
thread operations, such as create, exit, suspend, resume, join, etc.

TR drives execution of threads by using resource request messages. When
a thread enters the ready state, a resource request is sent to TR, leading the
TR scheduler to request CPU time from a CPU multiplexor. When the request
is dispatched, TR locates the control block of the corresponding thread, sets up
a timeslice timer, and activates the thread. After activation, the thread runs
until the timeslice expires or a blocking action is performed. While the thread
is running, the cPU multiplexor regards TR as executing requests. (Preemption-
interrupts are delivered directly from the low-level Interrupt Resource handler,
since subjecting these to scheduling would require involvement of the CPU mul-
tiplexor.)

Only the process address-space and system-call stubs are addressable to a
thread. Consequently, a thread cannot subvert a scheduler by directly invoking
a function in a resource interface.

Turning system calls into requests increases overhead but improves scheduler
control. For example, a directly-invoked function could erode scheduler control

5Concurrent reclamation of memory is delayed until the call completes.
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by obtaining locks, thereby preventing timely execution of other scheduler-
dispatched requests. Yet, in some cases, executing a function does not in-
terfere with scheduler control. Examples include calls such as getpid() and
gettimeofday() and functions in the TR interface. To accommodate these
cases, the resource programmer is allowed to construct stubs that directly call
functions in the resource interface.

Direct invocation of functions in a resource could allow one service to in-
terfere with others. For example, in Vortex, we primarily use interprocessor
interrupts (1P1s) to dispatch work that requires immediate execution on a spe-
cific core. In an early implementation, we used IPIs to perform operations on
threads hosted by remote cores. This decision, however, enabled a thread to
disrupt work being performed on all cores in the system by spawning a series
of thread operations. The current implementation uses the IPI mechanism only
when the target thread is running on a remote core; otherwise, a request is
instead sent to TR resource.

3.5 Resource implementation

Kernel-level programming within Vortex amounts to implementing resource re-
quest message-handlers and resource schedulers. A typical message handler
might reply to a request or send a request to another resource. The FCR, for
example, does both: it may respond with a disk block from its cache or it may
send a request to a file system resource.

To assist the kernel-programmer, Vortex offers support for several concur-
rency and continuation models for handling requests.

PER-RESOURCE BLOCKING: Here, a resource may temporarily suspend de-
livery of requests, which then accumulate at their original request queues. Un-
blocking can be done by another resource or by delivery of an interrupt request.
This structure is useful for implementing drivers for 1/0 devices, whose capacity
may be occasionally exceeded by the flow of requests.

PER-REQUEST BLOCKING: When only some requests require blocking, per-
request blocking is more appropriate. Consider, for example, a File Cache Re-
source that contains some of the requested disk blocks but not others, requiring
a fetch from a file system resource. To support such situations, the toolkit
introduces a pending queue. When a resource needs to block an incoming re-
quest until it receives a reply to its outgoing request, the resource can place the
incoming request into the pending queue and attach a trigger to the outgoing
request. Triggers point to one or more requests in the pending queue. Resources
are required to include the trigger in their reply to a request, so the toolkit can
unblock the referenced request automatically when the reply arrives. Multiple
requests can be associated with the same trigger, allowing multiple requests
from the same activity to be unblocked simultaneously.

EXPLICIT CONTINUATIONS: In resources with several potential blocking
points, per-request blocking may cause redundant re-execution of code after un-
blocking (since execution always starts at the beginning). For example, in the
Vortex EXT2 file system resource, a request may have to be blocked three times,
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causing instructions leading up to the first blocking point to execute each time.
To help avoid such redundant re-execution, our system allows blocked requests
to carry a pointer to a handler routine that resumes execution after unblocking.

COOPERATIVE THREADING: When a resource uses explicit continuations
with a large number of blocking points, the code is split into many functions
without a clear control flow between them. Cooperative threading allows pro-
grammers to use blocking operations in resources by saving and recovering the
state behind the scenes. To use it, a resource would typically spawn for each
request a separate thread, which would execute for as long as the request is
being processed.

4 Evaluation

Vortex is implemented in C and, excluding device drivers, comprises approxi-
mately 70000 lines of code. The system runs on x86-64 multi-core architectures.
The questions we hoped to answer in our evaluation of Vortex were:

1. Is all resource consumption accurately measured?
2. Is resource consumption attributed to the correct activity?

3. Does the architecture permit sufficient control for schedulers to isolate
competing activities?

In all experiments, Vortex was run on a Dell PowerEdge M600 blade server
with two Intel Xeon E5430 Quad-Core processors. Cores run at 2.66GHz, have
separate 64x8 way 32KB data and instruction caches, and, in pairs, share a
6MB 64x24 way cache (for a total of 4 such caches). Each processor has a
1333MHz front-side bus and is connected to 16GB of DDR-2 main memory
running at 667MHz. Through its PCle x8 interface, the server was equipped
with two 1Gbit Broadcom 5708S network cards. And, to the integrated LSI
SAS MegaRAID controller, two 146GB Seagate 10K.2 disks were attached and
set up in a raid 0 (striped) configuration.

To generate load, we used a cluster of blade servers running Linux 2.6.18.
These were of the same type and hardware configuration as the server running
Vortex, and they were connected to the Vortex server through a dedicated HP
ProCurve 4208 Gigabit switch.

4.1 Measurement technique

Using a system call interface, a process can obtain data on its own performance
and, subject to configurable access rights, the performance of other processes in
the system. These performance data are obtained from schedulers through an
interface that they are required to support (shown in Table 3 of the Appendix).
For each client of a scheduler, the data includes attributed CPU and memory
consumption and, if used, consumption as attributed by the scheduler using
other performance metrics.
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For most experiments, we obtained performance data by running a dedicated
process on Vortex. This process was granted full access to all performance data
in the system and exported this data upon request using TCp. External to
Vortex, a script communicated with the process, collecting samples once per
second. The size of each sample was around 100KB; whenever possible, the
script accessed a network interface card not actively used in an experiment.

When a process performs a system call to obtain performance measure-
ments, Vortex returns measurements timestamped with the current value of
the CPU timestamp counter register of core 0. These timestamps correlate CPU
measurements with elapsed time; discrepancies reveal unattributed CPuU con-
sumption. Retrospective attribution complicates things. Some samples indi-
cate under-attribution while others indicate over-attribution, if there is ongoing
resource-consumption when the samples are obtained. Data accuracy, however,
is bounded by the consumption incurred by processing one request message.

Most messages can be processed by the CPU in a few microseconds, causing
accuracy to be in the same order. Thread-ready messages, however, may lead
to several milliseconds of uninterrupted CPU consumption. The accuracy of
performance data pertaining threads and the overall CPU-time consumption on
cores that run threads depends upon choice of thread timeslices. For example,
with thread timeslices set to 5 milliseconds, the expected accuracy is +£0.5% for
individual samples. We verified that our measurements are in agreement with
expected accuracy by performing a series of experiments with a process running
one CPU-bound thread per core and varying the duration of timeslices. In these,
we found no samples to be outside expected accuracy.

Individual samples may be inaccurate, but under-attribution in one sample is
compensated for in the next sample. Thus, for a series of consecutive samples, a
deviation between resource availability and attribution larger than the expected
accuracy of an individual sample indicates that some consumption is not being
properly accounted for. In the aforementioned experiments, comparing the sum
of elapsed to the sum of attributed cycles shows the number of unaccounted
cycles to be within the expected accuracy of individual samples. For example,
in one experiment, over 100 seconds, a total of 86,028,592 cycles were not
accounted for (0.004% of elapsed cycles). This was within the expected accuracy
of an individual sample (+106,400,000 cycles).

During an experiment, we ensured that the only processes running on Vortex
were those involved in the experiment itself. We ran each experiment 10-20
times to verify the precision of performance data; deviations were found to be
within the accuracy of individual samples. For clarity, we therefore do not
include error bars in figures. Also, for ease of visual interpretation, some figures
were produced using Gnuplot with the dgrid3d commandS.

6In dgrid3d mode, grid data points represent weighted averages of surrounding data points,
with closer points weighted higher than distant points.
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and 17% cPU entitlement and cPU multiplexors configured with WrqQ schedulers.

4.2 Attributing CPU consumption

To evaluate whether CPU consumption is being attributed to the correct activity,
we conducted an experiment involving three CPU-bound processes. Each process
ran one CPU-bound thread per core. Recall from Section 3.4 that threads are
implemented by the Thread Resource (TR). The TR drives the execution of
threads by processing the request messages sent to it when a thread enters the
ready state. Processing a message involves setting up a timeslice timer and
dispatching the corresponding thread. To isolate processes, Vortex creates one
TR instance per process. Each TR instance operates with a separate scheduler
that manages threads belonging to a corresponding process’.

In the experiment, cpU multiplexors use a weighted fair queueing (WFQ)
scheduler and assign weights to TR instances of the processes according to a
50%, 33%, and 17% entitlement. For the TR schedulers, we used a simple
round-robin scheduler with a load sharing algorithm thereby ensuring that pro-
cess threads run on separate cores (i.e. CPU multiplexor bindings with infinite
duration and initial binding always assigned to the core with the least number
of threads bound to it). Figure 8 illustrates the resulting cpu utilization: the
cpU multiplexor WrQ scheduler on each core allots CPU time to TR schedulers,
which in turn execute process threads, in strict accordance with the desired
50%, 33%, and 17% entitlement.

7This avoids scenarios where, for example, a process creates lots of threads in order to
increase scheduling overhead for other processes.
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4.3 Attribution and isolation under competition

The previous experiment does not establish whether cPU consumption is cor-
rectly attributed when a resource receives requests from multiple independent
activities.

To evaluate attribution-accuracy when a resource processes requests from
independent activities, we conducted an experiment with three processes per-
forming file reads. The processes each ran one thread per core, with threads
programmed to consecutively open a designated file, read 32KB of data, and
then close the file. To perform a read, three resources are involved® (in addition
to the TR instances): the Address Space Resource (ASR), Asynchronous 1/0
Resource (AIOR), and the File Cache Resource (FCR).

Due to the few files involved, the experiment is cpu-bound. And since
threads await the completion of one read operation before performing another,
throughput is dependent on the amount of CpU available to the threads and the
three resources involved.

In the experiment, we configured a resource grid, as illustrated in Figure 9,
with separate wrQ schedulers for the ASR, AIOR, and FCR resources. CPU con-
sumption was used as a metric. CpU multiplexors had wrQ schedulers, where
shares gave the three resources a minimum of 50% of CPU resources (shared
equally among themselves). The remaining CPU resources were assigned to pro-
cesses according to a 50%, 33%, and 17% entitlement. The same entitlement
was used for the processes at the ASR, AIOR, and FCR schedulers.

Figure 10 shows cpuU utilization at the different resources involved in the
experiment. We see that the bulk of cPU consumption is by the threads (ap-
proximately 45 + 30 + 15 =2 90%). This is due to how Vortex implements the

8 After the first read operation the target file is cached in memory by the rcr. Thus, in
the following we ignore any other file system related resources.
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POSIX asynchronous 1/0 API—Vortex avoids copy operations on the 1/0 path,
making read data available to a process through a read-only memory mapping.
For the receiving thread, data is copied into the buffer specified in the A10
control block describing the operation.

Figure 11 shows a breakdown of the relative CpU utilization attributed to the
processes at all resources and the threads. From Figure 11(a) we conclude that
cpU multiplexor wrQ schedulers operate as expected; threads accurately receive
excess CPU resources, i.e. entitled resources not used by the ASR, AIOR, or FCR,
proportionally to their 50%, 33%, and 17% entitlement. The CPU resources
available to the threads translate into a corresponding CPU consumption at the
ASR, AIOR, and FCR resources, as shown in figures 11(b)—(d).

So, the experiment not only demonstrates that resource consumption is ac-
curately measured and attributed (goal 1 and 2 of Section 4), but also that the
schedulers have sufficient control to isolate among competing activities (goal 3
of Section 4).

4.4 Web server workloads

We further investigate attribution and isolation under competition by consider-
ing an experiment with (1) schedulers using metrics other than cpu time (bytes
written and read), (2) resource consumption that is inherently unattributable at
the time of consumption (packet demultiplexing and interrupt processing), and
(3) an 1/0 device rather than the CPU as a bottleneck to increased performance.
The experiment also exercises a larger number of resources and represents a
more realistic situation than the micro-benchmarks discussed above.
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Figure 11: Breakdown of relative cpuU utilization.

Web server software THTTPD? was run, with modifications to exploit Vor-
tex’s asynchronous 1/0 API and event multiplexing mechanisms. THTTPD is
single-threaded and event-driven. To generate load to the web servers, we ran
ApacheBench'® on three separate Linux machines. On each machine, ApacheBe-
nch was configured to generate requests for the same 1MB static web page re-
peatedly and with a concurrency level of 16. Prior to the experiment, testing
revealed ApacheBench could saturate a 1Gbit network interface even from a
single machine. The three Linux machines could together generate load well in
excess of network interface capacity.

Table 1 lists the Vortex resources used by the web servers. By default,
Vortex manifests a network device driver as two resources: the Device Write
Resource (DWR) and the Device Interrupt Resource (DIR). In the case of a
network interface card (NIC) driver, insertion of packets into the transmit ring is
performed under the auspices of DWR. Transmit-finished processing and removal
of received packets from the receive ring is handled by DIR.

DIR received packets, in the form of request messages, are sent to the Network
Device Read Resource (NDRR) for demultiplexing. By inspecting packet headers,
NDRR determines whether a packet is destined for an open TCP connection, is a

9http://www.acme.com/software/thttpd /thttpd.html
Ohttp:/ /www.apache.org/
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Table 1: Resources used in web server experiment.

Resource Description

Device Interrupt Resource (DIR) NIC interrupt processing
Device Write Resource (DWR) Insert packets into NIC tx ring
Network Device Write Resource (NDWR)  Insert ethernet header into packet
Network Device Read Resource (NDRR) Demultiplex incoming packets
TCP Resource (TCPR) Process TCP packets

TCP Timer Resource (TCPTMR) Process TCP timers
Asynchronous 1/0 Resource (AIOR)  Orchestrate asynchronous 1/0

File Cache Resource (FCR) File caching

Address Space Resource (ASR) Address space mappings

SYN packet targeting a connection in the listen state, or is a packet that should
be dropped. If a TCP connection is found, then the packet is sent to the TCP
Resource (TCPR) for further processing. Note that processing by both DIR and
NDRR is considered infrastructure; the activity to attribute is determined by
NDRR as part of demultiplexing. Also note that there is no separate 1P resource.
Since 1P code is used only in conjunction with creating TCP or UDP packet
headers, 1P is accessed directly instead of manifested as a resource.

As described in Section 3.1.1, resources assign request affinity labels to give
schedulers hints about CPU multiplexor preferences, and they assign dependency
labels to control request-processing order. When a packet is removed from the
NIC receive ring, an affinity and dependency label are assigned to the request.
NDRR and TCPR both access fields in the packet header and the TCP control
block. So for performance reasons, packets belonging to the same TCP connec-
tion ideally would be processed on the same core. TCPR processing of packets
in NIC-dequeue order is not a requirement for correctness but can prevent un-
necessary TCP communication. For example, the default policy for TCP when
receiving out-of-order packets is to reply with an ack packet (which, in turn,
might trigger fast retransmit). Also, the Vortex TCP stack contains the usual
fast-path optimizations for in-order packet processing.

To preserve packet ordering, packets from the same TCP connection are as-
signed the same dependency label at intermediate resources. Recall that the
scheduler toolkit only guarantees ordering between a sending and a receiving
resource. To ensure that packets are processed on the same core, identical de-
pendency labels are assigned across all intermediate resources.

For incoming packets, the DIR determines dependency labels by inspecting
packet headers and computing a hash of the sending and receiving 1p addresses
and TCP ports. The computed label, which is identical for all packets belong-
ing to the same TCP connection, is inherited by all intermediate resources. If
packet processing creates a new TCP connection, then that label is stored in the
TCP control block and attached to any packet sent. The dependency label is
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Figure 12: Resource grid configuration for the web server experiment.

computed accordingly for connections created by processes running on Vortex.

In the experiment, we configured CPU multiplexors with WrQ schedulers.
Resources at each cpu multiplexor were configured with a 50% entitlement
(shared equally among themselves), with the remaining capacity split among
web servers according to a 50%, 33%, and 17% formula. Since the web servers
are single-threaded, they only draw CPU resources from one core. To promote
competition, we configured TR schedulers with a load sharing algorithm that
selected the same cpU multiplexor for all threads (core 7). The resource grid,
shown in Figure 12, was configured with separate WrQ schedulers for each re-
source. At each resource scheduler we configured the infrastructure activity with
a 50% entitlement, with the remaining split among the web servers according to
a 50%, 33%, and 17% formula. Furthermore, schedulers were configured to use
CPU consumption as a metric, except for the NDRR, NDRW, and DWR schedulers
which were configured to use bytes transferred. The DWR resource is instru-
mented to emit a resource record whenever a write operation is accepted by the
underlying driver (i.e., a packet successfully inserted into the NIC transmit ring).
Likewise, the DIR emits a resource record when a read operation completes.

In Vortex, a resource with insufficient capacity rejects a request. Upon
rejection, the scheduler toolkit places the corresponding resource in a suspended
state and requeues the rejected request in the originating queue. Until resumed,
no new requests are sent to the resource. For the NIC in our system, DWR rejects
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Figure 13: Bytes written at the DWR resource.

a request if the NIC’s single transmit ring is full, after which DWR remains
suspended until DIR has performed write-completion processing. DWR capacity
is limited by the speed at which the NIC can copy packets from the transmit ring
to the network. Moreover, since access to the NIC transmit ring is serialized by
a lock, only a single core can insert packets at any given time. Thus, configuring
the DWR to request CPU from multiple CPU multiplexors would only result in
excessive contention on the NIC lock and not in increased capacity. For this
reason, we configured the DWR scheduler to request CPU only from a single
cpU multiplexor (core 6). Even when the NIC is running at full capacity and
the DWR is frequently suspended awaiting DIR processing, DIR processing is
likely to overlap with attempts to insert packets into the transmit ring. Thus,
DIR processing is best performed on the same core as DWR to avoid NIC lock
contention!!.

Figure 13 shows how network bandwidth is shared at the DWR resource
during our experiment. The demand for bandwidth generated by ApacheBench
is the same for all web servers. However, the actual bandwidth consumed by
each web server depends on its entitlement, as we desired. Moreover, note that
the total bandwidth consumed is close to the maximum capacity of the NIC,
confirming that the workload is 1/0 bound.

Figure 14 breaks down CPU utilization across the involved resources. For this
workload, 28.3% of available cpu cycles (the equivalent of 2.26 cores) is con-
sumed. Not surprisingly, the bulk of CPU consumption is by TCP and resources

11\When pir processing runs on a different core from the pwr, we measured an overall
5.5% increase in cpu consumption. Lock profiling further showed that the increase was all
attributable to Nic lock contention.
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downstream. Consumption of 14.24% of available cPU cycles (the equivalent
of 1.13 cores) can be attributed to infrastructure. Of this, 7.2% (0.58 cores) is
interrupt (i.e. DIR) processing and the remainder is packet demultiplexing (i.e.
NDRR processing). DIR processing takes place on core 6; NDRR processing is
load-shared among cores due to affinity label assignment. Observe that DWR
processing has a relatively fixed cost; when NIC operates at maximum capacity, a
relatively constant number of packets needs to be transmitted (where the exact
number depends on TCP dynamics). In contrast, the cost of interrupt processing
is heavily influenced by the frequency of interrupts, which is bounded by the
rate at which packets are removed from the NIC transmit ring (i.e. at most one
interrupt per packet sent). (The number of interrupts due to packets received
has the same bound, but a NIC operating at maximum transmit and receive
capacity is not likely to increase interrupt frequency since the driver would co-
alesce receive with transmit processing. And the NIC in our system does not
have separate interrupt vectors for transmit and receive.)

In the experiment, cores were measured to operate at approximately 15+ 3%
utilization, whereas core 6 operated at 100%. Core 6 might appear to be a
bottleneck, but Figure 13 shows that the NIC is operating at maximum capacity,
as desired. On core 6, 28% of utilization is due to DWR processing, 58% DIR
processing, and the remaining is due to other resources. Since the NIC uses
message-signaled interrupts, interrupts can be delivered with low latency and
at a rate matching packet transmission. For this experiment, the DIR processes
approximately 7300 interrupt messages per second. In contrast, TCP transmits
approximately 82000 packets and receives 24000 incoming packets per second.
Thus, overhead related to removal of sent packets from the NIC transmit ring
is amortized over approximately 11 packets on average. Reducing the load
on core 6 would only result in more frequent servicing of interrupts, leading
to more frequent interrupts, which in turn increases CPU consumption. We
experimentally verified this feedback effect by only running the DIR and DWR
on core 6. Its load stayed at 100%. The slightly reduced per-interrupt overhead
was subsumed by the increased number of interrupts.

Vortex requires resources to handle concurrent execution of requests. In
our implementation, we use spin-locks to preserve invariants on shared state.
For this experiment, an average of 1,770,000 lock operations are performed per
second. The majority protect request queue operations. Lock profiling did show
some lock hotspots, indicating a need to re-visit synchronization approaches,
but overall lock contention in this experiment was found to be low (i.e. few cpu
cycles are spent busy-waiting on locks).

Despite low lock contention, the aggregated overhead of lock operations is
significant. For the hardware we are using, obtaining and releasing a lock when
the operation can be executed internally in a core’s cache involves approximately
210 cpu cycles. In practice, due to the need for inter-core communication when
performing lock operations, profiling shows the average locking overhead to be
738 cpU cycles. In total, 22.2% of consumed CPU cycles are attributable to
locking overhead and contention. In contrast, had all locking operations been
executed internally in a core’s cache, only 6.3% of consumed cpU cycles would
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have been attributable as such. The latter is to some extent optimistic, but
underscores that synchronization is costly in a multi-core environment.

4.5 File system workloads

We continue by considering an experiment involving file 1/0. Similar to the
web server experiment above, this experiment involves schedulers using bytes
transferred as a metric, interrupt processing, and an 1/0 device as a bottleneck
to increased performance. The experiment differs by (1) introducing a foreign
scheduler outside direct control of Vortex (the disk controller firmware sched-
uler), (2) 1/0 device capacity that fluctuates depending on how the device is
accessed (i.e. which disk sectors are accessed and in what order), and (3) 1/0
requests of markedly different sizes'2.

The experimental design involved three processes performing file reads. The
processes each ran one thread per core, with threads programmed to read con-
currently from 32 different, 2MB, files. Each file was consecutively opened,
read using 4 parallel streams from non-overlapping regions, and then closed. To
ensure that the experiment was disk-bound, each file was evicted from mem-
ory caches after it had been read'®. Each process thus maintained concurrent
read operations from 256 different files, for a total 768 files altogether. Before

12Before optimizations performed by the disk controller firmware, Vortex employs an op-
timization whereby 1/0 to adjacent blocks is coalesced. This is an optimization employed by
most operating systems. Vortex restricts the optimization to requests belonging to the same
activity and limits the resulting requests to encompass transfer of at most 32KB of data.

13Vortex supports fine-grained management of cached files; mechanisms can create check-
points of the file system and evict file state at the granularity of individual files or aggregates
of files used by specific activities.
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Table 2: Resources used in file system experiment.

Resource  Description

Device Interrupt Resource (DIR) Interrupt processing
Device ReadWrite Resource (DRWR) Insert read or write requests
Storage Device ReadWrite Resource (SDRWR)  Buffer translations
SCSI Resource (SCSIR)  SCSI messsages
Storage Resource (SR) Export disk volumes
EXT2 Resource (EXT2R) Ext2 file system
File Cache Resource (FCR) File caching
Asynchronous 1/0 Resource (AIOR)  Orchestrate asynchronous 1/0
Address Space Resource (ASR)  Address space mappings

the experiment was started, an empty file system was created on disk and files
were then created and synced to disk. Files were created concurrently to avert
sequential file block placement on disk'4.

Table 2 lists the Vortex resources used by the processes. Vortex manifests a
storage device driver as two resources: the Device ReadWrite Resource (DRWR)
and the Device Interrupt Resource (DIR). Insertion of disk read/write requests
is performed by DRWR and request finished processing is handled by DIR. The
Storage Device ReadWrite Resource (SDRWR) interfaces the storage system with
DRWR. In particular, SDRWR translates between storage-specific request and
data-buffer representations and the representations that are used by all Vortex
device drivers!®. Since the disks in our system were ScSi-based, all requests
passed through the scsi Resource (SCsIR) for the appropriate SCSI message cre-
ation and response handling. SCSIR is situated upstream of SDRWR and down-
stream of the Storage Resource (SR). SR abstracts differences in disk technology
by providing a naming scheme and a general block-based interface to a disk or
disk volume. For example, after SCSIR has probed the underlying scsi topology,
discovered disks and RAID volumes are registered with SR as storage volumes,
whereby a file system can be associated with them or raw access can be made
by e.g. file system creation and recovery tools. The Ext2 Resource (EXT2R)
is upstream of SR and implements the Ext2 file system on a storage volume
provided by sk. The File Cache Resource (FCR) initially receives file operations
and communicates with EXT2R to retrieve and update file meta-data and data.

To ensure a consistent state on disk, file systems typically restrict how disk
requests can be ordered after sent. EXT2R uses dependency labels to satisfy its
ordering constraints. Requests involving blocks that are private to a file (i.e. disk
block table and data blocks) are assigned the same dependency label by EXT2R
and intermediate resources, causing requests to arrive at the disk in the order

14 A sequential file block placement would result in the majority of disk requests to be of
the same size due to coalescing of reads to adjacent blocks.

I5Vortex defines a general request and data-buffer interface that all device drivers must
adhere to.
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sent'%, Note that EXT2R associates the originating activity with these requests;
external synchronization protocols are assumed when different activities overlap
1/0 to a file. For blocks containing information pertaining to multiple files (i.e.
inode blocks and free inode- and free-bitmap blocks), EXT2R associates the
infrastructure activity with requests and assigns dependency labels similarly to
private blocks. Use of the infrastructure activity is needed for consistent state
on disk!”, because the toolkit only guarantees ordering for requests belonging
to the same activity.

In the experiment, CPU multiplexors were configured with WrQ schedulers.
The resource grid was configured with separate WrQ schedulers for each re-
source. Resources were given a 50% entitlement at each CPU multiplexor, with
the remaining capacity split among the processes according to a 50%, 33%, and
17% formula. The infrastructure was given a 50% entitlement at each resource,
with the remaining split among processes according to a 50%, 33%, and 17%
formula. Schedulers for resources downstream of FCR were configured to use
bytes transferred as a metric, since, for these types of resources, CPU consump-
tion is not representative of actual resource consumption (see Section 2.2). For
the same reasons as those outlined in the web server experiment above, DRWR
and DIR were configured to request CPU from a single core (core 6). The disk
firmware was configured to handle up to 256 concurrent requests to allow ample
opportunities for firmware to perform optimizations.

Figure 15 shows how disk bandwidth is shared at the DRWR resource during
the experiment. Because disk capacity varied across runs due to changes in file
block placement, the figure shows relative bandwidth consumption for the three
processes. The demand for bandwidth is the same for all three processes, but
as desired and seen, actual allotment depends on entitlement.

Figure 16 breaks down CPU utilization across the involved resources. For
this workload, only 0.99% of available cpU cycles (the equivalent of 0.08 cores)
is consumed, which clearly shows that the disk is the bottleneck to improved
performance.

5 Related work
5.1 Scheduling CPU

One Vortex objective is to provide a flexible framework for schedulers that
supports a wide variety of policies. Prior work has also explored support for
multiple, coexisting scheduling policies. In contrast to Vortex, the focus of
that work was guaranteeing CPU cycles for processes. Of particular relevance
to Vortex is work that investigates interaction between schedulers organized

16Software-based request ordering to reduce disk head movement might result in a different
disk-arrival order, but, similar to optimizations performed by disk firmware, the ordering must
satisfy consistency models.

I7The File Cache Resource guarantees that no reads or writes are in progress when sending a
request to EXT2R that involves file meta-data updates. This relieves EXT2R from implementing
logic for synchronizing pending reads or writes with meta-data updates.
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Figure 15: Bytes read at the DRWR resource.

in a hierarchy, because of the similar hierarchical relationship between CPU
multiplexors and resource schedulers.

Goyal et al. [28] present one of the first hierarchical scheduling systems that
allows different algorithms for different applications. The system uses a fair
queuing algorithm at all levels of the scheduling hierarchy, except for the leaf
nodes. Leaf nodes may implement arbitrary scheduling policies, much like the
Thread Resource schedulers in Vortex. The open environment for real-time
applications [19,20] and BssI [40] restrict the number of levels in the hierarchy
to two, and these systems rely on an earliest deadline first (EDF) scheduler at
the root to resolve timing constraints of application schedulers. RED-Linux [65]
defines scheduling needs of tasks in terms of attributes, which may be adjusted
to express different real-time policies (EDF, rate monotonic, etc.). Conceptually
this defines a two-level scheduling hierarchy.

CPU inheritance scheduling [27] allows construction of arbitrary scheduling
hierarchies by designating certain threads as scheduler threads and other threads
as client threads. Scheduler threads implement scheduling policies by donating
CPU time to client threads. A client thread can, in turn, act as a scheduler thread
by donating its CPU time to other threads—a concept originally introduced
in [17]. cpU inheritance scheduling can be viewed as a generalization of scheduler
activations [1], only extended with parts of the scheduling hierarchy residing at
kernel-level (although, the original cPuU inheritance work only describes a user-
level implementation). Nemesis [30], Aegis [24], and SPIN [8] all implement two-
level scheduler hierarchies with interfaces similar to that of scheduler activations.
Nemesis and Aegis require all second-level schedulers to run at user-level and
use a fixed scheduler at the root of the hierarchy; spiN allows applications to
download their own schedulers into the kernel at run-time.

Hierarchical loadable schedulers [55] (HLS) and Vassal [13] both allow a
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Figure 16: Breakdown of CPU consumption.

scheduler, downloaded into the kernel at run-time, to control scheduling of avail-
able threads. Vassal only allows a single scheduler to co-exist with the native
Windows NT scheduler; HLS allows arbitrary scheduler hierarchies in Windows
2000. The HLS authors observe that 1/0 activities severely affect the effective-
ness and accuracy of their CPU scheduling. This problem is explicitly addressed
in Vortex, because it was designed to enforce policies for both cpu and 1/0
consumption.

5.2 Scheduling CPU and other resources

Most operating systems have well-defined interfaces for allocating CPU time to
threads or processes, and the scheduling algorithms may be modified in a rela-
tively straightforward manner. In contrast, there is a multitude of frameworks
and mechanisms for controlling consumption of other resources. The Linux ker-
nel uses timers, callouts, threads, and subsystem-specific frameworks to dispatch
work on behalf of applications. As a result, work that aims to make all resource
consumption schedulable in an existing system must overcome the disparities
of a diverse set of mechanisms. If only certain resources are made schedulable,
then inevitably there will be be ways to circumvent policy enforcement. For
example, if only network bandwidth is scheduled, then a web server could be
precluded from reaching its potential throughput by another disk-bound ap-
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plication. In the remainder of this section, we highlight work that proposes
entirely new frameworks for resource scheduling, has attempted to retrofit such
scheduling into an existing system, or started with a clean slate but did not
have resource scheduling as their primary goal.

The Lottery resource management framework, originally developed for Lot-
tery Scheduling [64], introduces a ticket and a currency abstraction. A ticket
encapsulates a client’s resource rights; an active client is entitled to consume
resources in proportion to the number of tickets it holds. A ticket may be trans-
ferred between two clients via a ticket transfer. Ticket transfers provide the
basis for implementing diverse resource management policies. In [59] and [60],
the Lottery resource management framework was extended for absolute resource
reservation. Only cPU scheduling was demonstrated before the work in [60],
where disk requests and memory allocation scheduling within a Lottery frame-
work was demonstrated.

Processor Capacity Reserves [45] was developed to support the cpU schedul-
ing needs of processes that handle time-constrained data types, such as digital
audio and video. The work allows processes to make periodic reservations of
CPU resources; an EDF scheduler ensures that scheduling is consistent with reser-
vations. EDF schedulability serves as an admission control mechanism for new
reservation requests. At kernel-level, a reserve abstraction tracks and contains
the CpU usage of a process during a scheduling period. The CcPU consumption
of all threads belonging to a process is measured and charged to the reserve as-
sociated with the process. Threads that exceed the capacity of a reserve while
executing in a non-preemptible part of the kernel are penalized in the next
period. To account for resource usage that spans multiple address spaces, e.g.
when a thread invokes a service offered by another process, a thread’s associated
reserve can be propagated and used by the server threads performing work on
its behalf (similar to the Lottery framework, migrating threads in Mach [26],
and shuttles in Spring [29]).

Resource Kernels [50,53] extends the Capacity Reserve work to include oper-
ating system enforced reservation of resources other than the cPU. Reservation
and use of multiple resources is decoupled, and processes are subject to separate
admission controls for each resource reservation request. Reservation of CPU re-
sources for the user-level threads involved in packet processing in RT-Mach is
described in [38]. Explicit reservation and scheduling of network bandwidth is
mentioned as a feature in [50], but no implementation details are given. Reser-
vation of disk bandwidth based on a hybrid of EDF and a traditional SCAN
algorithm is described in [46]. Resource Kernels is primarily concerned with
enforcing reservations within RT Mach, so all enforcement of reservations take
place at user-level. The messages sent between servers in such a micro-kernel
system resemble the requests sent between Vortex resources. Thus, it is possible
that fine-grained scheduling of the processing for these messages could yield a
granularity of control resembling that found in Vortex. Assuming such schedul-
ing, the problem of ameliorating overhead still remains; dispatching a message
to a resource in Vortex is a low-cost operation, whereas a similar dispatch in a
micro-kernel system typically entails an address space switch. Resource Kernels
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also base enforcement of reservations on real-time scheduling of threads (with
the exception of how disk bandwidth is multiplexed), and therefore only uses
CPU consumption as a metric for scheduling.

Eclipse is an operating system developed at Bell Laboratories [9-11]. The
goal of Eclipse is to explore quality of service support for multimedia appli-
cations. Eclipse has been implemented in Plan9 [52] and as an extension to
FreeBSD. Eclipse is built around a reservation-domain abstraction, to which
system resources such as Ccpu, disk, network, and physical memory are pro-
visioned. Processes in Eclipse receive resources by attaching themselves to a
reservation domain. Domains include a separate proportional share scheduler
for each attached resource. The Plan9 version of Eclipse schedules 1/0 by in-
tercepting read and write system calls, subjecting the requests to a scheduling
scheme similar to weighted round-robin. Conceptually, Eclipse enforces 1/0
resource reservations through an architecture that is similar to Vortex: both
systems rely on placing 1/0 requests in queues and use a scheduler to decide
when to remove a request from a particular queue. However, Eclipse only per-
forms scheduling at the level immediately above a physical resource. Thus,
Eclipse does not schedule intermediate kernel-level activity (e.g., VFS activity,
file system activity, logical volume management, etc.).

Eclipse employs a domain-specific approach to making network communica-
tion schedulable: the signaled receiver processing mechanism [12]. The approach
is to demultiplex network packets before network protocol processing, using the
conventional UNIX signal mechanism to shift protocol processing to the context
of the receiving process. Whenever a network packet arrives, the destination
process is sent a signal; further packet processing occurs in the signal handler
(with the help of a special system call). A weakness is the assumption that
initial processing of outgoing network traffic takes place in the context of the
calling process (and is not triggered in response to the receipt of packets). When
using the UNIX socket API this assumption holds, but not when using kernel-
supported APIs for asynchronous 1/0 (such as the ones in newer versions of
Linux and FreeBSD). The decision to only support an asynchronous 1/0 API in
Vortex is rooted in this observation; when a process crosses into the kernel as
part of a system call, further processing is asynchronous by means of sending
schedulable messages.

Rialto is an operating system developed at Microsoft Research [22,33-35].
The goal was is to build a system in which real-time processes and traditional
time-sharing processes coexist and share resources on the same hardware plat-
form. The primary unit of execution in Rialto is an activity. Multiple threads
in potentially different address spaces may be associated with the same activity,
and activities are guaranteed a minimum execution rate by making CPU reserva-
tions. The Rialto scheduler makes decisions based on traversal of a precomputed
scheduling graph. The cost of servicing interrupts is charged to the node active
when an interrupt occurs. Starvation of non real-time processes is prevented by
reserving some CPU time that cannot be reserved by activities.

Rialto server threads assume the CPU reservation for client threads they are
supporting. In addition to long-term CPU reservations, Rialto supports short-
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term deadline-based execution of process code segments. These constraints
are submitted by threads before starting execution of code that is particu-
larly time critical. Rialto is primarily concerned with the scheduling of cpu
time to threads. So Vortex provides a more general solution to the problem
of resource management. However, [33,34] outline a framework for scheduling
other resources. This extended/improved framework is based on centralized re-
source planners; but no details have been published regarding the enforcement
of resource grants.

Nemesis, developed at the University of Cambridge [39], supports a mix of
time-sensitive processes and conventional processes with the goal of preventing
QoS crosstalk. QoS crosstalk is defined as the contention that results when dif-
ferent streams are multiplexed onto a single lower-level channel. Nemesis takes
a very different approach to system structure than Vortex in order to achieve
these goals, moving as much operating system code as possible into user-level
libraries. This relocation of functionality makes it easier to account for process
use of operating system services. Cache Kernel [16] and the Exokernel [24, 36]
systems employ something similar.

Central to Nemesis is the concept of domains. A domain is the analogue of a
process. Each domain has an associated scheduling domain, which is the entity
to which cpu time is allocated, and an associated protection domain, which
defines access rights to virtual memory. Nemesis domains reside at different
locations in the same virtual address space. In contrast, Vortex is not a single
address space operating system.

The Nemesis scheduler aims to provide domains or sets of domains with a
prespecified share of the CPU over a short time frame. The Nemesis scheduler,
Atropos, uses EDF to accomplish this goal. To accommodate latency-sensitive
domains, such as those containing a device driver that needs to react to an
interrupt, the deadline of the domain is dynamically shortened when needed. To
avoid QoS crosstalk in conjunction with paging, Nemesis requires every domain
(application) to be self-paging [30]. Self-paging implies that each domain has
some control over which of its virtual pages are backed by physical frames. In
particular, a domain is responsible for handling its own page faults. If Nemesis
finds it must reclaim frames from a domain, then the domain is notified about
the number of frames it must release in a given time. Application-assisted
revocation is an interesting topic that we so far have not explored in context
of Vortex. Currently, reclamation in Vortex is guided by statistics supplied
by resource instrumentation code. Nemesis uses a scheme similar to that of
the user-safe backing store [5], only coupled with the Atropos scheduler, for
proportional sharing of disk swapping bandwidth among domains.

Nemesis probably could implement the degree of resource control that Vor-
tex provides. However, Nemesis lacks a clear concept, aside from the Stretch
driver [30], of how to schedule access to 1/0 devices and to higher-level abstrac-
tions shared among different domains.

Scout is an operating system designed to accommodate the needs of communi-
cation-centric systems [47—49,58]. A complete Scout system is formed by con-
necting individual modules into a module graph. Together, the modules in a
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graph implement a specialized service, such as an HTTP server, a packet router,
the environment required to run a networked camera, etc. The module graph
is defined at build time and remains fixed thereafter. Abstractly, a path in
the module graph can be viewed as a logical channel through which 1/0 data
flows within a Scout system. Each path has a source and a sink queue. When
data arrives, it is enqueued in the source queues and a thread is scheduled to
execute the path. Executing a path involves dequeuing data from the source
queue, traversing the path topology, and enqueuing the (transformed) data in
the sink queue. How data arrives in the source queue and how it is removed
from the sink queue depends on the service implemented by the particular Scout
configuration.

The initial design of Scout did not focus on resource management to the
extent that we do in Vortex; the goal of Scout was to explore aspects of special-
ization, extensibility, and domain-specific optimization. Still, the initial Scout
design recognized the need for performance isolation among paths to ensure
that certain performance criteria could be achieved (e.g. that a path was able to
decode and display a particular number of frames per second in a NetTV con-
figuration). However, support for performance isolation in Scout was limited to
assigning CPU time to path-threads according to an EDF algorithm.

Escort extends Scout with better support for performance isolation among
paths [58]. In particular, Escort adds support for reserving resources for modules
that are part of a path topology. The Scout architecture was later ported to
Linux [7]. By essentially replacing thread scheduling in the Linux kernel, the
work showed how quality of service guarantees could be provided to network
paths.

Software Performance Units (SPU) is a resource management framework de-
veloped for shared-memory multiprocessors [62]. The goal is to provide mech-
anisms that give groups of processes predictable performance corresponding to
an assigned share of system resources, independent of system load. The sys-
tem was implemented as an extension to IRIX5.3, and it provides proportional
sharing of cpU, memory, and disk bandwidth in a multiprocessor system.

The resources available to an SPU vary over time, always exceeding some
minimum. The amount of resources available at each specific time is dynamically
adjusted based on the amount of idle resources at that time. In contrast to the
fine-grained CPU multiplexing supported by Vortex, spus are initially allocated
an integral number of cpus. An idle cpu can consider other Spus for scheduling
than those allocated to it.

Memory is partitioned among SPUs, and the system is periodically checked to
find spUs that have idle pages or that are under memory pressure. The metric
for accounting for disk bandwidth usage is the number of sectors transferred
per second. Disk 1/0 performed by daemon processes (e.g. swapping, flushing
the block cache) is charged to a special shared unit initially. After the 1/0
has completed, the appropriate SPU is located and charged. Disk requests that
are directly attributable to units are scheduled according to a fair queueing
algorithm. The bandwidth usage of each SPU is inspected after each disk request,
and a request from the spU that has been given the least service relative to its

34



bandwidth share is selected.

In contrast to Vortex, the sPU abstraction was grafted onto an existing
system. That is why there is such a variety of approaches for making different
types of resource consumption schedulable. Also, scheduling of network traffic
is not addressed in this work.

The Virtual Services framework was developed to address the problem of
QoS crosstalk between applications in a virtual hosting environment [56]. The
work defines a service as the set of processes, sockets, file descriptors, and other
operating system resources that share one address space. Resources a service
uses outside its own address space are defined as sub-services. A virtual service is
an operating system abstraction that provides per-service resource partitioning
and management by dynamically associating a resource binding with a service
and the sub-services it uses. This binding is established by intercepting system
calls and using a classification gate to monitor work that propagates from one
service to another. A classification gate evaluate rules such as: “if process
Py accepts a service request from VSy, then the resulting Py activity should be
charged to VS,”. If, after establishing a binding for a system call, a classification
gate discovers that a resource limit violation would occur as a result of the
call, then the call can be made to fail, block, or execute in best-effort mode.
Operating system entities, such as sockets, shared memory areas, process control
blocks, are tagged with a virtual service association. This association is, in turn,
used by operating system functionality to infer charging for a particular activity.
The binding between an operating system entity and a virtual service can change
dynamically as when the operating system discovers that a process is operating
on a data set that belongs to another virtual service.

Virtual services provides a sound framework for attributing resource usage to
the correct principal. But from published work, it is unclear how resource con-
sumption can be controlled within the framework. For example, counting and
limiting the number of sockets that can be associated with a vs provides little
control over resource usage, as one socket alone can consume a large proportion
of the available network bandwidth.

The Resource Containers work was the first to clearly emphasize the need
to separate the concepts of protection domains and resource principals [4]. By
introducing the concept of a Resource Container, the work allows for a flexible
notion of what constitutes an independent activity. Essentially, any thread in
the system (subject to access control) can charge resource consumption to a
particular container by establishing a resource binding to the container, thus
allowing an independent activity to span multiple processes and also include
kernel-level activity. The container framework also introduces the lazy receiver
processing network architecture [23], which makes network bandwidth schedu-
lable in a somewhat similar fashion as signaled receiver processing; packet pro-
cessing is shifted from the context of callout functions to a thread context.

Several commercial operating systems include frameworks for management
of resources [31,32,61]. Mostly, these systems focus on long-term goals for
groups of processes or users and rely on fair-share scheduling approaches for
enforcement of resource shares. Resources that cannot be replenished (such as
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disk space) are typically controlled by hard limits. The major difference between
Vortex and these systems is that Vortex is able to enforce isolation at a much
finer time-scale. Moreover, these systems typically manage resources at a much
coarser granularity and often by partitioning.

5.3 Partitioning for scalability

A number of recent operating systems have explored the use of partitioning
as a means to enhance multi-core scalability. The primary focus of these sys-
tems has not been scheduling control over resource consumption, although the
proposed architectures share similarities with Vortex. Corey [67] is structured
as an Exokernel system and focuses on enabling application-controlled sharing.
Barrelfish [6] also tries to maximize scalability by avoidance of sharing, but goes
one step further in arguing for a very loosely coupled system with separate oper-
ating system instances running on each core or subset of cores—a model coined
a multikernel system. Tessellation [42] proposes to bundle operating system
services into partitions that are virtualized and multiplexed onto the hardware
at a coarse granularity. As in our work, Tessellation recognizes the relationship
between message processing and consequent resource usage, and it proposes that
quality of service can be provided by quenching message senders to ensure that
different activities receive a fair share of the resource represented by a partition.
Factored operating systems [66] proposes to space-partition operating system
services. Unlike Tessellation, which proposes that applications have complete
control over the underlying hardware, the work argues for complete separation
of applications and operating system services due to TLB and caching issues.
This recent work focuses on increased use of message passing as a means to
coordinate state updates within a system. Vortex has a similar, but more fine-
grained, structure—resources exchange messages to coordinate and implement
higher-level abstractions. Although scalability has been an important concern
in our work, our primary motivation has been fine-grained and accurate con-
trol over the sharing of individual resources, such as cores and 1/0 devices. A
reduction in the use of shared state is a consequence of Vortex design princi-
ples, however, since such sharing can interfer with scheduler control. Sharing
beyond reading the contents of a message is infrequent, and if other state is
accessed when a message is processed, then it is typically state that is private to
the activity from which the message originates. In cases where state is shared
across one or more cores, it is typically to coordinate use of some resource that
is unavoidably shared, such as the ARP cache for a network interface, the list of
active TCP connections, or file system blocks containing multiple inodes. Unless
access to these resources is restricted to a particular core, sharing is inevitable.
Vortex allows asymmetric, i.e. space partitioned, configurations by design, as
exemplified and demonstrated in Section 4. Resource utilization concerns dic-
tate that such configurations should be used sparingly, however. For example,
to minimize power consumption, additional cores should not be activated unless
already running cores are unable to cope with the current load. Implementing
such a concern is straightforward in Vortex; a scheduler can decide to load share

36



to a select set of cores depending on observed utilization.

6 Conclusion

Vortex is a new multi-core operating system designed according to principles
that maximize scheduler control over resource consumption when competing
services are consolidated on the same hardware. The principles dictate that
all resource consumption must be measured, that the resource consumption
resulting from a scheduling decision must be attributable to one and only one
activity, and that scheduling decisions should be fine-grained.

We argue for an architecture where the operating system is factored into
multiple cooperating resources that, through asynchronous message passing,
in concert provide higher-level abstractions. By ensuring that an activity is
associated with all messages, accurate control over resource consumption can
be achieved by allowing schedulers to control when messages are delivered.

Vortex provides commodity abstractions such as processes, threads, virtual
memory, files, and network communication, while demonstratable assuring ac-
curate scheduling control over resource consumption on modern multi-core hard-
ware.

APPENDIX

Scheduler implementation

A scheduler implements a set of functions that are invoked when relevant state
changes occur in the scheduler’s clients. Table 3 shows these functions. The
toolkit initiates creation of a new scheduler instance by invoking init (), with
the (key/value) dictionary argument schedparams supplying configuration values.
The return value from init () is a pointer to scheduler-specific private state.

For each core from which a scheduler is configured to request CPU time,
init_core() is invoked. In connection with this function, the scheduler ini-
tializes state private to each core. The return value is supplied as the corestate
argument to other functions.

Scheduler clients are request queues. New request queues are registered
as clients through add_client() and removed through remove_client(). A
pointer to client-specific state is returned from add_client () and supplied to
other functions as the clientstate argument.

The toolkit, in the context of a CPU multiplexor, obtains a scheduling de-
cision by invoking schedule(), which selects and returns a pointer to a non-
empty request queue, from which requests will be dequeued and dispatched to
the resource governed by the scheduler.

Schedulers maintain a view of all non-empty request queues (i.e. ready
clients) because client_ready() is invoked whenever a request arrives to an
empty request queue and, if the corresponding queue is non-empty, after the
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Table 3: Scheduler interface.

| Name Input Output Description
init dict_t *schedparams void * Initialize scheduler
global state.
init_core void *schedstate void * Initialize scheduler core
state.
add_ client void *corestate void * Register new client.

rqueue_t *requestqueue
dict_t *clientparams

remove _client void *corestate int Unregister client.
void *clientstate

schedule void *corestate rqueue_t  Emit scheduling deci-

* sion.

client ready void *corestate void Register that client has
void *clientstate pending requests.

client suspended void *corestate void Register that client is
void *clientstate suspended.

poll ready void *corestate int Return p-seconds until

scheduling decision can
be made.

resource_record void *corestate void Record client resource
void *clientstate consumption.
resrec_t *record

load _share time ¢ *ttl int Decide  what  core
affinity t affinity should handle the
void *clientstate specific affinity label.
void *schedstate

client _statistics clientstat _t *statistics  void Return client resource
void *corestate usage statistics.

void *clientstate

toolkit has executed requests. A scheduler can choose to be explicitly informed
when an activity is suspended (e.g., when a process is suspended) by providing a
client_suspended () function. This function allows a scheduler to differentiate
between an idle and a suspended client.

The toolkit invokes poll_ready () on behalf of the scheduler to determine
when to request CPU time from a CPU multiplexor. The return value indicates
whether the scheduler has ready clients and the number of microseconds until
decisions are available (with 0 indicating immediately). Indicating future avail-
ability allows a scheduler to delay a scheduling decision, even if there are ready
clients.

After execution of requests, the scheduler is informed of resource consump-
tion through resource_record (). This function can be invoked repeatedly, de-
pending on how the resource is instrumented. A scheduler distinguishes records
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by their type field.

The load_share() function is invoked to let a scheduler create a cPU mul-

tiplexor binding for an affinity label. The return values are the index of the
selected cPU multiplexor and a duration in microseconds for the binding to
persist.

Performance data on clients can be obtained by invoking the client_stati-

stics () function.
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