
Design Prin
iples for Isolation Kernels∗Åge Kvalnes1 Dag Johansen1 Robbert van Renesse2Fred B. S
hneider2 Ste�en Viken Valvåg1

1University of Tromsø 2Cornell UniversityTe
hni
al Report 2011-70Computer S
ien
e DepartmentUniversity of TromsøAbstra
tAn operating system must ensure that no hosted servi
e
an
ausethe servi
e level agreement of another to be violated. If
ontrol is in
om-plete, no amount of over-provisioning
an
ompensate for it and there willinevitably be ways to
ir
umvent poli
y enfor
ement. Still,
ompetingservi
es are often
onsolidated on the same ma
hine to redu
e operational
osts. This arti
le presents design prin
iples for
onstru
ting operatingsystems where all resour
e
onsumption is under s
heduler
ontrol. Theviability of the prin
iples serving as a design-foundation is substantiatedthrough the implementation of a new operating system kernel that pro-vides
ommodity operating system abstra
tions. Using this kernel, thee�
a
y of the prin
iples is experimentally
orroborated.1 Introdu
tionAppli
ation servi
e providers and hosted servi
es typi
ally run servi
es on sharedma
hines to redu
e operational
osts [2,3,14,15,21,56,63℄. The performan
e ofone servi
e is then vulnerable to load surges in other servi
es. So, a providermight violate servi
e-level agreements (slas), leading to lost
ustomers or mon-etary penalties [43, 44℄.The
onventional approa
h to meeting performan
e guarantees has been toquantify software and hardware requirements meti
ulously and then to imposeadmission
ontrol and resour
e reservation. This works well if loads
an beanti
ipated. But hosted servi
es typi
ally are subje
t to unpredi
table loadsurges and time-varying resour
e demands. To a

ommodate su
h high varian
eby using reservations
auses hardware utilization to su�er.
∗This work was supported in part by the Resear
h Coun
il of Norway as a Center forResear
h-based Innovation (iAD), ONR grants N00014-01-1-0968 N00014-09-1-0652, AFOSRgrant F9550-11-1-0137, AFRL, NSF grants 0430161, 0964409, CNS-0828923, CNS-1040689(Nebula), and CCF-0424422 (TRUST), and a gift from Mi
rosoft Corporation.1

An operating system kernel where no hosted servi
e
an
ause the sla ofanother to be violated is
alled an isolation kernel [51℄. The kernel typi
allyprovides instrumentation for attributing resour
e usage to individual hosted ser-vi
es and employs s
hedulers that use this usage information for enfor
ing slas.
pu, memory, disk a

ess, and network bandwidth are among the resour
es thatmust be s
heduled�to ignore any risks violating an sla. For example, an slaguaranteeing some spe
i�ed level of �le system throughput
an be violated whenthere is insu�
ient
pu time to handle �le i/o, insu�
ient memory to bu�er�le data, or insu�
ient disk bandwidth to read or write �le blo
ks.This arti
le presents a new isolation kernel, Vortex. Vortex implements�ne-grained a

ounting and s
heduling of system resour
es. It de�nes an ab-stra
tion for en
apsulating resour
es, a system stru
ture that allows resour
es tobe s
heduled individually or in a
oordinated fashion, and a
ommon interfa
eto resour
e-usage a

ounting and attribution.Three design prin
iples served as a foundation for the design:(1) Measure all resour
e
onsumption. If hosted servi
es
an
onsume re-sour
es whose usage is not measured, then resour
e sharing poli
ies
anbe
ir
umvented. Consumption of resour
es is, to the extent possible,attributed by Vortex to the hosted servi
e making the demands1.(2) Identify the unit to be s
heduled with the unit of attribution. Consider aworker thread handling asyn
hronous i/o requests on behalf of multiplehosted servi
es (an approa
h used in Windows). If this worker threadis the unit being s
heduled, then the s
heduler has no
ontrol over whi
hi/o requests are handled, even if resour
e
onsumption
ould be retrospe
-tively attributed to the
orresponding hosted servi
e(s). Better
ontrol
anbe a
hieved by dire
tly s
heduling the individual i/o requests instead ofthe worker thread. That is, a one-to-one
orresponden
e is establishedbetween the unit of s
heduling and the unit of attribution.(3) Employ �ne-grained s
heduling. This allows less error in attribution andin
reases opportunities for sharing.The rest of this arti
le is organized as follows. In Se
tion 2 we outline the keyelements of the Vortex ar
hite
ture and dis
uss impli
ations of our three designprin
iples. Se
tion 3 gives a detailed exposition of important elements in ourimplementation of Vortex on the x86 platform. Se
tion 4 presents an evaluationof the implementation, using di�erent ben
hmark appli
ations to determine ifour Vortex implementation instantiates our design prin
iples. Related workappears in Se
tion 5, and Se
tion 6 o�ers some
on
lusions.1Some resour
e
onsumption is hard to attribute at the time of
onsumption and mustbe attributed a posteriori. Examples in
lude:
pu time devoted to pro
essing interrupts anddemultiplexing in
oming network pa
kets.
2

(a) S
heduler
ontrols when to dis-pat
h requests. (b) Resour
e
onsumption reported ba
k tos
heduler.
(
) Resour
es organized in a grid with s
hedulers on the
om-muni
ation path.Figure 1: Summary of key ar
hite
ture elements.2 Kernel ar
hite
ture2.1 Ar
hite
ture overviewFigure 1 depi
ts the key elements of the Vortex ar
hite
ture. Ea
h resour
e
orresponds to a �ne-grained software
omponent, exporting an interfa
e fora

ess to and use of hardware or software, su
h as an i/o devi
e, a networkproto
ol layer, or a layer in a �le system.Higher-level kernel abstra
tions and fun
tionality are implemented by
on-�guring resour
es into a resour
e grid, where resour
es ex
hange resour
e requestmessages. A resour
e request message spe
i�es parameters and a fun
tion toinvoke at the interfa
e of the destination resour
e. The servi
ing of a request isasyn
hronous to the sending resour
e.S
hedulers may be interpositioned between resour
es. Requests re
eivedby a s
heduler may be bu�ered and/or dispat
hed to a resour
e in any order
onsistent with inter-request dependen
ies.To a

ount for resour
e
onsumption, exe
ution in response to a request ismonitored. The monitoring is performed external to a resour
e, using instru-mentation
ode that measures
pu and memory
onsumption to exe
ute therequest, perhaps determining those values retrospe
tively. After ea
h request isexe
uted, its resour
e
onsumption is reported to the dispat
hing s
heduler.All resour
e requests spe
ify an a
tivity to whi
h resour
e
onsumption isattributed. If a resour
e sends request r2 as part of handling request r1, then thea
tivity of r2 is inherited from r1. Computations involving multiple resour
es
an thus be identi�ed as belonging to one a
tivity. An a
tivity
an be a pro
ess,a
olle
tion of pro
esses, or some pro
essing within a single pro
ess.3

In Vortex, we fo
used on supporting
onventional operating system abstra
-tions, where an a
tivity typi
ally is asso
iated with a pro
ess.2.2 Measure all resour
e
onsumptionThe
pu
onsumption in
urred by a disk devi
e driver to handle a request forreading 10 se
tors on a disk is typi
ally the same as would be needed for a requestto read 20 se
tors. But memory usage di�ers for these two requests. Moreover,the a
tual elapsed time for exe
uting the two requests will vary, dependingon the
ontents of disk
ontroller
a
he, the position of disk heads, rotationalposition, et
. Thus, a disk is an example of a resour
e that, for e�e
tive
ontrol,requires a s
heduler with a

ess to information that is not easily
aptured insoftware, but
ould be predi
ted by software. For example, the
ontents of thedisk
ontroller
a
he might not be a

essible but
an be estimated by knowledgeof its size and observations of how long it takes to
omplete requests.To give s
hedulers a

ess to hidden information, Vortex uses resour
e
on-sumption re
ords. These are extensible data stru
tures des
ribing the resour
e
onsumption in
urred by exe
uting a resour
e request. Fields
on
erning basi
resour
e
onsumption are set by Vortex instrumentation
ode, and additional�elds are atta
hed by instrumentation
ode inside the resour
e itself. For exam-ple, re
ords des
ribing resour
e
onsumption when exe
uting a disk read request
ould in
lude
pu and memory usage along with additional information: howlong it took to
omplete the request, and the size of the queue of pending re-quests at the disk
ontroller. This additional information would be supplied byinstrumentation
ode running in the disk driver.Measurement and attribution of resour
e
onsumption are separate tasks.Measurement is always retrospe
tive whereas attribution may or may not beknown in advan
e of the request pro
essing. For example, when a read requestis submitted to a disk driver, the a
tivity to attribute is typi
ally known inadvan
e, but resour
e
onsumption might not be available until after requestexe
ution
ompletes. Another example is interrupt pro
essing or early networkpa
ket pro
essing, where the a
tivity to attribute is di�
ult to dedu
e untilpro
essing
ompletes. If resour
e use must be predi
ted, then a s
heduler
anuse heuristi
s based on history to estimate resour
e
onsumption.If attribution
annot be determined, for example if an a
tivity
annot beasso
iated with some network pa
ket pro
essing, slas might be violated. Noamount of instrumentation, s
heduling, or over-provisioning,
an ensure that ansla will be satis�ed in the fa
e of unanti
ipated load. The impli
ation is that anisolation kernel implementation must make assumptions about the environment.2.3 Identify the unit to be s
heduled with the unit of at-tributionOur ar
hite
ture requires s
hedulers to
ontrol exe
ution of individual requests,where ea
h request spe
i�es at most one a
tivity for attribution of resour
e
on-4

sumption2. Noti
e, however, that even if ea
h request is identi�ed with somea
tivity, then attribution ambiguity remains possible. Consider a �le blo
k
a
hethat optimizes memory utilization by sharing identi
al �le blo
ks a
ross a
tivi-ties. If two a
tivities a

ess the same �le blo
k, then the resour
e
onsumptionin
urred by fet
hing and
a
hing the blo
k
ould
on
eivably be attributed toeither a
tivity. The s
heduler should therefore be aware of the sharing. In pra
-ti
e, this is a

omplished by re
ording resour
e
onsumption re
ords produ
edwhen a �le blo
k is fet
hed and
a
hed, and having these re
ords available tos
hedulers.Timely exe
ution of a request must be ensured, and sharing
an
ause
om-pli
ations here. Consider a �le blo
k request made when an identi
al �le blo
kis already s
heduled for fet
h to satisfy some other a
tivity. i/o utilization isimproved by delaying this se
ond fet
h request until the fet
h for the �rst
om-pletes. But, depending on the s
heduler, the pending fet
h
ould be s
heduledsooner if performed in
ontext of the requesting a
tivity. So, timely exe
utionrequires knowledge of a se
ond request, and using priority inheritan
e te
h-niques [57℄. Our poli
ies for attribution and s
heduling must a

ommodatesu
h nuan
e.2.4 Employ �ne-grained s
hedulingA s
heduler might not be able to predi
t what resour
e
onsumption will resultfrom a s
heduling de
ision. For example, a �le is typi
ally implemented using a�le blo
k
a
he, �le system
ode, a volume manager, and a devi
e driver layer.Ea
h employs
a
hing, and a �le system request
ould traverse all or only asubset of the layers. A s
heduler is unlikely to know in advan
e what layers a�le request will traverse nor what is
a
hed at the time a request is made. Thus,
onsidering �le requests as the unit of s
heduling might entangle resour
es thata s
heduler would want to
ontrol separately. For example, a s
heduler mightwant to
ontrol requests to the �le blo
k
a
he based on memory
onsumption,whereas the amount of data transferred might be a desirable metri
 at the diskdriver level. To disentangle resour
e
onsumption, the Vortex kernel is dividedinto many �ne-grained resour
es that
an be
ontrolled separately.An in
reased number of resour
es implies a
orresponding in
rease in thenumber of requests that have to be s
heduled. This in
reases s
heduling over-head. To redu
e overhead, our ar
hite
ture exe
utes all requests to
ompletion.On
e a s
heduler dispat
hes a request to a resour
e, the pro
essing of that re-quest is never preempted. The absen
e of preemption implies that requests
anbe dispat
hed with little overhead.Our ar
hite
ture expe
ts resour
es to handle
on
urrent exe
ution of re-quests, as needed on a multi-
ore ma
hine. Consequently, resour
es use syn-
hronization me
hanisms to prote
t their shared state. Absen
e of preemptionsimpli�es things
onsiderably. A system that did have support for preemption2Hardware restri
tions might limit a s
heduler to
ontrolling exe
ution of an aggregate ofrequests. For example, the hardware might not support identifying a
tivities with separateinterrupt ve
tors. 5

Figure 2: Requests are pla
ed in request queues.of request exe
ution would have to release lo
ks before returning
ontrol to thes
heduler or risk deadlo
ks due to priority inversion [57℄. So, a s
heduler in su
ha system would have to make allowan
es for in
reased request exe
ution time inthe
ase of
ontested lo
ks. Vortex s
hedulers need not be
on
erned with su
h
ompli
ations.3 Kernel implementation3.1 S
heduler toolkitVortex employs a toolkit that en
apsulates and automates tasks
ommon a
rosss
hedulers. The toolkit provides implementations for aggregation of requestmessages, inter-s
heduler
ommuni
ation, management of resour
e
onsumptionre
ords, resour
e naming, and inter-
ore/
pu
ommuni
ation and management.The toolkit provides request queues as
ontainers for requests that requirea spe
i�
 resour
e, as illustrated in Figure 2. Whenever a resour
e sends arequest, the toolkit lo
ates an existing request queue or
reates a new one, onwhi
h the request will be queued. A s
heduler
an read, reorder, and modify thequeue. A typi
al s
enario arises with disk requests, where the order in whi
hrequests are forwarded to the disk is re-ordered to redu
e disk head movement.Dependen
ies among requests are spe
i�ed by assigning dependen
y labelsto requests. S
hedulers ensure that requests with the same dependen
y labelare exe
uted in the order made. Requests belonging to di�erent a
tivities arealways
onsidered independent, as are requests sent from di�erent resour
es.As su
h, a resour
e
an generate dependen
y labels by using a simple
ounter,whi
h is
on
atenated with the sending-resour
e identi�er and the identi�er ofthe a
tivity to attribute.Ea
h request is represented using a data stru
ture
ontaining: the desti-nation resour
e, the sending resour
e, the a
tivity to attribute, a dependen
ylabel, an a�nity label, and a des
ription of whi
h fun
tion to invoke in thedestination resour
e (along with parameters to that fun
tion).Figure 3 illustrates the di�erent steps involved from when a request is sent6

(a) Steps when sending arequest. (b) Steps when exe
uting arequest.Figure 3: Steps when sending and exe
uting a request.until it is exe
uted in the re
eiving resour
e. Sending a request follows threesteps in Figure 3(a) where (1) the s
heduler asso
iated with the queue is noti�ed,(2) the request is queued, and (3) the s
heduler is given an opportunity torequest
pu time from a
pu multiplexor before
ontrol is returned ba
k to thesending resour
e.Then, as depi
ted in Figure 3(b), exe
ution of a request follows four stepswhere (1) the
pu multiplexor de
ides to allot
pu time to a parti
ular resour
e,(2) the governing s
heduler is
onsulted for a de
ision as to what request(s) todispat
h to the resour
e, (3) the sele
ted request(s) are dispat
hed and exe
utedto
ompletion, and (4) resour
e
onsumption re
ords are made available to thegoverning s
heduler at some, possibly later, point.A s
heduler
an be
on�gured to request resour
es from another s
hedulerinstead of from a
pu multiplexor. This provides a means to
ontrol othershared resour
es. For example, i/o devi
es are typi
ally atta
hed to a host
omputer through an i/o bus that
an be shared with other i/o devi
es. Thisbus may, in turn, be part of a hierar
hy of shared buses, terminating at aninterfa
e to main memory. If the aggregate
apa
ity of
onne
ted i/o devi
esex
eeds the
apa
ity of the bus hierar
hy, then the
apa
ity of any single i/odevi
e will vary depending on
urrent bus load. Utilizing the ability to
on�gures
hedulers to request resour
es from another s
heduler, an i/o bus s
heduler
anbe introdu
ed without the need to manifest the i/o busses as pre
eding resour
esin the resour
e grid.More details on s
heduler implementation
an be found in the Appendix.3.1.1 S
heduling multi-
ore ar
hite
turesIn a multi-
ore system, one
pu multiplexor is assigned to ea
h
ore. Ea
hmultiplexor
ontrols how the
ore is s
heduled. To e�
iently exploit multi-
orear
hite
tures,
ertain sets of requests are best exe
uted on the same
ore or on
ores that
an e�
iently
ommuni
ate. For example, we improve
a
he hits ifrequests that result in a

ess to the same data stru
tures are exe
uted on the7

Figure 4: S
heduler requesting
pu time from four
pu multiplexors.same
ore.To
onvey information about data lo
ality, resour
es atta
h a�nity labels torequests. A�nity labels give hints about
pu multiplexor preferen
es; if a
pumultiplexor re
ently has exe
uted a request with a parti
ular a�nity label, newrequests with the same a�nity label should preferably be exe
uted by the same
pu multiplexor.The toolkit
onsults the s
heduler pre
eding a resour
e to obtain a
pumultiplexor binding for an a�nity label. The returned binding is
a
hed by thetoolkit until an expiration spe
i�ed by the s
heduler; until expiration, subse-quent requests with the same a�nity label are exe
uted by the sele
ted
pumultiplexor. The toolkit ensures that (1) requests are only exe
uted by the
pumultiplexor sele
ted by the governing s
heduler, (2)
pu time is only requestedfrom sele
ted
pumultiplexors, and (3) a
pumultiplexor only dequeues eligiblerequests.Figure 4 illustrates a s
heduler requesting
pu time from four
pu multi-plexors. One way to instantiate this
on�guration is to allow s
heduler andqueue state to be a

essed
on
urrently by all four
pu multiplexors on bothrequest queue and dequeue paths. This design risks syn
hronization bottlene
ksand ex
essive inter-
ore ex
hanges of s
heduler and queue state. To mitigatethis risk, the toolkit always instantiates multi-
ore
on�gurations with separaterequest queues per
ore, as illustrated in Figure 5. In addition, the toolkit pro-motes a s
heduler stru
ture that separates shared and
ore-spe
i�
 state. Forexample, a round-robin s
heduler would maintain per-
ore state about regis-tered
lients (i.e. request queues) along with a shared
ounter for
reating a
pu multiplexor binding. Similarly, a weighted fair queueing (wfq) [18℄ s
hed-uler would maintain per-
ore state about
lients but rely on a more
omplexstrategy for de
iding how a�nity labels are bound to
pu multiplexors3. Un-3Our wfq implementation inspe
ts per-
ore state to de
ide whi
h
pu multiplexor shouldhandle an a�nity label; one load sharing algorithm that we have implemented assigns thelabel to the
ore at whi
h the
orresponding a
tivity has proportionally re
eived the leastresour
es. 8

Figure 5: Separate s
heduler state and request queues per
ore.der this stru
ture, sharing typi
ally only o

urs when requests are sent fromone
ore and queued for exe
ution on another, and when a s
heduler inspe
tsshared state to sele
t a
pu multiplexor for an a�nity label.With separate request queues per
ore, exe
ution-order
onstraints imposedby dependen
y labels are tri
ky to satisfy. If requests with the same dependen
ylabel are queued to di�erent
pu multiplexors, then load imbalan
e amongthe
pu multiplexors
ould result in violating exe
ution order dependen
ies.This is prevented in Vortex by requiring resour
es to assign the same a�nitylabel to dependent requests,
ausing dependent requests to have the same
pumultiplexor binding, hen
e be pla
ed in the same request queue.Another
ompli
ation, whi
h is handled by the toolkit, is expiration of a
pumultiplexor binding. If a binding expires while there are queued requests, thenthe toolkit will, in one atomi
 a
tion, obtain a new binding from the governings
heduler, move a�e
ted requests to a potentially new queue, and update its
pu multiplexor binding
a
he.3.1.2 S
heduler
on�gurationA
on�guration �le provides the toolkit with information it needs for instanti-ating s
hedulers in a resour
e grid. The
on�guration �le des
ribes the type ofs
heduler to use at ea
h resour
e, as well as des
ribing
on�guration parameters.The pro
ess of instantiating these s
hedulers is fully automated: at boot time,the toolkit reads the
on�guration �le and instantiates s
hedulers.The toolkit maintains a repository of all available s
hedulers. S
hedulersin this repository are
ompiled as part of the kernel. Ea
h s
heduler is nameda

ording to the type of algorithm it implements. For example, our wfq s
hed-uler falls into the
ategory proportional share s
hedulers and is, as su
h, named�propshare.wfq�. The name of a s
heduler is used in a
on�guration �le to spe
ify9

<?xml version="1.0"?>
<s
heduler
on�g>

<!−− CPU Multiplexors −−>

<
pumultiplexor tag="
pumux0">
<
ore> 0 </
ore>
<algorithm> propshare.wfq </algorithm>

</
pumultiplexor>
<
pumultiplexor tag="
pumux1">

<
ore> 1 </
ore>
<algorithm> propshare.wfq </algorithm> 10

</
pumultiplexor>
<!−− Resour
e s
hedulers −−>

<resour
es
heduler>
<resour
e> resour
e.t
p </resour
e>
<algorithm> propshare.round−robin </algorithm>

<
pumultiplexor>
<tag>
pumux0 </tag>
<share> 20 </share>

</
pumultiplexor> 20
<
pumultiplexor>

<tag>
pumux1 </tag>
<share> 40 </share>

</
pumultiplexor>
</resour
es
heduler>
<resour
es
heduler>

<resour
e> resour
e.thread </resour
e>
<algorithm> priority.stri
t </algorithm>

<
pumultiplexor>
<tag>
pumux0 </tag> 30
<share> 40 </share>

</
pumultiplexor>
</resour
es
heduler>

</s
heduler
on�g>Figure 6: Ex
erpt from a s
heduler
on�guration �le.the parti
ular s
heduler to asso
iate with a resour
e.Figure 6
ontains ex
erpts from a
on�guration �le, where a round-robins
heduler is sele
ted for the t
p Resour
e and a stri
t-priority s
heduler issele
ted for the Thread Resour
e4. The t
p s
heduler is
on�gured to request
pu time from both
pu multiplexor 0 and
pu multiplexor 1; the ThreadResour
e only requests
pu time from
pu multiplexor 0. The
on�gurationof Figure 6 is an example of an asymmetri

on�guration, i.e. a
on�gurationwhere resour
es are
on�gured to use only subsets of the available
ores. Su
h
on�gurations are fully supported by the toolkit. This allows deployments withsome
ores dedi
ated to resour
es, where s
aling through �ne-grained lo
king oravoidan
e of shared data stru
tures is di�
ult. Typi
al examples are resour
esthat govern i/o devi
es using memory-based data stru
tures to spe
ify dmaoperations.4The Thread Resour
e provides a thread abstra
tion for pro
esses.10

Figure 7: VMM resour
es and
ommuni
ation paths.The toolkit does not analyze s
heduler
omposition, so a
on�guration may
ontain �aws. For example, if a resour
e is s
heduled using an earliest deadline�rst [41℄ algorithm and
pu time is requested from a
pu multiplexor using awfq algorithm, then the resour
e s
heduler
an make no real-time assumptionsabout deadlines. Reasoning about
orre
tness requires a formalization of thebehavior of ea
h s
heduler, and then an analysis of the intera
tion betweenbehaviors. See [22, 25, 37, 40, 54, 55℄ for work in this dire
tion.3.2 Virtual memory managementThe Vortex virtual memory management (vmm) ar
hite
ture is depi
ted in Fig-ure 7. The Address Spa
e Resour
e (asr) implements logi
 for
onstru
tingand maintaining page tables and also provides an interfa
e for allo
ating and
ontrolling translations for regions of an address spa
e. asr is used by otherresour
es to export and make data obje
ts a

essible in a pro
ess address spa
e.For example, the Exe
utable Resour
e (er) uses the asr interfa
e to export thesegments of an exe
utable �le (text, data, bss, et
.) into the pertinent regionsof the address spa
e.Page faults are dire
ted to the asr. To handle one of these, asr determineswhether the faulting address is in a region allo
ated by some resour
e and, ifso, sends a request for data to the resour
e responsible for that address. Whenre
eiving su
h a request, resour
es are required to respond with data already
a
hed in the resour
e, by allo
ating memory from the memory multiplexor orby retrieving the data from other resour
es. For er, further
ommuni
ationwith the File Ca
he Resour
e (f
r) is typi
ally performed to retrieve data fromthe exe
utable �le.The Swap Resour
e (sr) provides an interfa
e for preserving obje
ts on se
-ondary storage. Resour
es use sr whenever re
laimed memory
ontains obje
tsnot easily re
onstru
ted from other sour
es. For example, text
an be re-readfrom an exe
utable, but modi�ed heap and bss memory must be preserved for11

future referen
e.Re
laiming memoryWhether additional memory is needed when exe
uting a request is di�
ult forthe sending resour
e to determine without a

ess to state that is internal to there
eiving resour
e. For example, the re
eiving resour
e might use
a
hing tospeedup request pro
essing. Therefore, resour
es allo
ate memory from thememory multiplexor when needed, typi
ally as part of exe
uting a request.Available memory being low or the
orresponding a
tivity ex
eeding its memorybudget,
auses the memory multiplexor to reje
t an allo
ation. In su
h
ases,memory re
lamation a
tions must be initiated to ensure eventual exe
ution ofthe original request.The memory multiplexor de
ides what physi
al memory to re
laim. A re-sour
e must be prepared to relinquish referen
es to allo
ated memory upon re-
eiving memory re
lamation requests from the memory multiplexor. For voidingreferen
es to the physi
al memory spe
i�ed in a re
lamation request, resour
esare required to determine what that memory is used for. To maintain this
orresponden
e, the memory multiplexor interfa
e allows resour
es to asso
iate
ookies with memory allo
ations. An asso
iated
ookie is returned with ea
hmemory re
lamation request; this
ookie aids in lo
ating referen
es to the mem-ory being re
laimed. For example, when f
r allo
ates memory for a �le blo
k, areferen
e to the �le serves as the
ookie. That way, if the memory is re
laimed,then the
ookie enables the f
r to update its internal data stru
tures.Our implementation asso
iates a separate a
tivity with ea
h pro
ess, so there
lamation poli
y of the memory multiplexor di�erentiates among pro
esses.By inspe
ting allo
ation requests, the memory multiplexor
an determine howmu
h memory ea
h resour
e
onsumes on behalf of a parti
ular a
tivity. Still,making re
lamation de
isions
ondu
ive to improved performan
e typi
ally re-quires additional information. For example, if frequently used memory in thepro
ess heap is re
laimed then performan
e will erode. Likewise, re
laimingpro
ess text memory will result in poor performan
e.To obtain needed additional information, the memory multiplexor relieson resour
e instrumentation, to produ
e resour
e information re
ords. Thesere
ords provide memory usage statisti
s and other pertinent information. Forexample, asr regularly
olle
ts the modi�ed and a

ess bits stored by page ta-bles. Similarly, asr informs the memory multiplexor whether memory has beenmodi�ed.The a
t of re
laiming memory might require updates in resour
es other thanthe one that initially allo
ated the memory. For example, er relies on f
r to
a
he segments of the exe
utable �le. Moreover, er uses asr in order to insertpage table translations for those segments. Hen
e, memory for
a
hing segmentsis initially allo
ated for f
r, but referen
es to that
a
he ultimately exist in boththe f
r and the asr. In order to re
laim this memory, updates in asr and f
rare needed. The memory multiplexor o�ers an interfa
e for this. Using theinterfa
e, asr
auses the memory multiplexor to dire
t re
lamation requests to12

the asr. Upon re
eiving a re
lamation request, asr performs the ne
essarypage table updates and forwards the request to the resour
e responsible forthe
orresponding region. In the
ase of exe
utable segments, er will in turnperform its internal bookkeeping and then forward the request to the f
r.Asso
iating a single a
tivity with all vmm-related requests from a pro
essdoes not prohibit a s
heduler from treating various types of pro
ess requestsdi�erently. We have implemented s
hedulers for f
r that reorder and delayqueues a

ording to the sending resour
e; this allows Vortex to favor demand-paging tra�
 over regular i/o tra�
 from a pro
ess. It redu
es the time beforememory is freed for reuse and also the duration a pro
ess is blo
ked awaitingarrival of pages not present.3.3 I/OVortex implements the posix asyn
hronous i/o interfa
e. This interfa
e sup-ports asyn
hronous transfer of data between bu�ers in a pro
ess address spa
eand a kernel supported i/o resour
e. Ea
h i/o operation is des
ribed by a datastru
ture that spe
i�es a des
riptor on whi
h the operation is to be performed, apointer to a data bu�er, and some indi
ation of how the
alling pro
ess/threadshould be noti�ed on
e the operation terminates.3.3.1 Asyn
hronous I/OThe posix asyn
hronous i/o interfa
e is largely implemented by the asyn-
hronous i/o resour
e (aior). aior abstra
ts ea
h i/o operation in terms of asour
e resour
e that produ
es data and a sink resour
e that
onsumes data. Thesour
e
orresponds to the provider of data for a region in the pro
ess addressspa
e in the
ase of writes, and it
orresponds to any i/o resour
e for reads.The sink is analogous. The aior or
hestrates data �ow from sour
e to sink.aior requests data from a sour
e resour
e by sending it a read request. Thesour
e in turn responds with a read_done request
ontaining the target data.A similar proto
ol is used when intera
ting with sink resour
es. aior writesdata to a sink by sending a write request to it, and the sink signals that thedata has been
onsumed by sending a write_done request ba
k. Sour
es andsinks may use other resour
es to satisfy a read or write request or to intera
twith a hardware devi
e.i/o operations
an exe
ute
on
urrently. Prefet
hing and overlapping intro-du
e ordering
onstraints among requests belonging to the same i/o operation,be
ause data must arrive at a sink in the order sent by a sour
e. aior solves thisproblem by assigning the same dependen
y label to all requests derived from thesame i/o operation. Thus, multi-
ore parallelization o

urs at the granularityof i/o operations.Similar to Vortex' vmm system, aior sets the a
tivity binding of derivedrequests to the requesting pro
ess. By inheritan
e, all other requests generatedas part of the i/o operation will then point to the same pro
ess.13

3.3.2 InterruptsInterrupts are integral to the operation of many i/o devi
es. A resour
e thatoperates su
h an i/o devi
e must register with the Interrupt Resour
e to re
eiveinterrupts originating from the devi
e. Interrupts are initially
aptured by a low-level Interrupt Resour
e handler, whi
h
reates and sends a resour
e requestdes
ribing the interrupt to the appropriate resour
e.Resour
e
onsumption for interrupts is attributed retrospe
tively. For thelow-level handler, instrumentation
ode
reates resour
e re
ords to return
putime to any interrupted a
tivity. Similarly, instrumentation
ode in the resour
ere
eiving the interrupt request produ
es resour
e re
ords for retrospe
tive at-tribution, if the
ausing a
tivity
an be dedu
ed.3.4 The pro
ess, system
alls, and threadsA resour
e may export routines in its interfa
e that should be a

essible notonly to other resour
es but also to pro
esses. Su
h fun
tions are exposed asVortex system
alls. The resour
e programmer a
hieves exposure by using astub generation fa
ility that, for ea
h fun
tion,
reates a stub for
onvertinga system
all into a resour
e request message sent to the resour
e. The stubalso de
ouples system
all arguments from any pro
ess-dependent
ontext. Forexample, the stub translates virtual memory pointers to their
orrespondingphysi
al memory pointers,
ausing page faults if ne
essary to bring data pre-served by the Swap Resour
e into physi
al memory. Referen
e
ounting ensuresthe physi
al memory pointers are valid for the duration of the
all5.System
all messages from a pro
ess originate from the Pro
ess Resour
e(pr). The pr implements the
onventional pro
ess abstra
tion, using asr tohandle address spa
e operations. To implement pro
ess exe
ution
ontexts, thepr uses the Thread Resour
e (tr). tr provides an interfa
e for
onventionalthread operations, su
h as
reate, exit, suspend, resume, join, et
.tr drives exe
ution of threads by using resour
e request messages. Whena thread enters the ready state, a resour
e request is sent to tr, leading thetr s
heduler to request
pu time from a
pu multiplexor. When the requestis dispat
hed, tr lo
ates the
ontrol blo
k of the
orresponding thread, sets upa timesli
e timer, and a
tivates the thread. After a
tivation, the thread runsuntil the timesli
e expires or a blo
king a
tion is performed. While the threadis running, the
pu multiplexor regards tr as exe
uting requests. (Preemption-interrupts are delivered dire
tly from the low-level Interrupt Resour
e handler,sin
e subje
ting these to s
heduling would require involvement of the
pu mul-tiplexor.)Only the pro
ess address-spa
e and system-
all stubs are addressable to athread. Consequently, a thread
annot subvert a s
heduler by dire
tly invokinga fun
tion in a resour
e interfa
e.Turning system
alls into requests in
reases overhead but improves s
heduler
ontrol. For example, a dire
tly-invoked fun
tion
ould erode s
heduler
ontrol5Con
urrent re
lamation of memory is delayed until the
all
ompletes.14

by obtaining lo
ks, thereby preventing timely exe
ution of other s
heduler-dispat
hed requests. Yet, in some
ases, exe
uting a fun
tion does not in-terfere with s
heduler
ontrol. Examples in
lude
alls su
h as getpid() andgettimeofday() and fun
tions in the tr interfa
e. To a

ommodate these
ases, the resour
e programmer is allowed to
onstru
t stubs that dire
tly
allfun
tions in the resour
e interfa
e.Dire
t invo
ation of fun
tions in a resour
e
ould allow one servi
e to in-terfere with others. For example, in Vortex, we primarily use interpro
essorinterrupts (ipis) to dispat
h work that requires immediate exe
ution on a spe-
i�

ore. In an early implementation, we used ipis to perform operations onthreads hosted by remote
ores. This de
ision, however, enabled a thread todisrupt work being performed on all
ores in the system by spawning a seriesof thread operations. The
urrent implementation uses the ipi me
hanism onlywhen the target thread is running on a remote
ore; otherwise, a request isinstead sent to tr resour
e.3.5 Resour
e implementationKernel-level programming within Vortex amounts to implementing resour
e re-quest message-handlers and resour
e s
hedulers. A typi
al message handlermight reply to a request or send a request to another resour
e. The f
r, forexample, does both: it may respond with a disk blo
k from its
a
he or it maysend a request to a �le system resour
e.To assist the kernel-programmer, Vortex o�ers support for several
on
ur-ren
y and
ontinuation models for handling requests.Per-resour
e blo
king: Here, a resour
e may temporarily suspend de-livery of requests, whi
h then a

umulate at their original request queues. Un-blo
king
an be done by another resour
e or by delivery of an interrupt request.This stru
ture is useful for implementing drivers for i/o devi
es, whose
apa
itymay be o

asionally ex
eeded by the �ow of requests.Per-request blo
king: When only some requests require blo
king, per-request blo
king is more appropriate. Consider, for example, a File Ca
he Re-sour
e that
ontains some of the requested disk blo
ks but not others, requiringa fet
h from a �le system resour
e. To support su
h situations, the toolkitintrodu
es a pending queue. When a resour
e needs to blo
k an in
oming re-quest until it re
eives a reply to its outgoing request, the resour
e
an pla
e thein
oming request into the pending queue and atta
h a trigger to the outgoingrequest. Triggers point to one or more requests in the pending queue. Resour
esare required to in
lude the trigger in their reply to a request, so the toolkit
anunblo
k the referen
ed request automati
ally when the reply arrives. Multiplerequests
an be asso
iated with the same trigger, allowing multiple requestsfrom the same a
tivity to be unblo
ked simultaneously.Expli
it
ontinuations: In resour
es with several potential blo
kingpoints, per-request blo
king may
ause redundant re-exe
ution of
ode after un-blo
king (sin
e exe
ution always starts at the beginning). For example, in theVortex ext2 �le system resour
e, a request may have to be blo
ked three times,15

ausing instru
tions leading up to the �rst blo
king point to exe
ute ea
h time.To help avoid su
h redundant re-exe
ution, our system allows blo
ked requeststo
arry a pointer to a handler routine that resumes exe
ution after unblo
king.Cooperative threading: When a resour
e uses expli
it
ontinuationswith a large number of blo
king points, the
ode is split into many fun
tionswithout a
lear
ontrol �ow between them. Cooperative threading allows pro-grammers to use blo
king operations in resour
es by saving and re
overing thestate behind the s
enes. To use it, a resour
e would typi
ally spawn for ea
hrequest a separate thread, whi
h would exe
ute for as long as the request isbeing pro
essed.4 EvaluationVortex is implemented in C and, ex
luding devi
e drivers,
omprises approxi-mately 70000 lines of
ode. The system runs on x86-64 multi-
ore ar
hite
tures.The questions we hoped to answer in our evaluation of Vortex were:1. Is all resour
e
onsumption a

urately measured?2. Is resour
e
onsumption attributed to the
orre
t a
tivity?3. Does the ar
hite
ture permit su�
ient
ontrol for s
hedulers to isolate
ompeting a
tivities?In all experiments, Vortex was run on a Dell PowerEdge M600 blade serverwith two Intel Xeon E5430 Quad-Core pro
essors. Cores run at 2.66GHz, haveseparate 64x8 way 32KB data and instru
tion
a
hes, and, in pairs, share a6MB 64x24 way
a
he (for a total of 4 su
h
a
hes). Ea
h pro
essor has a1333MHz front-side bus and is
onne
ted to 16GB of DDR-2 main memoryrunning at 667MHz. Through its PCIe x8 interfa
e, the server was equippedwith two 1Gbit Broad
om 5708S network
ards. And, to the integrated LSISAS MegaRAID
ontroller, two 146GB Seagate 10K.2 disks were atta
hed andset up in a raid 0 (striped)
on�guration.To generate load, we used a
luster of blade servers running Linux 2.6.18.These were of the same type and hardware
on�guration as the server runningVortex, and they were
onne
ted to the Vortex server through a dedi
ated HPProCurve 4208 Gigabit swit
h.4.1 Measurement te
hniqueUsing a system
all interfa
e, a pro
ess
an obtain data on its own performan
eand, subje
t to
on�gurable a

ess rights, the performan
e of other pro
esses inthe system. These performan
e data are obtained from s
hedulers through aninterfa
e that they are required to support (shown in Table 3 of the Appendix).For ea
h
lient of a s
heduler, the data in
ludes attributed
pu and memory
onsumption and, if used,
onsumption as attributed by the s
heduler usingother performan
e metri
s. 16

For most experiments, we obtained performan
e data by running a dedi
atedpro
ess on Vortex. This pro
ess was granted full a

ess to all performan
e datain the system and exported this data upon request using t
p. External toVortex, a s
ript
ommuni
ated with the pro
ess,
olle
ting samples on
e perse
ond. The size of ea
h sample was around 100KB; whenever possible, thes
ript a

essed a network interfa
e
ard not a
tively used in an experiment.When a pro
ess performs a system
all to obtain performan
e measure-ments, Vortex returns measurements timestamped with the
urrent value ofthe
pu timestamp
ounter register of
ore 0. These timestamps
orrelate
pumeasurements with elapsed time; dis
repan
ies reveal unattributed
pu
on-sumption. Retrospe
tive attribution
ompli
ates things. Some samples indi-
ate under-attribution while others indi
ate over-attribution, if there is ongoingresour
e-
onsumption when the samples are obtained. Data a

ura
y, however,is bounded by the
onsumption in
urred by pro
essing one request message.Most messages
an be pro
essed by the
pu in a few mi
rose
onds,
ausinga

ura
y to be in the same order. Thread-ready messages, however, may leadto several millise
onds of uninterrupted
pu
onsumption. The a

ura
y ofperforman
e data pertaining threads and the overall
pu-time
onsumption on
ores that run threads depends upon
hoi
e of thread timesli
es. For example,with thread timesli
es set to 5 millise
onds, the expe
ted a

ura
y is ±0.5% forindividual samples. We veri�ed that our measurements are in agreement withexpe
ted a

ura
y by performing a series of experiments with a pro
ess runningone
pu-bound thread per
ore and varying the duration of timesli
es. In these,we found no samples to be outside expe
ted a

ura
y.Individual samples may be ina

urate, but under-attribution in one sample is
ompensated for in the next sample. Thus, for a series of
onse
utive samples, adeviation between resour
e availability and attribution larger than the expe
teda

ura
y of an individual sample indi
ates that some
onsumption is not beingproperly a

ounted for. In the aforementioned experiments,
omparing the sumof elapsed to the sum of attributed
y
les shows the number of una

ounted
y
les to be within the expe
ted a

ura
y of individual samples. For example,in one experiment, over 100 se
onds, a total of 86, 028, 592
y
les were nota

ounted for (0.004% of elapsed
y
les). This was within the expe
ted a

ura
yof an individual sample (±106, 400, 000
y
les).During an experiment, we ensured that the only pro
esses running on Vortexwere those involved in the experiment itself. We ran ea
h experiment 10�20times to verify the pre
ision of performan
e data; deviations were found to bewithin the a

ura
y of individual samples. For
larity, we therefore do notin
lude error bars in �gures. Also, for ease of visual interpretation, some �gureswere produ
ed using Gnuplot with the dgrid3d
ommand6.6In dgrid3d mode, grid data points represent weighted averages of surrounding data points,with
loser points weighted higher than distant points.
17

cpuhog50
cpuhog33
cpuhog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 15
 20
 25
 30
 35
 40
 45
 50
 55

%
 C

P
U

 u
til

iz
at

io
n

Figure 8:
pu utilization running three
pu-bound pro
esses with 50%, 33%,and 17%
pu entitlement and
pu multiplexors
on�gured with wfq s
hedulers.4.2 Attributing CPU
onsumptionTo evaluate whether
pu
onsumption is being attributed to the
orre
t a
tivity,we
ondu
ted an experiment involving three
pu-bound pro
esses. Ea
h pro
essran one
pu-bound thread per
ore. Re
all from Se
tion 3.4 that threads areimplemented by the Thread Resour
e (tr). The tr drives the exe
ution ofthreads by pro
essing the request messages sent to it when a thread enters theready state. Pro
essing a message involves setting up a timesli
e timer anddispat
hing the
orresponding thread. To isolate pro
esses, Vortex
reates onetr instan
e per pro
ess. Ea
h tr instan
e operates with a separate s
hedulerthat manages threads belonging to a
orresponding pro
ess7.In the experiment,
pu multiplexors use a weighted fair queueing (wfq)s
heduler and assign weights to tr instan
es of the pro
esses a

ording to a
50%, 33%, and 17% entitlement. For the tr s
hedulers, we used a simpleround-robin s
heduler with a load sharing algorithm thereby ensuring that pro-
ess threads run on separate
ores (i.e.
pu multiplexor bindings with in�niteduration and initial binding always assigned to the
ore with the least numberof threads bound to it). Figure 8 illustrates the resulting
pu utilization: the
pu multiplexor wfq s
heduler on ea
h
ore allots
pu time to tr s
hedulers,whi
h in turn exe
ute pro
ess threads, in stri
t a

ordan
e with the desired
50%, 33%, and 17% entitlement.7This avoids s
enarios where, for example, a pro
ess
reates lots of threads in order toin
rease s
heduling overhead for other pro
esses.18

Figure 9: Resour
e grid
on�guration for the �le read experiment.4.3 Attribution and isolation under
ompetitionThe previous experiment does not establish whether
pu
onsumption is
or-re
tly attributed when a resour
e re
eives requests from multiple independenta
tivities.To evaluate attribution-a

ura
y when a resour
e pro
esses requests fromindependent a
tivities, we
ondu
ted an experiment with three pro
esses per-forming �le reads. The pro
esses ea
h ran one thread per
ore, with threadsprogrammed to
onse
utively open a designated �le, read 32KB of data, andthen
lose the �le. To perform a read, three resour
es are involved8 (in additionto the tr instan
es): the Address Spa
e Resour
e (asr), Asyn
hronous i/oResour
e (aior), and the File Ca
he Resour
e (f
r).Due to the few �les involved, the experiment is
pu-bound. And sin
ethreads await the
ompletion of one read operation before performing another,throughput is dependent on the amount of
pu available to the threads and thethree resour
es involved.In the experiment, we
on�gured a resour
e grid, as illustrated in Figure 9,with separate wfq s
hedulers for the asr, aior, and f
r resour
es.
pu
on-sumption was used as a metri
.
pu multiplexors had wfq s
hedulers, whereshares gave the three resour
es a minimum of 50% of
pu resour
es (sharedequally among themselves). The remaining
pu resour
es were assigned to pro-
esses a

ording to a 50%, 33%, and 17% entitlement. The same entitlementwas used for the pro
esses at the asr, aior, and f
r s
hedulers.Figure 10 shows
pu utilization at the di�erent resour
es involved in theexperiment. We see that the bulk of
pu
onsumption is by the threads (ap-proximately 45 + 30 + 15 ∼= 90%). This is due to how Vortex implements the8After the �rst read operation the target �le is
a
hed in memory by the f
r. Thus, inthe following we ignore any other �le system related resour
es.19

AIOR
ASR
FSR

TR filehog50
TR filehog33
TR filehog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

%
 C

P
U

 u
til

iz
at

io
n

Figure 10: Breakdown of
pu utilization.posix asyn
hronous i/o api�Vortex avoids
opy operations on the i/o path,making read data available to a pro
ess through a read-only memory mapping.For the re
eiving thread, data is
opied into the bu�er spe
i�ed in the aio
ontrol blo
k des
ribing the operation.Figure 11 shows a breakdown of the relative
pu utilization attributed to thepro
esses at all resour
es and the threads. From Figure 11(a) we
on
lude that
pu multiplexor wfq s
hedulers operate as expe
ted; threads a

urately re
eiveex
ess
pu resour
es, i.e. entitled resour
es not used by the asr, aior, or f
r,proportionally to their 50%, 33%, and 17% entitlement. The
pu resour
esavailable to the threads translate into a
orresponding
pu
onsumption at theasr, aior, and f
r resour
es, as shown in �gures 11(b)�(d).So, the experiment not only demonstrates that resour
e
onsumption is a
-
urately measured and attributed (goal 1 and 2 of Se
tion 4), but also that thes
hedulers have su�
ient
ontrol to isolate among
ompeting a
tivities (goal 3of Se
tion 4).4.4 Web server workloadsWe further investigate attribution and isolation under
ompetition by
onsider-ing an experiment with (1) s
hedulers using metri
s other than
pu time (byteswritten and read), (2) resour
e
onsumption that is inherently unattributable atthe time of
onsumption (pa
ket demultiplexing and interrupt pro
essing), and(3) an i/o devi
e rather than the
pu as a bottlene
k to in
reased performan
e.The experiment also exer
ises a larger number of resour
es and represents amore realisti
 situation than the mi
ro-ben
hmarks dis
ussed above.20

filehog50
filehog33
filehog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 15
 20
 25
 30
 35
 40
 45
 50
 55

R
el

at
iv

e
C

P
U

 u
til

iz
at

io
n

(a) Thread Resour
e.
filehog50
filehog33
filehog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 15
 20
 25
 30
 35
 40
 45
 50

R
el

at
iv

e
C

P
U

 u
til

iz
at

io
n

(b) File Ca
he Resour
e.
filehog50
filehog33
filehog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 15
 20
 25
 30
 35
 40
 45
 50

R
el

at
iv

e
C

P
U

 u
til

iz
at

io
n

(
) Asyn
hronous I/O resour
e.
filehog50
filehog33
filehog17

 0 10 20 30 40 50 60 70 80 90 100
Time (seconds) 0 1 2 3 4 5 6 7

Core #

 15
 20
 25
 30
 35
 40
 45
 50
 55

R
el

at
iv

e
C

P
U

 u
til

iz
at

io
n

(d) Address Spa
e Resour
e.Figure 11: Breakdown of relative
pu utilization.Web server software thttpd9 was run, with modi�
ations to exploit Vor-tex's asyn
hronous i/o api and event multiplexing me
hanisms. thttpd issingle-threaded and event-driven. To generate load to the web servers, we ranApa
heBen
h10 on three separate Linux ma
hines. On ea
h ma
hine, Apa
heBe-n
h was
on�gured to generate requests for the same 1MB stati
 web page re-peatedly and with a
on
urren
y level of 16. Prior to the experiment, testingrevealed Apa
heBen
h
ould saturate a 1Gbit network interfa
e even from asingle ma
hine. The three Linux ma
hines
ould together generate load well inex
ess of network interfa
e
apa
ity.Table 1 lists the Vortex resour
es used by the web servers. By default,Vortex manifests a network devi
e driver as two resour
es: the Devi
e WriteResour
e (dwr) and the Devi
e Interrupt Resour
e (dir). In the
ase of anetwork interfa
e
ard (ni
) driver, insertion of pa
kets into the transmit ring isperformed under the auspi
es of dwr. Transmit-�nished pro
essing and removalof re
eived pa
kets from the re
eive ring is handled by dir.dir re
eived pa
kets, in the form of request messages, are sent to the NetworkDevi
e Read Resour
e (ndrr) for demultiplexing. By inspe
ting pa
ket headers,ndrr determines whether a pa
ket is destined for an open t
p
onne
tion, is a9http://www.a
me.
om/software/thttpd/thttpd.html10http://www.apa
he.org/ 21

Table 1: Resour
es used in web server experiment.Resour
e Des
riptionDevi
e Interrupt Resour
e (DIR) NIC interrupt pro
essingDevi
e Write Resour
e (DWR) Insert pa
kets into NIC tx ringNetwork Devi
e Write Resour
e (NDWR) Insert ethernet header into pa
ketNetwork Devi
e Read Resour
e (NDRR) Demultiplex in
oming pa
ketsTCP Resour
e (TCPR) Pro
ess TCP pa
ketsTCP Timer Resour
e (TCPTMR) Pro
ess TCP timersAsyn
hronous i/o Resour
e (AIOR) Or
hestrate asyn
hronous i/oFile Ca
he Resour
e (FCR) File
a
hingAddress Spa
e Resour
e (ASR) Address spa
e mappingssyn pa
ket targeting a
onne
tion in the listen state, or is a pa
ket that shouldbe dropped. If a t
p
onne
tion is found, then the pa
ket is sent to the t
pResour
e (t
pr) for further pro
essing. Note that pro
essing by both dir andndrr is
onsidered infrastru
ture; the a
tivity to attribute is determined byndrr as part of demultiplexing. Also note that there is no separate ip resour
e.Sin
e ip
ode is used only in
onjun
tion with
reating t
p or udp pa
ketheaders, ip is a

essed dire
tly instead of manifested as a resour
e.As des
ribed in Se
tion 3.1.1, resour
es assign request a�nity labels to gives
hedulers hints about
pu multiplexor preferen
es, and they assign dependen
ylabels to
ontrol request-pro
essing order. When a pa
ket is removed from theni
 re
eive ring, an a�nity and dependen
y label are assigned to the request.ndrr and t
pr both a

ess �elds in the pa
ket header and the t
p
ontrolblo
k. So for performan
e reasons, pa
kets belonging to the same t
p
onne
-tion ideally would be pro
essed on the same
ore. t
pr pro
essing of pa
ketsin ni
-dequeue order is not a requirement for
orre
tness but
an prevent un-ne
essary t
p
ommuni
ation. For example, the default poli
y for t
p whenre
eiving out-of-order pa
kets is to reply with an a
k pa
ket (whi
h, in turn,might trigger fast retransmit). Also, the Vortex t
p sta
k
ontains the usualfast-path optimizations for in-order pa
ket pro
essing.To preserve pa
ket ordering, pa
kets from the same t
p
onne
tion are as-signed the same dependen
y label at intermediate resour
es. Re
all that thes
heduler toolkit only guarantees ordering between a sending and a re
eivingresour
e. To ensure that pa
kets are pro
essed on the same
ore, identi
al de-penden
y labels are assigned a
ross all intermediate resour
es.For in
oming pa
kets, the dir determines dependen
y labels by inspe
tingpa
ket headers and
omputing a hash of the sending and re
eiving ip addressesand t
p ports. The
omputed label, whi
h is identi
al for all pa
kets belong-ing to the same t
p
onne
tion, is inherited by all intermediate resour
es. Ifpa
ket pro
essing
reates a new t
p
onne
tion, then that label is stored in thet
p
ontrol blo
k and atta
hed to any pa
ket sent. The dependen
y label is22

Figure 12: Resour
e grid
on�guration for the web server experiment.
omputed a

ordingly for
onne
tions
reated by pro
esses running on Vortex.In the experiment, we
on�gured
pu multiplexors with wfq s
hedulers.Resour
es at ea
h
pu multiplexor were
on�gured with a 50% entitlement(shared equally among themselves), with the remaining
apa
ity split amongweb servers a

ording to a 50%, 33%, and 17% formula. Sin
e the web serversare single-threaded, they only draw
pu resour
es from one
ore. To promote
ompetition, we
on�gured tr s
hedulers with a load sharing algorithm thatsele
ted the same
pu multiplexor for all threads (
ore 7). The resour
e grid,shown in Figure 12, was
on�gured with separate wfq s
hedulers for ea
h re-sour
e. At ea
h resour
e s
heduler we
on�gured the infrastru
ture a
tivity witha 50% entitlement, with the remaining split among the web servers a

ording toa 50%, 33%, and 17% formula. Furthermore, s
hedulers were
on�gured to use
pu
onsumption as a metri
, ex
ept for the ndrr, ndrw, and dwr s
hedulerswhi
h were
on�gured to use bytes transferred. The dwr resour
e is instru-mented to emit a resour
e re
ord whenever a write operation is a

epted by theunderlying driver (i.e., a pa
ket su

essfully inserted into the ni
 transmit ring).Likewise, the dir emits a resour
e re
ord when a read operation
ompletes.In Vortex, a resour
e with insu�
ient
apa
ity reje
ts a request. Uponreje
tion, the s
heduler toolkit pla
es the
orresponding resour
e in a suspendedstate and requeues the reje
ted request in the originating queue. Until resumed,no new requests are sent to the resour
e. For the ni
 in our system, dwr reje
ts23

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

Total

httpd50

httpd33

httpd17

Figure 13: Bytes written at the dwr resour
e.a request if the ni
's single transmit ring is full, after whi
h dwr remainssuspended until dir has performed write-
ompletion pro
essing. dwr
apa
ityis limited by the speed at whi
h the ni

an
opy pa
kets from the transmit ringto the network. Moreover, sin
e a

ess to the ni
 transmit ring is serialized bya lo
k, only a single
ore
an insert pa
kets at any given time. Thus,
on�guringthe dwr to request
pu from multiple
pu multiplexors would only result inex
essive
ontention on the ni
 lo
k and not in in
reased
apa
ity. For thisreason, we
on�gured the dwr s
heduler to request
pu only from a single
pu multiplexor (
ore 6). Even when the ni
 is running at full
apa
ity andthe dwr is frequently suspended awaiting dir pro
essing, dir pro
essing islikely to overlap with attempts to insert pa
kets into the transmit ring. Thus,dir pro
essing is best performed on the same
ore as dwr to avoid ni
 lo
k
ontention11.Figure 13 shows how network bandwidth is shared at the dwr resour
eduring our experiment. The demand for bandwidth generated by Apa
heBen
his the same for all web servers. However, the a
tual bandwidth
onsumed byea
h web server depends on its entitlement, as we desired. Moreover, note thatthe total bandwidth
onsumed is
lose to the maximum
apa
ity of the ni
,
on�rming that the workload is i/o bound.Figure 14 breaks down
pu utilization a
ross the involved resour
es. For thisworkload, 28.3% of available
pu
y
les (the equivalent of 2.26
ores) is
on-sumed. Not surprisingly, the bulk of
pu
onsumption is by t
p and resour
es11When dir pro
essing runs on a di�erent
ore from the dwr, we measured an overall
5.5% in
rease in
pu
onsumption. Lo
k pro�ling further showed that the in
rease was allattributable to ni
 lo
k
ontention. 24

downstream. Consumption of 14.24% of available
pu
y
les (the equivalentof 1.13
ores)
an be attributed to infrastru
ture. Of this, 7.2% (0.58
ores) isinterrupt (i.e. dir) pro
essing and the remainder is pa
ket demultiplexing (i.e.ndrr pro
essing). dir pro
essing takes pla
e on
ore 6; ndrr pro
essing isload-shared among
ores due to a�nity label assignment. Observe that dwrpro
essing has a relatively �xed
ost; when ni
 operates at maximum
apa
ity, arelatively
onstant number of pa
kets needs to be transmitted (where the exa
tnumber depends on t
p dynami
s). In
ontrast, the
ost of interrupt pro
essingis heavily in�uen
ed by the frequen
y of interrupts, whi
h is bounded by therate at whi
h pa
kets are removed from the ni
 transmit ring (i.e. at most oneinterrupt per pa
ket sent). (The number of interrupts due to pa
kets re
eivedhas the same bound, but a ni
 operating at maximum transmit and re
eive
apa
ity is not likely to in
rease interrupt frequen
y sin
e the driver would
o-ales
e re
eive with transmit pro
essing. And the ni
 in our system does nothave separate interrupt ve
tors for transmit and re
eive.)In the experiment,
ores were measured to operate at approximately 15±3%utilization, whereas
ore 6 operated at 100%. Core 6 might appear to be abottlene
k, but Figure 13 shows that the ni
 is operating at maximum
apa
ity,as desired. On
ore 6, 28% of utilization is due to dwr pro
essing, 58% dirpro
essing, and the remaining is due to other resour
es. Sin
e the ni
 usesmessage-signaled interrupts, interrupts
an be delivered with low laten
y andat a rate mat
hing pa
ket transmission. For this experiment, the dir pro
essesapproximately 7300 interrupt messages per se
ond. In
ontrast, t
p transmitsapproximately 82000 pa
kets and re
eives 24000 in
oming pa
kets per se
ond.Thus, overhead related to removal of sent pa
kets from the ni
 transmit ringis amortized over approximately 11 pa
kets on average. Redu
ing the loadon
ore 6 would only result in more frequent servi
ing of interrupts, leadingto more frequent interrupts, whi
h in turn in
reases
pu
onsumption. Weexperimentally veri�ed this feedba
k e�e
t by only running the dir and dwron
ore 6. Its load stayed at 100%. The slightly redu
ed per-interrupt overheadwas subsumed by the in
reased number of interrupts.Vortex requires resour
es to handle
on
urrent exe
ution of requests. Inour implementation, we use spin-lo
ks to preserve invariants on shared state.For this experiment, an average of 1, 770, 000 lo
k operations are performed perse
ond. The majority prote
t request queue operations. Lo
k pro�ling did showsome lo
k hotspots, indi
ating a need to re-visit syn
hronization approa
hes,but overall lo
k
ontention in this experiment was found to be low (i.e. few
pu
y
les are spent busy-waiting on lo
ks).Despite low lo
k
ontention, the aggregated overhead of lo
k operations issigni�
ant. For the hardware we are using, obtaining and releasing a lo
k whenthe operation
an be exe
uted internally in a
ore's
a
he involves approximately
210
pu
y
les. In pra
ti
e, due to the need for inter-
ore
ommuni
ation whenperforming lo
k operations, pro�ling shows the average lo
king overhead to be
738
pu
y
les. In total, 22.2% of
onsumed
pu
y
les are attributable tolo
king overhead and
ontention. In
ontrast, had all lo
king operations beenexe
uted internally in a
ore's
a
he, only 6.3% of
onsumed
pu
y
les would25

 0

 1

 2

 3

 4

 5

 6

 7

 8

address_space

asynchronous_io

device_interrupt

device_write

file_cache

network_device_read

network_device_write

statistics

tcp tcp_tim
er

httpd17

httpd33

httpd50

%
 C

P
U

 U
til

iz
at

io
n

(o
ut

 o
f 8

 c
or

es
)

httpd50
httpd33
httpd17

infrastructure

Figure 14: Breakdown of
pu
onsumption.have been attributable as su
h. The latter is to some extent optimisti
, butunders
ores that syn
hronization is
ostly in a multi-
ore environment.4.5 File system workloadsWe
ontinue by
onsidering an experiment involving �le i/o. Similar to theweb server experiment above, this experiment involves s
hedulers using bytestransferred as a metri
, interrupt pro
essing, and an i/o devi
e as a bottlene
kto in
reased performan
e. The experiment di�ers by (1) introdu
ing a foreigns
heduler outside dire
t
ontrol of Vortex (the disk
ontroller �rmware s
hed-uler), (2) i/o devi
e
apa
ity that �u
tuates depending on how the devi
e isa

essed (i.e. whi
h disk se
tors are a

essed and in what order), and (3) i/orequests of markedly di�erent sizes12.The experimental design involved three pro
esses performing �le reads. Thepro
esses ea
h ran one thread per
ore, with threads programmed to read
on-
urrently from 32 di�erent, 2MB, �les. Ea
h �le was
onse
utively opened,read using 4 parallel streams from non-overlapping regions, and then
losed. Toensure that the experiment was disk-bound, ea
h �le was evi
ted from mem-ory
a
hes after it had been read13. Ea
h pro
ess thus maintained
on
urrentread operations from 256 di�erent �les, for a total 768 �les altogether. Before12Before optimizations performed by the disk
ontroller �rmware, Vortex employs an op-timization whereby i/o to adja
ent blo
ks is
oales
ed. This is an optimization employed bymost operating systems. Vortex restri
ts the optimization to requests belonging to the samea
tivity and limits the resulting requests to en
ompass transfer of at most 32KB of data.13Vortex supports �ne-grained management of
a
hed �les; me
hanisms
an
reate
he
k-points of the �le system and evi
t �le state at the granularity of individual �les or aggregatesof �les used by spe
i�
 a
tivities. 26

Table 2: Resour
es used in �le system experiment.Resour
e Des
riptionDevi
e Interrupt Resour
e (DIR) Interrupt pro
essingDevi
e ReadWrite Resour
e (DRWR) Insert read or write requestsStorage Devi
e ReadWrite Resour
e (SDRWR) Bu�er translationsSCSI Resour
e (SCSIR) SCSI messsagesStorage Resour
e (SR) Export disk volumesEXT2 Resour
e (EXT2R) Ext2 �le systemFile Ca
he Resour
e (FCR) File
a
hingAsyn
hronous i/o Resour
e (AIOR) Or
hestrate asyn
hronous i/oAddress Spa
e Resour
e (ASR) Address spa
e mappingsthe experiment was started, an empty �le system was
reated on disk and �leswere then
reated and syn
ed to disk. Files were
reated
on
urrently to avertsequential �le blo
k pla
ement on disk14.Table 2 lists the Vortex resour
es used by the pro
esses. Vortex manifests astorage devi
e driver as two resour
es: the Devi
e ReadWrite Resour
e (drwr)and the Devi
e Interrupt Resour
e (dir). Insertion of disk read/write requestsis performed by drwr and request �nished pro
essing is handled by dir. TheStorage Devi
e ReadWrite Resour
e (sdrwr) interfa
es the storage system withdrwr. In parti
ular, sdrwr translates between storage-spe
i�
 request anddata-bu�er representations and the representations that are used by all Vortexdevi
e drivers15. Sin
e the disks in our system were s
si-based, all requestspassed through the s
si Resour
e (s
sir) for the appropriate s
si message
re-ation and response handling. s
sir is situated upstream of sdrwr and down-stream of the Storage Resour
e (sr). sr abstra
ts di�eren
es in disk te
hnologyby providing a naming s
heme and a general blo
k-based interfa
e to a disk ordisk volume. For example, after s
sir has probed the underlying s
si topology,dis
overed disks and raid volumes are registered with sr as storage volumes,whereby a �le system
an be asso
iated with them or raw a

ess
an be madeby e.g. �le system
reation and re
overy tools. The Ext2 Resour
e (ext2r)is upstream of sr and implements the Ext2 �le system on a storage volumeprovided by sr. The File Ca
he Resour
e (f
r) initially re
eives �le operationsand
ommuni
ates with ext2r to retrieve and update �le meta-data and data.To ensure a
onsistent state on disk, �le systems typi
ally restri
t how diskrequests
an be ordered after sent. ext2r uses dependen
y labels to satisfy itsordering
onstraints. Requests involving blo
ks that are private to a �le (i.e. diskblo
k table and data blo
ks) are assigned the same dependen
y label by ext2rand intermediate resour
es,
ausing requests to arrive at the disk in the order14A sequential �le blo
k pla
ement would result in the majority of disk requests to be ofthe same size due to
oales
ing of reads to adja
ent blo
ks.15Vortex de�nes a general request and data-bu�er interfa
e that all devi
e drivers mustadhere to. 27

sent16. Note that ext2r asso
iates the originating a
tivity with these requests;external syn
hronization proto
ols are assumed when di�erent a
tivities overlapi/o to a �le. For blo
ks
ontaining information pertaining to multiple �les (i.e.inode blo
ks and free inode- and free-bitmap blo
ks), ext2r asso
iates theinfrastru
ture a
tivity with requests and assigns dependen
y labels similarly toprivate blo
ks. Use of the infrastru
ture a
tivity is needed for
onsistent stateon disk17, be
ause the toolkit only guarantees ordering for requests belongingto the same a
tivity.In the experiment,
pu multiplexors were
on�gured with wfq s
hedulers.The resour
e grid was
on�gured with separate wfq s
hedulers for ea
h re-sour
e. Resour
es were given a 50% entitlement at ea
h
pu multiplexor, withthe remaining
apa
ity split among the pro
esses a

ording to a 50%, 33%, and
17% formula. The infrastru
ture was given a 50% entitlement at ea
h resour
e,with the remaining split among pro
esses a

ording to a 50%, 33%, and 17%formula. S
hedulers for resour
es downstream of f
r were
on�gured to usebytes transferred as a metri
, sin
e, for these types of resour
es,
pu
onsump-tion is not representative of a
tual resour
e
onsumption (see Se
tion 2.2). Forthe same reasons as those outlined in the web server experiment above, drwrand dir were
on�gured to request
pu from a single
ore (
ore 6). The disk�rmware was
on�gured to handle up to 256
on
urrent requests to allow ampleopportunities for �rmware to perform optimizations.Figure 15 shows how disk bandwidth is shared at the drwr resour
e duringthe experiment. Be
ause disk
apa
ity varied a
ross runs due to
hanges in �leblo
k pla
ement, the �gure shows relative bandwidth
onsumption for the threepro
esses. The demand for bandwidth is the same for all three pro
esses, butas desired and seen, a
tual allotment depends on entitlement.Figure 16 breaks down
pu utilization a
ross the involved resour
es. Forthis workload, only 0.99% of available
pu
y
les (the equivalent of 0.08
ores)is
onsumed, whi
h
learly shows that the disk is the bottlene
k to improvedperforman
e.5 Related work5.1 S
heduling CPUOne Vortex obje
tive is to provide a �exible framework for s
hedulers thatsupports a wide variety of poli
ies. Prior work has also explored support formultiple,
oexisting s
heduling poli
ies. In
ontrast to Vortex, the fo
us ofthat work was guaranteeing
pu
y
les for pro
esses. Of parti
ular relevan
eto Vortex is work that investigates intera
tion between s
hedulers organized16Software-based request ordering to redu
e disk head movement might result in a di�erentdisk-arrival order, but, similar to optimizations performed by disk �rmware, the ordering mustsatisfy
onsisten
y models.17The File Ca
he Resour
e guarantees that no reads or writes are in progress when sending arequest to ext2r that involves �le meta-data updates. This relieves ext2r from implementinglogi
 for syn
hronizing pending reads or writes with meta-data updates.28

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
ba

nd
w

id
th

 c
on

su
m

pt
io

n

Time (seconds)

fshog50

fshog33

fshog17Figure 15: Bytes read at the drwr resour
e.in a hierar
hy, be
ause of the similar hierar
hi
al relationship between
pumultiplexors and resour
e s
hedulers.Goyal et al. [28℄ present one of the �rst hierar
hi
al s
heduling systems thatallows di�erent algorithms for di�erent appli
ations. The system uses a fairqueuing algorithm at all levels of the s
heduling hierar
hy, ex
ept for the leafnodes. Leaf nodes may implement arbitrary s
heduling poli
ies, mu
h like theThread Resour
e s
hedulers in Vortex. The open environment for real-timeappli
ations [19, 20℄ and bssi [40℄ restri
t the number of levels in the hierar
hyto two, and these systems rely on an earliest deadline �rst (edf) s
heduler atthe root to resolve timing
onstraints of appli
ation s
hedulers. RED-Linux [65℄de�nes s
heduling needs of tasks in terms of attributes, whi
h may be adjustedto express di�erent real-time poli
ies (edf, rate monotoni
, et
.). Con
eptuallythis de�nes a two-level s
heduling hierar
hy.
pu inheritan
e s
heduling [27℄ allows
onstru
tion of arbitrary s
hedulinghierar
hies by designating
ertain threads as s
heduler threads and other threadsas
lient threads. S
heduler threads implement s
heduling poli
ies by donating
pu time to
lient threads. A
lient thread
an, in turn, a
t as a s
heduler threadby donating its
pu time to other threads�a
on
ept originally introdu
edin [17℄.
pu inheritan
e s
heduling
an be viewed as a generalization of s
hedulera
tivations [1℄, only extended with parts of the s
heduling hierar
hy residing atkernel-level (although, the original
pu inheritan
e work only des
ribes a user-level implementation). Nemesis [30℄, Aegis [24℄, and spin [8℄ all implement two-level s
heduler hierar
hies with interfa
es similar to that of s
heduler a
tivations.Nemesis and Aegis require all se
ond-level s
hedulers to run at user-level anduse a �xed s
heduler at the root of the hierar
hy; spin allows appli
ations todownload their own s
hedulers into the kernel at run-time.Hierar
hi
al loadable s
hedulers [55℄ (hls) and Vassal [13℄ both allow a29

 0

 0.05

 0.1

 0.15

 0.2

 0.25

address_space

asynchronous_io

device_interrupt

device_readwrite

ext2
file_cache

scsi
statistics

storage_device_readwrite

storage_readwrite

fshog17

fshog33

fshog50

%
 C

P
U

 U
til

iz
at

io
n

(o
ut

 o
f 8

 c
or

es
)

fshog50
fshog33
fshog17

infrastructure

Figure 16: Breakdown of
pu
onsumption.s
heduler, downloaded into the kernel at run-time, to
ontrol s
heduling of avail-able threads. Vassal only allows a single s
heduler to
o-exist with the nativeWindows NT s
heduler; hls allows arbitrary s
heduler hierar
hies in Windows2000. The hls authors observe that i/o a
tivities severely a�e
t the e�e
tive-ness and a

ura
y of their
pu s
heduling. This problem is expli
itly addressedin Vortex, be
ause it was designed to enfor
e poli
ies for both
pu and i/o
onsumption.5.2 S
heduling CPU and other resour
esMost operating systems have well-de�ned interfa
es for allo
ating
pu time tothreads or pro
esses, and the s
heduling algorithms may be modi�ed in a rela-tively straightforward manner. In
ontrast, there is a multitude of frameworksand me
hanisms for
ontrolling
onsumption of other resour
es. The Linux ker-nel uses timers,
allouts, threads, and subsystem-spe
i�
 frameworks to dispat
hwork on behalf of appli
ations. As a result, work that aims to make all resour
e
onsumption s
hedulable in an existing system must over
ome the disparitiesof a diverse set of me
hanisms. If only
ertain resour
es are made s
hedulable,then inevitably there will be be ways to
ir
umvent poli
y enfor
ement. Forexample, if only network bandwidth is s
heduled, then a web server
ould bepre
luded from rea
hing its potential throughput by another disk-bound ap-30

pli
ation. In the remainder of this se
tion, we highlight work that proposesentirely new frameworks for resour
e s
heduling, has attempted to retro�t su
hs
heduling into an existing system, or started with a
lean slate but did nothave resour
e s
heduling as their primary goal.The Lottery resour
e management framework, originally developed for Lot-tery S
heduling [64℄, introdu
es a ti
ket and a
urren
y abstra
tion. A ti
keten
apsulates a
lient's resour
e rights; an a
tive
lient is entitled to
onsumeresour
es in proportion to the number of ti
kets it holds. A ti
ket may be trans-ferred between two
lients via a ti
ket transfer. Ti
ket transfers provide thebasis for implementing diverse resour
e management poli
ies. In [59℄ and [60℄,the Lottery resour
e management framework was extended for absolute resour
ereservation. Only
pu s
heduling was demonstrated before the work in [60℄,where disk requests and memory allo
ation s
heduling within a Lottery frame-work was demonstrated.Pro
essor Capa
ity Reserves [45℄ was developed to support the
pu s
hedul-ing needs of pro
esses that handle time-
onstrained data types, su
h as digitalaudio and video. The work allows pro
esses to make periodi
 reservations of
pu resour
es; an edf s
heduler ensures that s
heduling is
onsistent with reser-vations. edf s
hedulability serves as an admission
ontrol me
hanism for newreservation requests. At kernel-level, a reserve abstra
tion tra
ks and
ontainsthe
pu usage of a pro
ess during a s
heduling period. The
pu
onsumptionof all threads belonging to a pro
ess is measured and
harged to the reserve as-so
iated with the pro
ess. Threads that ex
eed the
apa
ity of a reserve whileexe
uting in a non-preemptible part of the kernel are penalized in the nextperiod. To a

ount for resour
e usage that spans multiple address spa
es, e.g.when a thread invokes a servi
e o�ered by another pro
ess, a thread's asso
iatedreserve
an be propagated and used by the server threads performing work onits behalf (similar to the Lottery framework, migrating threads in Ma
h [26℄,and shuttles in Spring [29℄).Resour
e Kernels [50,53℄ extends the Capa
ity Reserve work to in
lude oper-ating system enfor
ed reservation of resour
es other than the
pu. Reservationand use of multiple resour
es is de
oupled, and pro
esses are subje
t to separateadmission
ontrols for ea
h resour
e reservation request. Reservation of
pu re-sour
es for the user-level threads involved in pa
ket pro
essing in RT-Ma
h isdes
ribed in [38℄. Expli
it reservation and s
heduling of network bandwidth ismentioned as a feature in [50℄, but no implementation details are given. Reser-vation of disk bandwidth based on a hybrid of edf and a traditional s
analgorithm is des
ribed in [46℄. Resour
e Kernels is primarily
on
erned withenfor
ing reservations within RT Ma
h, so all enfor
ement of reservations takepla
e at user-level. The messages sent between servers in su
h a mi
ro-kernelsystem resemble the requests sent between Vortex resour
es. Thus, it is possiblethat �ne-grained s
heduling of the pro
essing for these messages
ould yield agranularity of
ontrol resembling that found in Vortex. Assuming su
h s
hedul-ing, the problem of ameliorating overhead still remains; dispat
hing a messageto a resour
e in Vortex is a low-
ost operation, whereas a similar dispat
h in ami
ro-kernel system typi
ally entails an address spa
e swit
h. Resour
e Kernels31

also base enfor
ement of reservations on real-time s
heduling of threads (withthe ex
eption of how disk bandwidth is multiplexed), and therefore only uses
pu
onsumption as a metri
 for s
heduling.E
lipse is an operating system developed at Bell Laboratories [9�11℄. Thegoal of E
lipse is to explore quality of servi
e support for multimedia appli-
ations. E
lipse has been implemented in Plan9 [52℄ and as an extension toFreeBSD. E
lipse is built around a reservation-domain abstra
tion, to whi
hsystem resour
es su
h as
pu, disk, network, and physi
al memory are pro-visioned. Pro
esses in E
lipse re
eive resour
es by atta
hing themselves to areservation domain. Domains in
lude a separate proportional share s
hedulerfor ea
h atta
hed resour
e. The Plan9 version of E
lipse s
hedules i/o by in-ter
epting read and write system
alls, subje
ting the requests to a s
hedulings
heme similar to weighted round-robin. Con
eptually, E
lipse enfor
es i/oresour
e reservations through an ar
hite
ture that is similar to Vortex: bothsystems rely on pla
ing i/o requests in queues and use a s
heduler to de
idewhen to remove a request from a parti
ular queue. However, E
lipse only per-forms s
heduling at the level immediately above a physi
al resour
e. Thus,E
lipse does not s
hedule intermediate kernel-level a
tivity (e.g., vfs a
tivity,�le system a
tivity, logi
al volume management, et
.).E
lipse employs a domain-spe
i�
 approa
h to making network
ommuni
a-tion s
hedulable: the signaled re
eiver pro
essing me
hanism [12℄. The approa
his to demultiplex network pa
kets before network proto
ol pro
essing, using the
onventional unix signal me
hanism to shift proto
ol pro
essing to the
ontextof the re
eiving pro
ess. Whenever a network pa
ket arrives, the destinationpro
ess is sent a signal; further pa
ket pro
essing o

urs in the signal handler(with the help of a spe
ial system
all). A weakness is the assumption thatinitial pro
essing of outgoing network tra�
 takes pla
e in the
ontext of the
alling pro
ess (and is not triggered in response to the re
eipt of pa
kets). Whenusing the unix so
ket api this assumption holds, but not when using kernel-supported apis for asyn
hronous i/o (su
h as the ones in newer versions ofLinux and FreeBSD). The de
ision to only support an asyn
hronous i/o api inVortex is rooted in this observation; when a pro
ess
rosses into the kernel aspart of a system
all, further pro
essing is asyn
hronous by means of sendings
hedulable messages.Rialto is an operating system developed at Mi
rosoft Resear
h [22, 33�35℄.The goal was is to build a system in whi
h real-time pro
esses and traditionaltime-sharing pro
esses
oexist and share resour
es on the same hardware plat-form. The primary unit of exe
ution in Rialto is an a
tivity. Multiple threadsin potentially di�erent address spa
es may be asso
iated with the same a
tivity,and a
tivities are guaranteed a minimum exe
ution rate by making
pu reserva-tions. The Rialto s
heduler makes de
isions based on traversal of a pre
omputeds
heduling graph. The
ost of servi
ing interrupts is
harged to the node a
tivewhen an interrupt o

urs. Starvation of non real-time pro
esses is prevented byreserving some
pu time that
annot be reserved by a
tivities.Rialto server threads assume the
pu reservation for
lient threads they aresupporting. In addition to long-term
pu reservations, Rialto supports short-32

term deadline-based exe
ution of pro
ess
ode segments. These
onstraintsare submitted by threads before starting exe
ution of
ode that is parti
u-larly time
riti
al. Rialto is primarily
on
erned with the s
heduling of
putime to threads. So Vortex provides a more general solution to the problemof resour
e management. However, [33, 34℄ outline a framework for s
hedulingother resour
es. This extended/improved framework is based on
entralized re-sour
e planners; but no details have been published regarding the enfor
ementof resour
e grants.Nemesis, developed at the University of Cambridge [39℄, supports a mix oftime-sensitive pro
esses and
onventional pro
esses with the goal of preventingQoS
rosstalk. QoS
rosstalk is de�ned as the
ontention that results when dif-ferent streams are multiplexed onto a single lower-level
hannel. Nemesis takesa very di�erent approa
h to system stru
ture than Vortex in order to a
hievethese goals, moving as mu
h operating system
ode as possible into user-levellibraries. This relo
ation of fun
tionality makes it easier to a

ount for pro
essuse of operating system servi
es. Ca
he Kernel [16℄ and the Exokernel [24, 36℄systems employ something similar.Central to Nemesis is the
on
ept of domains. A domain is the analogue of apro
ess. Ea
h domain has an asso
iated s
heduling domain, whi
h is the entityto whi
h
pu time is allo
ated, and an asso
iated prote
tion domain, whi
hde�nes a

ess rights to virtual memory. Nemesis domains reside at di�erentlo
ations in the same virtual address spa
e. In
ontrast, Vortex is not a singleaddress spa
e operating system.The Nemesis s
heduler aims to provide domains or sets of domains with aprespe
i�ed share of the
pu over a short time frame. The Nemesis s
heduler,Atropos, uses edf to a

omplish this goal. To a

ommodate laten
y-sensitivedomains, su
h as those
ontaining a devi
e driver that needs to rea
t to aninterrupt, the deadline of the domain is dynami
ally shortened when needed. Toavoid QoS
rosstalk in
onjun
tion with paging, Nemesis requires every domain(appli
ation) to be self-paging [30℄. Self-paging implies that ea
h domain hassome
ontrol over whi
h of its virtual pages are ba
ked by physi
al frames. Inparti
ular, a domain is responsible for handling its own page faults. If Nemesis�nds it must re
laim frames from a domain, then the domain is noti�ed aboutthe number of frames it must release in a given time. Appli
ation-assistedrevo
ation is an interesting topi
 that we so far have not explored in
ontextof Vortex. Currently, re
lamation in Vortex is guided by statisti
s suppliedby resour
e instrumentation
ode. Nemesis uses a s
heme similar to that ofthe user-safe ba
king store [5℄, only
oupled with the Atropos s
heduler, forproportional sharing of disk swapping bandwidth among domains.Nemesis probably
ould implement the degree of resour
e
ontrol that Vor-tex provides. However, Nemesis la
ks a
lear
on
ept, aside from the Stret
hdriver [30℄, of how to s
hedule a

ess to i/o devi
es and to higher-level abstra
-tions shared among di�erent domains.S
out is an operating system designed to a

ommodate the needs of
ommuni-
ation-
entri
 systems [47�49, 58℄. A
omplete S
out system is formed by
on-ne
ting individual modules into a module graph. Together, the modules in a33

graph implement a spe
ialized servi
e, su
h as an http server, a pa
ket router,the environment required to run a networked
amera, et
. The module graphis de�ned at build time and remains �xed thereafter. Abstra
tly, a path inthe module graph
an be viewed as a logi
al
hannel through whi
h i/o data�ows within a S
out system. Ea
h path has a sour
e and a sink queue. Whendata arrives, it is enqueued in the sour
e queues and a thread is s
heduled toexe
ute the path. Exe
uting a path involves dequeuing data from the sour
equeue, traversing the path topology, and enqueuing the (transformed) data inthe sink queue. How data arrives in the sour
e queue and how it is removedfrom the sink queue depends on the servi
e implemented by the parti
ular S
out
on�guration.The initial design of S
out did not fo
us on resour
e management to theextent that we do in Vortex; the goal of S
out was to explore aspe
ts of spe
ial-ization, extensibility, and domain-spe
i�
 optimization. Still, the initial S
outdesign re
ognized the need for performan
e isolation among paths to ensurethat
ertain performan
e
riteria
ould be a
hieved (e.g. that a path was able tode
ode and display a parti
ular number of frames per se
ond in a NetTV
on-�guration). However, support for performan
e isolation in S
out was limited toassigning
pu time to path-threads a

ording to an edf algorithm.Es
ort extends S
out with better support for performan
e isolation amongpaths [58℄. In parti
ular, Es
ort adds support for reserving resour
es for modulesthat are part of a path topology. The S
out ar
hite
ture was later ported toLinux [7℄. By essentially repla
ing thread s
heduling in the Linux kernel, thework showed how quality of servi
e guarantees
ould be provided to networkpaths.Software Performan
e Units (spu) is a resour
e management framework de-veloped for shared-memory multipro
essors [62℄. The goal is to provide me
h-anisms that give groups of pro
esses predi
table performan
e
orresponding toan assigned share of system resour
es, independent of system load. The sys-tem was implemented as an extension to IRIX5.3, and it provides proportionalsharing of
pu, memory, and disk bandwidth in a multipro
essor system.The resour
es available to an spu vary over time, always ex
eeding someminimum. The amount of resour
es available at ea
h spe
i�
 time is dynami
allyadjusted based on the amount of idle resour
es at that time. In
ontrast to the�ne-grained
pu multiplexing supported by Vortex, spus are initially allo
atedan integral number of
pus. An idle
pu
an
onsider other spus for s
hedulingthan those allo
ated to it.Memory is partitioned among spus, and the system is periodi
ally
he
ked to�nd spus that have idle pages or that are under memory pressure. The metri
for a

ounting for disk bandwidth usage is the number of se
tors transferredper se
ond. Disk i/o performed by daemon pro
esses (e.g. swapping, �ushingthe blo
k
a
he) is
harged to a spe
ial shared unit initially. After the i/ohas
ompleted, the appropriate spu is lo
ated and
harged. Disk requests thatare dire
tly attributable to units are s
heduled a

ording to a fair queueingalgorithm. The bandwidth usage of ea
h spu is inspe
ted after ea
h disk request,and a request from the spu that has been given the least servi
e relative to its34

bandwidth share is sele
ted.In
ontrast to Vortex, the spu abstra
tion was grafted onto an existingsystem. That is why there is su
h a variety of approa
hes for making di�erenttypes of resour
e
onsumption s
hedulable. Also, s
heduling of network tra�
is not addressed in this work.The Virtual Servi
es framework was developed to address the problem ofQoS
rosstalk between appli
ations in a virtual hosting environment [56℄. Thework de�nes a servi
e as the set of pro
esses, so
kets, �le des
riptors, and otheroperating system resour
es that share one address spa
e. Resour
es a servi
euses outside its own address spa
e are de�ned as sub-servi
es. A virtual servi
e isan operating system abstra
tion that provides per-servi
e resour
e partitioningand management by dynami
ally asso
iating a resour
e binding with a servi
eand the sub-servi
es it uses. This binding is established by inter
epting system
alls and using a
lassi�
ation gate to monitor work that propagates from oneservi
e to another. A
lassi�
ation gate evaluate rules su
h as: �if pro
ess
P1 a

epts a servi
e request from VSx, then the resulting P1 a
tivity should be
harged to VSx�. If, after establishing a binding for a system
all, a
lassi�
ationgate dis
overs that a resour
e limit violation would o

ur as a result of the
all, then the
all
an be made to fail, blo
k, or exe
ute in best-e�ort mode.Operating system entities, su
h as so
kets, shared memory areas, pro
ess
ontrolblo
ks, are tagged with a virtual servi
e asso
iation. This asso
iation is, in turn,used by operating system fun
tionality to infer
harging for a parti
ular a
tivity.The binding between an operating system entity and a virtual servi
e
an
hangedynami
ally as when the operating system dis
overs that a pro
ess is operatingon a data set that belongs to another virtual servi
e.Virtual servi
es provides a sound framework for attributing resour
e usage tothe
orre
t prin
ipal. But from published work, it is un
lear how resour
e
on-sumption
an be
ontrolled within the framework. For example,
ounting andlimiting the number of so
kets that
an be asso
iated with a vs provides little
ontrol over resour
e usage, as one so
ket alone
an
onsume a large proportionof the available network bandwidth.The Resour
e Containers work was the �rst to
learly emphasize the needto separate the
on
epts of prote
tion domains and resour
e prin
ipals [4℄. Byintrodu
ing the
on
ept of a Resour
e Container, the work allows for a �exiblenotion of what
onstitutes an independent a
tivity. Essentially, any thread inthe system (subje
t to a

ess
ontrol)
an
harge resour
e
onsumption to aparti
ular
ontainer by establishing a resour
e binding to the
ontainer, thusallowing an independent a
tivity to span multiple pro
esses and also in
ludekernel-level a
tivity. The
ontainer framework also introdu
es the lazy re
eiverpro
essing network ar
hite
ture [23℄, whi
h makes network bandwidth s
hedu-lable in a somewhat similar fashion as signaled re
eiver pro
essing; pa
ket pro-
essing is shifted from the
ontext of
allout fun
tions to a thread
ontext.Several
ommer
ial operating systems in
lude frameworks for managementof resour
es [31, 32, 61℄. Mostly, these systems fo
us on long-term goals forgroups of pro
esses or users and rely on fair-share s
heduling approa
hes forenfor
ement of resour
e shares. Resour
es that
annot be replenished (su
h as35

disk spa
e) are typi
ally
ontrolled by hard limits. The major di�eren
e betweenVortex and these systems is that Vortex is able to enfor
e isolation at a mu
h�ner time-s
ale. Moreover, these systems typi
ally manage resour
es at a mu
h
oarser granularity and often by partitioning.5.3 Partitioning for s
alabilityA number of re
ent operating systems have explored the use of partitioningas a means to enhan
e multi-
ore s
alability. The primary fo
us of these sys-tems has not been s
heduling
ontrol over resour
e
onsumption, although theproposed ar
hite
tures share similarities with Vortex. Corey [67℄ is stru
turedas an Exokernel system and fo
uses on enabling appli
ation-
ontrolled sharing.Barrel�sh [6℄ also tries to maximize s
alability by avoidan
e of sharing, but goesone step further in arguing for a very loosely
oupled system with separate oper-ating system instan
es running on ea
h
ore or subset of
ores�a model
oineda multikernel system. Tessellation [42℄ proposes to bundle operating systemservi
es into partitions that are virtualized and multiplexed onto the hardwareat a
oarse granularity. As in our work, Tessellation re
ognizes the relationshipbetween message pro
essing and
onsequent resour
e usage, and it proposes thatquality of servi
e
an be provided by quen
hing message senders to ensure thatdi�erent a
tivities re
eive a fair share of the resour
e represented by a partition.Fa
tored operating systems [66℄ proposes to spa
e-partition operating systemservi
es. Unlike Tessellation, whi
h proposes that appli
ations have
omplete
ontrol over the underlying hardware, the work argues for
omplete separationof appli
ations and operating system servi
es due to tlb and
a
hing issues.This re
ent work fo
uses on in
reased use of message passing as a means to
oordinate state updates within a system. Vortex has a similar, but more �ne-grained, stru
ture�resour
es ex
hange messages to
oordinate and implementhigher-level abstra
tions. Although s
alability has been an important
on
ernin our work, our primary motivation has been �ne-grained and a

urate
on-trol over the sharing of individual resour
es, su
h as
ores and i/o devi
es. Aredu
tion in the use of shared state is a
onsequen
e of Vortex design prin
i-ples, however, sin
e su
h sharing
an interfer with s
heduler
ontrol. Sharingbeyond reading the
ontents of a message is infrequent, and if other state isa

essed when a message is pro
essed, then it is typi
ally state that is private tothe a
tivity from whi
h the message originates. In
ases where state is shareda
ross one or more
ores, it is typi
ally to
oordinate use of some resour
e thatis unavoidably shared, su
h as the arp
a
he for a network interfa
e, the list ofa
tive t
p
onne
tions, or �le system blo
ks
ontaining multiple inodes. Unlessa

ess to these resour
es is restri
ted to a parti
ular
ore, sharing is inevitable.Vortex allows asymmetri
, i.e. spa
e partitioned,
on�gurations by design, asexempli�ed and demonstrated in Se
tion 4. Resour
e utilization
on
erns di
-tate that su
h
on�gurations should be used sparingly, however. For example,to minimize power
onsumption, additional
ores should not be a
tivated unlessalready running
ores are unable to
ope with the
urrent load. Implementingsu
h a
on
ern is straightforward in Vortex; a s
heduler
an de
ide to load share36

to a sele
t set of
ores depending on observed utilization.6 Con
lusionVortex is a new multi-
ore operating system designed a

ording to prin
iplesthat maximize s
heduler
ontrol over resour
e
onsumption when
ompetingservi
es are
onsolidated on the same hardware. The prin
iples di
tate thatall resour
e
onsumption must be measured, that the resour
e
onsumptionresulting from a s
heduling de
ision must be attributable to one and only onea
tivity, and that s
heduling de
isions should be �ne-grained.We argue for an ar
hite
ture where the operating system is fa
tored intomultiple
ooperating resour
es that, through asyn
hronous message passing,in
on
ert provide higher-level abstra
tions. By ensuring that an a
tivity isasso
iated with all messages, a

urate
ontrol over resour
e
onsumption
anbe a
hieved by allowing s
hedulers to
ontrol when messages are delivered.Vortex provides
ommodity abstra
tions su
h as pro
esses, threads, virtualmemory, �les, and network
ommuni
ation, while demonstratable assuring a
-
urate s
heduling
ontrol over resour
e
onsumption on modern multi-
ore hard-ware.APPENDIXS
heduler implementationA s
heduler implements a set of fun
tions that are invoked when relevant state
hanges o

ur in the s
heduler's
lients. Table 3 shows these fun
tions. Thetoolkit initiates
reation of a new s
heduler instan
e by invoking init(), withthe (key/value) di
tionary argument s
hedparams supplying
on�guration values.The return value from init() is a pointer to s
heduler-spe
i�
 private state.For ea
h
ore from whi
h a s
heduler is
on�gured to request
pu time,init_
ore() is invoked. In
onne
tion with this fun
tion, the s
heduler ini-tializes state private to ea
h
ore. The return value is supplied as the
orestateargument to other fun
tions.S
heduler
lients are request queues. New request queues are registeredas
lients through add_
lient() and removed through remove_
lient(). Apointer to
lient-spe
i�
 state is returned from add_
lient() and supplied toother fun
tions as the
lientstate argument.The toolkit, in the
ontext of a
pu multiplexor, obtains a s
heduling de-
ision by invoking s
hedule(), whi
h sele
ts and returns a pointer to a non-empty request queue, from whi
h requests will be dequeued and dispat
hed tothe resour
e governed by the s
heduler.S
hedulers maintain a view of all non-empty request queues (i.e. ready
lients) be
ause
lient_ready() is invoked whenever a request arrives to anempty request queue and, if the
orresponding queue is non-empty, after the37

Table 3: S
heduler interfa
e.Name Input Output Des
riptioninit di
t_t *s
hedparams void * Initialize s
hedulerglobal state.init_
ore void *s
hedstate void * Initialize s
heduler
orestate.add_
lient void *
orestaterqueue_t *requestqueuedi
t_t *
lientparams void * Register new
lient.remove_
lient void *
orestatevoid *
lientstate int Unregister
lient.s
hedule void *
orestate rqueue_t* Emit s
heduling de
i-sion.
lient_ready void *
orestatevoid *
lientstate void Register that
lient haspending requests.
lient_suspended void *
orestatevoid *
lientstate void Register that
lient issuspended.poll_ready void *
orestate int Return µ-se
onds untils
heduling de
ision
anbe made.resour
e_re
ord void *
orestatevoid *
lientstateresre
_t *re
ord void Re
ord
lient resour
e
onsumption.load_share time_t *ttla�nity_t a�nityvoid *
lientstatevoid *s
hedstate int De
ide what
oreshould handle thespe
i�
 a�nity label.
lient_statisti
s
lientstat_t *statisti
svoid *
orestatevoid *
lientstate void Return
lient resour
eusage statisti
s.toolkit has exe
uted requests. A s
heduler
an
hoose to be expli
itly informedwhen an a
tivity is suspended (e.g., when a pro
ess is suspended) by providing a
lient_suspended() fun
tion. This fun
tion allows a s
heduler to di�erentiatebetween an idle and a suspended
lient.The toolkit invokes poll_ready() on behalf of the s
heduler to determinewhen to request
pu time from a
pu multiplexor. The return value indi
ateswhether the s
heduler has ready
lients and the number of mi
rose
onds untilde
isions are available (with 0 indi
ating immediately). Indi
ating future avail-ability allows a s
heduler to delay a s
heduling de
ision, even if there are ready
lients.After exe
ution of requests, the s
heduler is informed of resour
e
onsump-tion through resour
e_re
ord(). This fun
tion
an be invoked repeatedly, de-pending on how the resour
e is instrumented. A s
heduler distinguishes re
ords38

by their type �eld.The load_share() fun
tion is invoked to let a s
heduler
reate a
pu mul-tiplexor binding for an a�nity label. The return values are the index of thesele
ted
pu multiplexor and a duration in mi
rose
onds for the binding topersist.Performan
e data on
lients
an be obtained by invoking the
lient_stati-sti
s() fun
tion.Referen
es[1℄ Anderson, T., Bershad, B., Lazoswka, E., and Levy, H. S
hed-uler a
tivations: E�e
tive kernel support for the user-level management ofthreads. ACM Transa
tions on Computer Systems 10, 1 (February 1992),53�79.[2℄ Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar,M., Krishnakumar, S., Pazel, D., Pershing, J., and Ro
hwerger,B. O
eano�SLA based management of a
omputing utility. In Pro
eed-ings of the 7th IFIP/IEEE International Symposium on Integrated NetworkManagement (May 2001).[3℄ Aron, M., Drus
hel, P., and Zwaenepoel, W. Cluster reserves:A me
hanism for resour
e management in
luster-based network servers.In Pro
eedings of the joint international
onferen
e on measurement andmodeling of
omputer systems (June 2000), pp. 90�101.[4℄ Banga, G., Drus
hel, P., and Mogul, J. C. Resour
e
ontainers: Anew fa
ility for resour
e management in server systems. In Pro
eedings ofthe 3rd USENIX Symposium on Operating Systems Design and Implemen-tation (New Orleans, LA, February 1999), pp. 45�58.[5℄ Barham, P. R. Devi
es in a Multi-Servi
e operating system. PhD thesis,University of Cambridge Computer Laboratory, July 1996.[6℄ Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaa
s, R.,Peter, S., Ros
oe, T., S
hupba
h, A., and Singhania, A. Themultikernel: A new OS ar
hite
ture for s
alable multi
ore systems. InPro
eedings of the 22th ACM Symposium on Operating Systems Prin
iples(Big Sky, MNT, 2009), pp. 29�44.[7℄ Bavier, A., Voigt, T., Wawrzoniak, M., Peterson, L., and Gun-ningberg, P. Silk: S
out paths in the Linux kernel. Te
h. Rep. TR-2002-009, Uppsala University, Februrary 2002.[8℄ Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiu
zynski,M. E., Be
ker, D., Chambers, C., and Eggers, S. Extensibility,safety and performan
e in the SPIN operating system. In Pro
eedings of the39

15th ACM Symposium on Operating Systems Prin
iples (1995), pp. 267�284.[9℄ Bruno, J., Brustoloni, J., Gabber, E., Ozden, B., and Silber-s
hatz, A. Retro�tting quality of servi
e into a time-sharing operatingsystem. In Pro
eedings of USENIX Annual Te
hni
al Conferen
e (Mon-terey, CA, June 1999), pp. 15�26.[10℄ Bruno, J., Gabber, E., Ozden, B., and Silbers
hatz, A. The E
lipseoperating system: Providing quality of servi
e via reservation domains.In Pro
eedings of USENIX Annual Te
hni
al Conferen
e (New Orleans,Louisiana, June 1998), pp. 235�246.[11℄ Bruno, J. L., Brustoloni, J. C., Gabber, E., Ozden, B., and Sil-bers
hatz, A. Disk s
heduling with quality of servi
e guarantees. InPro
eedings of IEEE International Conferen
e on Multimedia Computingand Systems (Floren
e, Italy, June 1999), pp. 400�405.[12℄ Brustoloni, J., Gabber, E., Silbers
hatz, A., and Singh, A. Sig-naled re
eiver pro
essing. In Pro
eedings of the USENIX Annual Te
hni
alConferen
e (San Diego, CA, June 2000), pp. 211�223.[13℄ Candea, G., and Jones, M. B. Vassal: Loadable s
heduler support formulti-poli
y s
heduling. In Pro
eedings of the 2nd USENIX Windows NTSymposium (Seattle, WA, August 1998), pp. 157�166.[14℄ Chase, J. S., Anderson, D. C., Thakar, P. N., and Vahdat, A. M.Managing energy and server resour
es in Hosting Centers. In Pro
eed-ings of the 18th ACM Symposium on Operating Systems Prin
iples (Baanf,Canada, O
tober 2001), pp. 103�116.[15℄ Chase, J. S., Irwin, D. E., Grit, L. E., Moore, J. D., and Spren-kle, S. E. Dynami
 virtual
lusters in a Grid site manager. In Pro-
eedings of the 12th IEEE International Symposium on High Performan
eDistributed Computing (2003), pp. 90�103.[16℄ Cheriton, D. R., and Duda, K. J. A
a
hing model of operating systemfun
tionality. In Pro
eedings of the 2nd Symposium on Operating SystemsDesign and Implementation (Monterey, CA, November 1994), pp. 179�193.[17℄ Dahl, O. J., Dijkstra, E. W., and Hoare, C. A. R. Hierarhi
alprogram stru
tures. A
ademi
 Press, 1972.[18℄ Demers, A., Keshav, S., and Shenker, S. Analysis and simulations ofa fair queuing algorithm. In Pro
eedings of Spe
ial Interest Group on DataCommuni
ation (Austin, Texas, September 1989), pp. 3�12.[19℄ Deng, Z., and Liu, J. S
heduling real-time appli
ations in an open envi-ronment. In Pro
eedings of the 18th IEEE Real-Time Systems Symposium(San Fransis
o, CA, De
ember 1997), pp. 308�319.40

[20℄ Deng, Z., Liu, J. W. S., and Zhang, L. An open environment for real-time appli
ations. Real-Time Systems Journal 16, 2/3 (1999), 165�185.[21℄ Doyle, R. P., Chase, J. S., Asad, O. M., Jin, W., and Vahdar,A. M. Model-based resour
e provisioning in a web servi
e utility. InPro
eedings of the 4th USENIX Symposium on Internet Te
hnologies andSystems (Seattle, WA, Mar
h 2003).[22℄ Draves, R. P., Odinak, G., and Cutshall, S. M. The Rialto vir-tual memory systems. Te
h. Rep. MSR-TR-97-04, Mi
rosoft Resear
h,Advan
ed Te
hnology Division, February 1997.[23℄ Drus
hel, P., and Banga, G. Lazy re
eiver pro
essing (LRP): A net-work sybsystem ar
hite
ture for server systems. In Pro
eedings of the 2ndUSENIX Symposium on Operating Systems Design and Implementation(Seattle, WA, o
tober 1996), pp. 261�275.[24℄ Engler, D., Kaashoek, M., and O'Toole Jr., J. Exokernel: An op-erating system ar
hite
ture for appli
ation-level resour
e management. InPro
eedings of the 15th ACM Symposium on Operating Systems Prin
iples(Copper Mountain Resort, Colorado, De
ember 1995), pp. 251�266.[25℄ Feng, X., and Mok, A. K. A model of hierar
hi
al real-time virtualresour
es. In Pro
eedings of the 23th IEEE Real-Time Systems Symposium(Austin, Texas, De
ember 2002), pp. 26�39.[26℄ Ford, B., and Leprea, J. Evolving Ma
h 3.0 to a migrating threadmodel. In Pro
eedings of the USENIX Te
hni
al Conferen
e (CA, January1994), pp. 97�114.[27℄ Ford, B., and Susarla, S. CPU inheritan
e s
heduling. In Pro
eedingsof the 2nd Symposium on Operating Systems Design and Implementation(Seattle, WA, O
tober 1996), pp. 91�105.[28℄ Goyal, P., Guo, X., and Vin, H. M. A hierar
hi
al CPU s
hedulerfor multimedia operating systems. In Pro
eedings of the 2nd Symposiumon Operating Systems Design and Implementation (Seattle, WA, O
tober1996), pp. 107�121.[29℄ Hamilton, G., and Kougiouris, P. The Spring nu
leus: A mi
rokernelfor obje
ts. In Pro
eedings of the USENIX Te
hni
al Conferen
e (Cin
in-nati, Ohio, June 1993), pp. 147�159.[30℄ Hand, S. M. Self-paging in the Nemesis operating system. In Pro
eedingsof the 3rd USENIX Symposium on Operating Systems Design and Imple-mentation (New Orleans, LA, February 1999), pp. 73�86.[31℄ HP-UXWorkloadManager. http://h30081.www3.hp.
om/produ
ts/wlm/index.html.41

[32℄ IBM z/OS Workload Manager. http://www-1.ibm.
om/servers/eserver/zseries/zos/wlm/.[33℄ Jones, M., Alessandro, J., Paul, F., Lea
h, J., Rou, D., and Rou,M. An overview of the Rialto real-time ar
hite
ture. In Pro
eedings of the7th ACM SIGOPS European Workshop (Connemara, Ireland, September1996), pp. 249�256.[34℄ Jones, M. B., Lea
h, P. J., Draves, R., and Barrera, J. S. Mod-ular real-time resour
e management in the Rialto operating system. InPro
eedings of the 5th Workshop on Hot Topi
s in Operating Systems (Or-
as Island, WA, May 1995), pp. 12�17.[35℄ Jones, M. B., Rosu, D., and Rosu, M.-C. CPU reservations and time
onstraints: E�
ient, predi
table s
heduling of independent a
tivities. InPro
eedings of the 16th ACM Symposium on Operating Systems Prin
iples(Saint Malo, Fran
e, O
tober 1997), pp. 198�211.[36℄ Kaashoek, M. F., Engler, D. R., Ganger, G. R., Bri
eno, H.,Hunt, R., Mazieres, D., Pin
kney, T., Grimm, R., Janotti, J.,and Ma
kenzie, K. Appli
ation performan
e and �exibility on Exokernelsystems. In Pro
eedings of the 16th ACM Symposium on Operating SystemsPrin
iples (Saint Malo, Fran
e, O
tober 1997), pp. 52�65.[37℄ Lawall, J. L., Muller, G., and Le Meur, A. F. On the design of adomain-spe
i�
 language for OS pro
ess-s
heduling extensions. In Pro
eed-ings of the 3rd International Conferen
e on Generative Programming andComponent Engineering (Van
ouver, Canada, O
tober 2004), pp. 436�455.[38℄ Lee, C., Yoshida, K., Mer
er, C., and Rajkumar, R. Predi
table
ommuni
ation proto
ol pro
essing in real-time Ma
h. In Pro
eedings ofIEEE Real-Time Te
hnology and Appli
ations Symposium (June 1996),pp. 220�229.[39℄ Leslie, I. M., M
Auley, D., Bla
k, R., Ros
oe, T., Barham, P. T.,Evers, D., Fairbairns, R., and Hyden, E. The design and implemen-tation of an operating system to support distributed multimedia appli
a-tions. IEEE Journal of Sele
ted Areas in Communi
ations 14, 7 (1996),1280�1297.[40℄ Lipari, G., Carpenter, J., and Baruah, S. A framework for a
hieve-ing inter-appli
ation isolation in multiprogrammed hard real-time environ-ments. In Pro
eedings of the 21th IEEE Real-Time Systems Symposium(Orlando, Florida, November 2000), pp. 217�226.[41℄ Liu, C. L., and Layland, J. W. S
heduling algorithms for multipro-gramming in a hard-real-time environment. Journal of the ACM 20, 1(1973), 46�61. 42

[42℄ Liu, R., Klues, K., Bird, S., Hofmeyr, S., Asanovi
, K., and Kubi-atowi
z, J. Tessellation: Spa
e-time partitioning in a many
ore
lient OS.In Pro
eedings of the 1st Workshop on Hot Topi
s in Parallelism (Berkeley,CA, Mar
h 2009).[43℄ Liu, Z., Squillante, M. S., and Wolf, J. L. On maximizing servi
e-level-agreement pro�ts. In Pro
eedings of the ACM Conferen
e on Ele
-troni
 Commer
e (Tampa, Florida, O
tober 2001), pp. 213�223.[44℄ Menas
e, D. A., Almeida, V. A. F., Fonse
a, R., and Mendes,M. A. Business-oriented resour
e management poli
ies for e-
ommer
eserver. Performan
e Evaluation 42 (2000), 223�239.[45℄ Mer
er, C. W., Savage, S., and Tokuda, H. Pro
essor
apa
ityreserves: Operating system support for multimedia appli
ations. In Pro-
eedings of the IEEE International Conferen
e on Multimedia Computingand Systems (Boston, MA, May 1994), pp. 90�99.[46℄ Molano, A., Juvva, K., and Rajkumar, R. Real-time �le systems:Guaranteeing timing
onstraints for disk a

esses in RT-Ma
h. In Pro
eed-ings of IEEE Real-time Systems Symposium (San Fransis
o, CA, De
ember1997), pp. 155�165.[47℄ Montz, A. B., Mosberger, D., O'Malley, S. W., Peterson, L. L.,and Proebsting, T. A. S
out: A
ommuni
ations-oriented operatingsystem. In Pro
eedings of the 5th Workshop on Hot Topi
s in OperatingSystems (Or
as Island, WA, May 1995), pp. 12�17.[48℄ Mosberger, D. S
out: A path-based operating system. PhD thesis, De-partement of Computer S
ien
e, University of Arizona, July 1997.[49℄ Mosberger, D., and Peterson, L. L. Making paths expli
it in theS
out operating system. In Pro
eedings of the 2nd Symposium on OperatingSystems Design and Implementation (Seattle, WA, O
tober 1996), pp. 153�167.[50℄ Oikawa, S., and Rajkumar, R. Portable RK: A portable resour
e kernelfor guaranteed and enfor
ed timing behavior. In Pro
eedings of the 5thIEEE Real-Time Te
hnology and Appli
ations Symposium (Van
ouver, BC,Canada, June 1999), pp. 111�120.[51℄ Peterson, L., and Ros
oe, T. Planetlab phase 1: Transition to anisolation kernel. Te
h. rep., 2002.[52℄ Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson,K., Tri
key, H., and Winterbottom, P. Plan9 from Bell Labs. Com-puting Systems, The Journal of the USENIX Asso
iation 8, 3 (Summer1995), 221�254. 43

[53℄ Rajkumar, R., Juvva, K., Molano, A., and Oikawa, S. Resour
ekernels: A resour
e-
entri
 approa
h to real-time systems. In Pro
eedingsof the SPIE/ACM Conferen
e on Multimedia Computing and Networking(San Jose, CA, January 1998), pp. 150�164.[54℄ Regehr, J., Reid, A., Webb, K., Parker, M., and Lepreau, J.Evolving real-time systems using hierar
hi
al s
heduling and
on
urren
yanalysis. In Pro
eedings of the 24th IEEE Real-Time Systems Symposium(De
ember 2003), pp. 25�40.[55℄ Regehr, J., and Stankovi
, J. A. HLS: A framework for
omposing softreal-time s
hedulers. In Pro
eedings of the 22nd IEEE Real-Time SystemsSymposium (RTSS 2001) (London, 2001), pp. 3�14.[56℄ Reumann, J., Mehra, A., Shin, K. G., and Kandlur, D. Virtualservi
es: A new abstra
tion for server
onsolidation. In Pro
eedings of theUSENIX Annual Te
hni
al Conferen
e (June 2000), pp. 117�130.[57℄ Sha, L., Rajkumar, R., and Leho
zky, J. P. Priority inheritan
eproto
ols: An approa
h to real-time syn
hronization. IEEE Transa
tionson Computers 39, 9 (September 1990), 1175�1185.[58℄ Spats
he
k, O., and Peterson, L. L. Defending against denial ofservi
e atta
ks in S
out. In Pro
eedings of the 3rd Symposium on OperatingSystems Design and Implementation (New Orleans, Louisiana, February1999), pp. 59�72.[59℄ Sullivan, D., and Seltzer, M. A resour
e management frameworkfor
entral servers. Te
h. Rep. TR-13-99, Computer s
ien
e departement,Harvard University, De
ember 1999.[60℄ Sullivan, D., and Seltzer, M. Isolation with �exibility: A resour
emanagement framework for
entral servers. In Pro
eedings of the USENIXAnnual Te
hni
al Conferen
e (San Diego, CA, June 2000), pp. 337�350.[61℄ Sun Mi
rosystems In
. Solaris Resour
e Manager 1.0 (white paper).[62℄ Verghese, B., Gupta, A., and Rosenblum, M. Performan
e isolation:Sharing and isolation in shared-memory multipro
essors. In Pro
eedings ofthe 8th International Conferen
e on Ar
hite
tural Support for ProgrammingLanguages and Operating Systems (San Jose, CA, O
tober 1998), pp. 181�192.[63℄ Waldspurger, C. A. Memory resour
e management in VMware ESXserver. In Pro
eedings of the 5th Symposium on Operating Systems Designand Implementation (De
ember 2002), pp. 181�194.[64℄ Waldspurger, C. A., and Weihl, W. E. Lottery s
heduling: Flexibleproportional-share resour
e management. In Pro
eedings of the 1th Sym-posium on Operating Systems Design and Implementation (Monterey, CA,november 1994), pp. 1�11. 44

[65℄ Wang, Y.-C., and Lin, K.-J. Implementing a general real-time s
hedul-ing framework in the RED-Linux real-time kernel. In Pro
eedings of the20th IEEE Real-Time Symposium (Phoenix, AZ, De
ember 1999), pp. 245�255.[66℄ Wentzlaff, D., and Agarwal, A. Fa
tored operating systems (FOS):the
ase for a s
alable operating system for multi
ores. ACM SIGOPSOperating Systems Review 43, 2 (2009), 76�85.[67℄ Wi
kizer, S. B., Chen, H., Chen, R., Mao, Y., Kaashoek, F.,Morris, R., Pesterev, A., Stein, L., Wu, M., Dai, Y., Zhang, Y.,and Zhang, Z. Corey: An operating system for many
ores. In Pro
eedingsof the 8th Symposium on Operating System Design and Implementation(2008), pp. 43�57.

45

