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Finding Maximal Cycle-Free Subgraphs in Parallel

Zhi-Zhong Chen
Department of Information Engineering, Mie University, Tsu-shi, Mie 514

Abstract: The problem of finding a maximal vertex-induced subgraph without
cycles in a given graph is investigated. Although the parallelizability of this problem
is well doubted, it is shown here that this problem can be solved efficiently in
parallel if the input graph is restricted to one whose diameter is small relative to the
number of vertices in it. Moreover, the problem of finding a maximal vertex-induced
subgraph without cycles of a fixed length $k$ in a given graph is also considered. It is
observed that this problem is solvable in $RNC$ . Unfortunately, the $RNC$ algorithm
is very inefficient. Efficient $NC$ algorithms are then given for small $k’ s$ .

1 Introduction

Since Karp and Wigderson showed that the maximal independent set (MIS for
short) problem is solvable in $NC[16]$ , much work has been devoted to the study of
maximality problems (see [5] for a precise definition of maximality problems). Most
maximality problems are defined on graphs (e.g., the MIS problem). Such a problem
is usually associated with some property on graphs and is either a maximal vertex-
induced subgraph (MVIS for short) problem or a maximal edge-induced subgraph
(MEIS for short) problem. The MVIS (MEIS) problem associated with property
$\pi$ is to find a maximal subset of vertices (resp., edges) of a given graph whose
induced subgraph satisfies $\pi$ . Here, we are interested in only those properties $\pi$ that
checking $\pi$ is computationally easy (say, in $NC$ ) and $\pi$ is hereditary (i.e., whenever
a set $S$ of vertices or edges satisfies $\pi$ , then all subsets of $S$ satisfy $\pi$ ). For such a
property $\pi$ , the MVIS (or MEIS) problem associated with yr can be solved trivially
in sequential. However, it is an important open question whether every MVIS (or
MEIS) problem associated with such a property is solvable in $NC$ or $RNC$. So far,
only specffic MVIS (or MEIS) problems have been shown to be solvable in $NC$ or
$RNC$ [2,3,4,8,12,13,14,15,17,18,20]. Many natural and important MVIS (or MEIS)
problems still remain unresolved. Among them is the MVIS problem associated
with the property “there is no cycle”. We name this problem as the maximal forest
(MF for short) problem. The MF problem is natural in the sense that the MEIS
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problem associated with the property “there is no cycle” is the famous problem
of computing a spanning forest in a given graph. Although the latter problem is
known to have efficient parallel algorithms, the MF problem has not been shown
to be in $NC$ . In this paper, we prove several results about the parallelizability of
the MF problem.

In this paper, we propose two parallel algorithms for the MF problem. The
first algorithm is in fact designed for a more general problem: Given a graph $G$

and a nonnegative integer $l$ , find a maximal subset of vertices in $G$ whose induced
subgraph is a forest with diameter $\leq l$ . For convenience, we call this problem the
generalized maximal forest (GMF for short) problem. If we fix the input integer $l$ to
$n-1$ where $n$ is the number of vertices in $G$ , then the GMF problem becomes the
MF problem. Moreover, if we fix the input integer $l$ to $0$ , then the GMF problem
becomes the MIS problem. The two facts guarantee that the GMF problem is
natural in its own right. Our algorithm for the GMF problem runs in $O(l(T_{MIS}(n)+$

$\log n))$ time with $P_{MIS}(n)+O(n^{2.376})$ processors on an EREW PRAM, where $n$ is
the number of vertices in the input graph and $T_{MIS}(n)$ is the time needed to find
a MIS in an n-vertex graph using $P_{MIS}(n)$ processors on an EREW PRAM. This
result tells us that the MF problem is in $NC$ if the input graph is restricted to one
whose diameter is small comparing with the number of vertices in it. The result
also shows that certain generalized versions of the MIS problem are still in $NC$ .
The second algorithm for the MF problem runs in $O(\sqrt{n}\log^{3}n)$ time with $O(n)$

processors on a given n-vertex planar graph. This algorithm is based on the fact
that planar graphs have separators of $smaU$ size.

As mentioned above, it seems difficult to design an efficient parallel algorithm
for the MF problem. A natural question is to ask how about the MVIS problem
associated with the property “there is no cycle of a fixed length $k’$ . For convenience,
we here denote this problem by $CYC_{k}$ . $CYC_{k}$ has been investigated by Miyano in a
different context [19]. Since $CYC_{k}$ can be easily reduced to the problem of finding
a maximal independent set in a hypergraph of dimension $k$ , we observe that $CYC_{k}$

can be solved in $RNC$ by using a recent result of Kelsen [17]. Unfortunately, this
direct use of Kelsen’s result only gives us an $RNC^{91}$ algorithm for $CYC_{4}$ and even
more inefficient $RNC$ algorithms for $CYC_{k}$ when $k>4$ . In this paper, we show
how to solve $CYC_{k}$ more efficiently for small $k’ s$ . Two results are obtained. The
first is that $CYC_{3}$ can be solved in $O(\log^{4}n)$ time with $O(nm)$ processors on an
EWEW PRAM ( $n$ and $m$ denote hereafter the numbers of vertices and edges in the
input graph, respectively). The second result is that for $4\leq k\leq 7,$ $CYC_{k}$ can be
solved in poly-logarithmic time with $O(m^{k-2}+m^{2}n^{\lfloor\frac{k}{2}\rfloor-1})$ processors on an EWEW
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PRAM if the input graph is restricted to a sparse one.

2 Preliminaries

Throughout this paper, a graph is a usual undirected graph without multiple edges
and self-loops. Let $G=(V, E)$ be a graph. We sometimes write $V=V(G)$ and
$E=E(G)$ . For a vertex $v\in V,$ $N_{G}(v)$ denotes the set $\{u : \{v, u\}\in E\}$ . We denote
by $dist_{G}(u, v)$ the distance between two vertices $u,$ $v$ in $G$ . For $U\subseteq V$ , the subgraph

of $G$ induced by $U$ is the graph $(U, F)$ with $F=\{\{u, v\}\in E : u, v\in U\}$ and is
denoted by $G[U]$ . For $U\subseteq V,$ $||U||$ denotes the number of vertices in $U$ . By a path,
we mean a simple path. The length of a path is the number of edges it traverses.
The diameter of $G$ is the length of the longest paths in $G$ . A cycle of length $k$ in $G$

is called a k-cycle. A maximal sugraph of $G$ without k-cycles is a subgraph $G[V$‘
$]$

such that $G[V$‘
$]$ contains no k-cycle but $G[V’\cup\{v\}]$ contains a k-cycle for every

$v\in V-V’$ . A maximal forest of $G$ with diameter $\leq l$ is a subgraph $G[V’]$ such
that $G[V$‘

$]$ contains no path of length $l+1$ nor a cycle but $G[V’\cup\{v\}]$ contains a
path of length $l+1$ or a cycle for every $v\in V-V’$ . A maximal forest of $G$ is a
maximal forest of $G$ with diameter $\leq||V||-1$ . $G$ is d-sparse if for every $U\subseteq V$ ,
$G[U]$ has at most $||U||\log^{d}||U||$ edges.

A hypergraph $H=(V, E)$ consists of a finite set $V$ of vertices and a family $E$ of
non-empty subsets of $V$ called $hype\tau edges$ . The dimension of $H$ is the maximum size
of a hyperedge in $E$ . Thus, a graph is a hypergraph of dimension 2. An independent
set in $H$ is a subset of $V$ containing no hyperedge of $H$ . A maximal independent
set (MIS) in $H$ is an independent set in $H$ that is not properly contained in some
other independent set.

As the model of computation, we choose the EREW PRAM, in which concur-
rent reads or concurrent writes of the same memory location are disallowed (for a
discussion of the various PRAM models, see [1]).

3 Finding a maximal forest

In this section, we give two parallel algorithms for finding a maximal forest in a
given graph. The first algorithm has an $NC$ implementation if the output forest is
required to have a small diameter. The second algorithm runs in sublinear time if
the input graph is restricted to a planar one.
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3.1 The first algorithm

We here show how to find, given a graph $G$ and a nonnegative integer $l$ , a maximal
forest with diameter $\leq l$ .

Input: A graph $G=(V, E)$ and a nonnegative integer $l$ .
Output: A maximal subset of $V$ whose induced subgraph is a forest of diameter

$\leq l$ .
1. If $I=0$ , then output a MIS of $G$ and halt.
2. Compute a maximal subset $U$ of $V$ such that $G[U]$ is a forest of diameter

$\leq l-1$ .
3. Set $V’=V-U$ ;

4. Remove from $V’$ all vertices $v$ such that $G[U\cup\{v\}]$ is not a forest of diameter
$\leq l$ .

5. Construct a graph $G’=(V’, E’)$ as follows: for every two vertices $v_{1},$ $v_{2}$ in
$V’,$ $\{v_{1}, v_{2}\}\in E’$ iff $\{v_{1}, v_{2}\}\in E$ or there is a connected component $C$ in
$G[U]$ such that $N_{G}(v_{1})\cap V(C)\neq\emptyset$ and $N_{G}(v_{2})\cap V(C)\neq\emptyset$ .

6. Compute a MIS $I’$ of $G’$ and add it to $U$ .
7. Remove from $V$‘ all vertices in $I$‘ and all vertices $v\in V’$ such that $G[U\cup\{v\}]$

is not a forest of diameter $\leq l$ .
8. Construct a graph $G^{u}=$ $(V$‘, $E$“ $)$ as follows: for every two vertices $v_{1},$ $v_{2}$ in

$V’,$ $\{v_{1}, v_{2}\}\in E’$ iff $\{v_{1}, v_{2}\}\in E$ or there is a connected component $C$ in
$G[U]$ such that $N_{G}(v_{1})\cap V(C)\neq\emptyset,$ $N_{G}(v_{2})\cap V(C)\neq\emptyset$ , and $V(C)\cap I’=\emptyset$ .

9. Compute a MIS $I”$ of $G$“ and add it to $U$ .
10. Output $U$ and halt.

In order to show the correctness of the algorithm, we need two lemmas.

Lemma 3.1 Let $K$ be a graph and let $K_{1},$ $K_{2}$ be two vertex-disjoint subgraphs of
$K$ . Then, if $K_{1}$ and $K_{2}$ contain paths of length $l$ and belong to the same connected
component of $K$ , then $K$ contains a path of length $l+1$ .

Proof. Easy and thus omitted. 1

Lemma 3.2 Let $T$ be a tree, and let $u_{1},$ $u_{2}$ be two vertices of $T$ such that for each

$v\in V(T),$ $\max\{dist_{T}(u_{1}, v), dist_{T}(u_{2}, v)\}\leq dist_{T}(u_{1}, u_{2})$ . Then, the path from $u_{1}$

to $u_{2}$ is one of the longest paths in $T$ .

Proof. See Lemma 3.1 in [4]. 1
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Now we are ready to show the correctness of the algorithm. Since the algorithm
is obviously correct when $I=0$ , we assume that $l>0$ . In addition to the notations
used in the algorithm, let $U_{i}$ be the content of the variable $U$ at the end of step $i$

for $5\leq i\leq 9$ , and let $V_{1}’$ be the content of the variable $V’$ at the end of step $i$ for
$3\leq i\leq 9$ . Obviously, $V_{i+1}’\subseteq V_{i}$ for $3\leq i\leq 8,$ $U_{5}\subseteq U_{6}=U_{7}=U_{8}\subseteq U_{9}$ .

Lemma 3.3 $U_{9}$ (i.e., the output of the algorithm) is a maximal subset of $V$ whose
induced subgraph is a forest with diameter $\leq l$ .

Proof. We first show that $G[U_{9}]$ is a forest of diameter $\leq l$ . Obviously, $G[U_{5}]$

is a forest of diameter $\leq l$ by steps $2\sim 5$ . By steps 5 and 6, each connected
component of $G[U_{6}]$ contains only one vertex of $p$ . Thus, $G[U_{6}]$ (and hence $G[U_{7}]$ ,
$G[U_{8}])$ is a forest of diameter $\leq l$ by step 4. We next prove that $G[U_{9}]$ is also a
forest of diameter $\leq l$ . For convenience, we distinguish the connected components
of $G[U_{8}]$ in the following way: a connected component $T$ of $G[U_{8}]$ is said to be of
type I if $V(T)\cap I’=\emptyset$ , and is said to be of type II otherwise. By step 2, $T$ must
contain a path of length $l$ if $T$ is of type II. For each vertex $v\in V_{6}’$ , if there are
two connected components of $G[U_{8}](=G[U_{6}])$ , say $T_{1}$ and $T_{2}$ of type II such that
$N_{G}(v)\cap V(T_{1})\neq\emptyset$ and $N_{G}(v)\cap V(T_{2})\neq\emptyset$ , then $v$ must be removed from $V’$ in step
7 by Lemma 3.1. Thus, for each vertex $v\in V_{7}’$ , there is at most one $T$ of type II
such that $N_{G}(v)\cap V(T)\neq\emptyset$ . On the other hand, by the maximality of $I’$ , for each
vertex $v\in V_{7}’$ , there must be a $T$ of type II such that $N_{G}(v)\cap V(T)\neq\emptyset$. Therefore,
for each vertex $v\in V_{7}’$ , there is exactly one $T$ of type II such that $N_{G}(v)\cap V(T)\neq\emptyset$ .
$L|$et $K$ be a connected component of $G[U_{9}]$ . Then, by step 8, $K$ must consist of
one $T$ of type II, some $T_{1},$

$\cdots,$
$T_{f}$ of type I, and some vertices in $I^{u}$ via which $T$ is

connected with $T_{1},$
$\cdots,$

$T_{f}$ . Moreover, $K$ clearly contains no cycle by step 8. Let $u_{1}$

and $u_{2}$ be two vertices of $T$ such that $dist_{T}(u_{1}, u_{2})=l$ . By steps 7 and 8, we easily
see that for each $v\in V(K),$ $\max\{dist_{K}(u_{1}, v), dist_{K}(u_{2}, v)\}\leq l=dist_{K}(u_{1}, u_{2})$ .
Thus, by Lemma 3.2, $K$ and (hence) $G[U_{9}]$ contains no path of length $>l$ .

Next, we show the maximality of $U_{9}$ . Obviously, no vertex removed from V’ in
step 4 or 7 can be added to $U$ unless $G[U]$ contains a cycle or a path of length $>l$ .
So we are done if $V_{9}’$ is empty. Suppose $V_{9}’$ is not empty. Let $v$ be an arbitrary
vertex in $V_{9}’$ . By the maximality of $I$“, there is a vertex $u$ in $U_{9}$ such that $\{v, u\}\in E$

or both $N_{G}(v)\cap V(T)\neq\emptyset$ and $N_{G}(u)\cap V(T)\neq\emptyset$ for a common $T$ of type I. Let $T_{v}$

$(T_{u})$ be the unique connected component of type II in $G[U_{7}]$ containing a vertex in
$N_{G}(v)$ (resp., $N_{G}(u)$ ). If $T_{v}=T_{u}$ , then $G[U_{9}\cup\{u\}]$ contains a cycle. On the other
hand, if $T_{v}\neq T_{u}$ , then $G[U_{9}\cup\{u\}]$ must contain a path of length $>l$ by Lemma
3.1. 1
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Theorem 3.4 Suppose that a MIS in a given graph with $n$ vertices and $m$ edges
can be found in $T_{MIS}(n, m)$ time using $P_{MIS}(n, m)$ processors. Then, a maximal
forest with diameter $l$ in a given n-vertex graph $G$ can be found in $O(l(T_{MIS}(n, n^{2})+$

$\log n))$ time using $P_{MIS}(n, n^{2})+O(n^{2.376})$ processors.

Proof. We prove this theorem by an induction on the input integer $l$ . When $l=0$ ,
we only need to compute a MIS of $G$ , and thus the theorem holds. Assume the
theorem to be true for $l-1$ with $l\geq 1$ . To show that the theor$em$ still holds
for $I$ , it suffices to prove that all steps except step 2 of the above algorithm can be
implemented in $T_{MIS}(n, n^{2})+O(\log n)$ time using $P_{MIS}(n, n^{2})+O(n^{2.376})$ processors
by Lemma 3.3 and the inductive hypothesis.

For steps 1 and 3, their implementation is trivial. We now consider step 4. Step
4 is divided into three substeps. In the first substep, the algorithm computes the
connected components of $G[U]$ , i.e., computes a function $f$ : $Uarrow N$ such that for
every two vertices $u,$ $u’$ in $U,$ $f(u)=f(u’)$ iff $u$ and $u’$ are in the same connected
component of $G[U]$ ( $N$ is the set of nonnegative integers). Since $G[U]$ is a forest,
this substep can be done in $O(\log n)$ time using $O( \frac{n}{\log n})$ processors [9]. In the second
substep, the algorithm does the following: for each $v\in V’$ , check whether $G[U\cup\{v\}]$

contains a cycle and remove $v$ from $U$ if so. This substep can be done in $O(\log n)$

time with $O(n+m)$ processors by using the function $f$ and a sorting procedure
[6]. In the third substep, the algorithm computes, for each connected component
$C$ of $G[U]$ and each $u\in V(C),$ $diam_{C}(u)= \max\{dist_{C}(u, u’) : u’\in V(C)\}$ . This
substep can be done in $O(\log n)$ time using $O( \frac{n}{\log n})$ processors [4]. In the fourth
substep, the algorithm does the following: for each $v$ still remaining in $V’$ , check
whether $G[U\cup\{v\}]$ contains a path of length $I+1$ and remove $v$ from $V’$ if so.
Clearly, $G[U\cup\{v\}]$ contains a path of length $l+1$ iff there is a vertex $u\in U$ such
that $\{v, u\}\in E$ and $diam_{C_{u}}(u)+1\geq l+1$ or there are two vertices $u_{1},$ $u_{2}$ in $U$

such that $\{v, u_{1}\}\in E,$ $\{v, u_{2}\}\in E$ , and $diam_{C_{u_{1}}}(u_{1})+diam_{C_{b}}(u_{2})+2\geq I+1$ ,
where $C_{u},$ $C_{u_{1}}$ , and $C_{u_{2}}$ are the connected components of $G[U]$ containing $u,$ $u_{1}$ ,
and $u_{2}$ , respectively. Thus, the fourth substep can be done in $O(\log n)$ time with
$O(n+m)$ processors by using the data computed in the third substep and a sorting
procedure [6]. Therefore, step 4 can be done in $O(\log n)$ time with $O(n+m)$

processors. Almost the same discussions work for step 7.
We proceed to consider step 5. Step 5 is divided into three substeps. Let $C_{1}$ ,

$C_{2},$
$\cdots,$

$C_{k}$ be the connected components of $G[U]$ . Note that $C_{i}’ s$ are available from
step 4. In the first substep, the algorithm constructs the adjacency matrix $M_{K}$ of
a graph $K$ defined as follows:
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(a) $V(K)=V’\cup\{w_{1}, \cdots , w_{k}\}$ , where $w_{i}’ s$ are new vertices not in $G$ ;
(b) $E(K)=\{\{w_{i}, v\}$ : $1\leq i\leq k,$ $v\in V’$ , and there is a vert$exu$ in $C_{i}$ such

that $\{u, v\}\in E\}$ .
This substep can easily be done in $O(\log n)$ time with $O(n^{2})$ processors. Note
that $K$ is a bipartite graph. In the second substep, the algorithm computes $M_{K}\cross$

$M_{K}$ . This subst$ep$ can be done in $O(\log n)$ time with $O(n^{2.376})$ processors by using
boolean matrix multiplication [7]. Let $M_{K}’$ be the matrix obtained from $M_{K}$ by
removing those rows and columns corresponding to $w:s$ . In the third substep, the
algorithm computes the desired graph $G’$ as follows: (a) first initialize $G’$ as the
graph specified by $M_{K}’$ ; (b) for every two vertices $v_{1},$ $v_{2}\in V’$ , add the edge $\{v_{1}, v_{2}\}$

to $G’$ iff $\{v_{1}, v_{2}\}$ is an edge in $G$ . This substep can be done in $O(\log n)$ time with
$O(n^{2})$ processors. Therefore, step 5 can be done in $O(\log n)$ time with $O(n^{2.376})$

processors. Almost the same discussions work for step 8.
Steps 6 and 9 can easily be done in $T_{MIS}(n, n^{2})$ time with $P_{MIS}(n, n^{2})$ processors.
By the discussions in the above, the theorem follows. 1

Since finding a MIS in a graph is in $NC$ [12,13,16,18], we have the following
two corollaries.

Corollary 3.5 If $I=O(\log^{k}n)$ for some constant $k$ , then a maximal forest of
diameter $\leq l$ in a given n-vertex graph can be found in $NC$ .

Corollary 3.6 If $l=O(n^{\alpha})$ for some constant $\alpha<1$ , then a maximal forest of
diameter $\leq l$ in a given n-vertex graph can be found in sublinear time with $O(n^{2.376})$

processors.

Since the MIS problem corresponds to the case where $I=0$ , the above two
corollaries show that certain generalizations of the MIS problem are still paralleliz-
able. The above two corollaries also show that the problem of finding a maximal
forest is parallelizable if the input graph $G$ has a small diameter relative to the
number of vertices in $G$ .

3.2 The second algorithm

We here show how to find a maximal forest in a planar graph. The tool used here is
that of small separators. A separator of an n-vertex connected graph $G$ is a subset
SofV(G)such that when all vertices inSareremoved from G, the resulting graph
has no connected component with more than $\frac{2n}{3}$ vertices. A separator $S$ is small if
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the size of $S$ is $O(\sqrt{n})$ .

Input: A planar graph $G=(V, E)$ .
Output: A maximal subset of $V$ whose induced subgraph is a forest.
1. Find a small separator $S$ of $G$ .
2. Remove all vertices of $S$ from $G$ .
3. Set $U=\emptyset$ .
4. In parallel, for each connected component $C$ of $G$ , find a maximal forest of

$C$ and add it to $U$ .
5. In sequential, for each vertex $v$ in $G$ , check whether adding $v$ to $U$ results

in a cycle, and add it to $U$ if not so.

6. Output $U$ and halt.

Theorem 3.7 A maximal forest of an n-vertex planar graph can be found in
$O(\sqrt{n}\log^{3}n)$ time with $O(n)$ processors.

Proof. The correctness of the algorithm is obvious. We assum$e$ that the input
graph is given by its adjacency list representation. According to [10], step 1 can
be implememted in $O(\sqrt{n}\log^{2}n)$ time using $O( \frac{\sqrt{n}}{\log n})$ processors. Other steps can
clearly be done in $O(\sqrt{n}\log^{2}n)$ time with $O(n)$ processors. Thus, the theorem
follows. 1

4 Finding a maximal subgraph without k-cycles

We here consider how to find a maximal subgraph without k-cycles for some con-
stant $k\geq 3$ .

Proposition 4.1 For any constant $k\geq 3$ , finding a maximal subgraph without
k-cycles is in $RNC$ .
Proof. Consider a hypergraph $H$ defined as follows: $V(H)=V(G)$ and $E(H)$ is
the family of those subsets $U$ of $V(G)$ that the vertiecs in $U$ consist of a k-cycle in
$G$ . Then, a MIS in $H$ gives us a maximal subgraph without k-cycles in $G$ . Since $k$ is
a constant, $H$ can be constructed in poly-logarithmic time with polynomial number
of processors. Thus, the problem of findin$g$ a maximal subgraph without k-cycles
is NC-reducible to the problem of finding a MIS in a hypergraph of dimension $k$ .
Since the latter is known to be in $RNC[17]$ , the proposition follows. 1

Her$e$ we note that Kelsen’s algorithm [17] is very inefficient, because its time
complexity heavily depends on $k$ . Even for small $k$ (say $k=4$), Kelsen’s algorithm
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only says that finding a MIS in a hypergraph having dimension 4 is in $RNC^{91}$ ! So
Kelsen’s algorithm may not be called “an $RNC$ al$g$orithm”. Below, we consider
several special cases where a maximal subgraph without k-cycles can be found in
$NC$ .

Theorem 4.2 A maximal subgraph without 3-cycles in a graph $G$ with $n$ vertices
and $m$ edges can be found in $O(1og^{4}n)$ time with $O(mn)$ processors.

Proof. The strategy is the same as that used in the proof of Proposition 4.1.
The main difficulty is to construct the graph $H$ efficiently. It is straightforward
to construct $H$ in $O(1)$ time using $O(m^{3})$ processors. We here describe how to
construct $H$ in $O(\log n)$ time using only $O(mn)$ processors. The first st$ep$ for the
construction of $H$ goes as follows: for each edge $\{u, v\}\in E(G)$ , construct a list
$L_{uv}$ that consists of the vertices adjacent to $u$ or $v$ in $G$ . This step can be done
in $O(\log n)$ time with $O(mn)$ processors. The second step goes as follows: for
each edge $\{u, v\}\in E(G)$ , sort $L_{uv}$ to find out those vertices $w$ that appear in $L_{uv}$

twice (note that $\{u,$ $v,$ $w\}$ must consist of a 3-cycle). Since sorting an n-element list
can be done in $O(\log n)$ time with $n$ processors [6], the second step can be done in
$O(1ogn)$ time with $O(mn)$ processors. Thus, $H$ can be constructed in $O(\log n)$ time
with $O(mn)$ processors. Since $H$ has $n$ vertices and at most $O(nm)$ hyperedges, a
MIS in $H$ can be found in $O(\log^{4}n)$ time with $O(nm)$ processors [8]. Therefore,
a maximal subgraph without 3-cycles in $G$ can be found in $O(\log^{4}n)$ time with
$O(nm)$ processors. 1

Theorem 4.3 Let $4\leq k\leq 7$ and $G=(V, E)$ be a d-sparse graph with $n$ vertices
and $m$ edges. Then, a maximal subgraph without k-cycles in $G$ can be found in
$O(\log^{4+d}n)$ time with $O(m^{k-2}+n^{k’-1}m^{2})$ processors, where $k’= L\frac{k}{2}\rfloor$ .

Proof. Consider the following algorithm for finding a maximal subgraph without
k-cycles:

1. Set $V’=V$ and $U=\emptyset$ .
2. Find an independent set $I$ of size $\frac{||V’||^{2}}{32m+2||\gamma’||}$ in $G[V$‘

$]$ , where $m’$ is the number
of edges in $G[V’]$ .

3. Construct a hypergraph $H$ as follows: $V(H)=I$ and $E(H)$ is the family of
all subsets $I’$ of $I$ such that $G[U\cup I’]$ has a k-cycle with all vertices of $I’$ on
it.

4. Find a MIS in $H$ and add it to $U$ .
5. Remove from $V’$ all vertices in $I$ and all vertices $v$ such that $G[U\cup\{v\}]$ has

a k-cycle.
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6. If $V’=\emptyset$ , then output $U$ and halt; otherwise, goto step 2.

It is obvious that when the above algorithm terminates, $G[U]$ is a maximal
subgraph without k-cycles. We next consider how to implement each step above.
The implementation of step 1 is trivial. According to [11], step 2 can be done in
$O(\log^{3}n)$ time with $O(n+m)$ processors. A straightforward implementation of st$ep$

$3$ in poly-logarithmic time needs $\Omega(m^{k})$ processors. The next lemma shows how
to implement step 3 in $O(\log n)$ time using only $O(m^{k-2}+n^{k’-1}m^{2})$ processors.
Since $I$ is an independent set in $G$ , each hyperedge of $H$ consists of at most $k’$

vertices. Thus, the dimension of $H$ is at most $k’$ and hence $H$ has at most $O(n^{k’})$

hyperedges. By noting that $k’\leq 3$ , we have that step 4 can be done in $O(\log^{4}n)$

time with $O(n^{k’})$ processors [8]. The resources needed for step 5 are no more than
that for step 3. The implementation of step 6 is trivial. Since $G$ is d-sparse, the
size of the independent set $I$ found in st$ep2$ is $\Omega(\frac{||V’||}{\log^{d}||V||})$ . By noting that all
vertices in $I$ are removed from $V’$ in step 6, we have that steps 2\sim 6 are executed
at most $O(\log^{d}n)$ times. Therefore, the above algorithm runs in $O(\log^{d+4}n)$ time
using $O(m^{k-2}+n^{k’-1}m^{2})$ processors. 1

Lemma 4.4 Let $G=(V, E)$ be a graph with $n$ vertices and $m$ edges, and let $I$ be
an independent set of $G$ such that $G[V-I]$ contains no k-cycle. Then, all subsets
$U$ of $I$ such that $G[(V-I)\cup U]$ has a k-cycle with all vertices of $U$ on it can be
found in $O(\log n)$ time with $O(m^{k-2}+n^{k’-1}m^{2})$ processors, wher$ek’= L\frac{k}{2}\rfloor$ .

Proof. Consider the following steps for finding all subsets $U$ of $I$ such that $G[(V-$

$I)\cup U]$ has a k-cycle with all vertices of $U$ on it:

1. Construct a list $L$ consisting of all paths $P$ in $G$ such that $P$ is of length
$k-2$ and $P’ s$ two endpoints are both in $V-I$.

2. In parallel, for each path $P$ in $L$ , remove from $P$ all intermediate vertices
$v\in V-I$ .

3. Sort $L$ to find all subsets $I’$ of $I$ such that some $P$ in $L$ contains all vertices
in $I’$ but contains no vertex in $I-I’$.

4. Sort $L$ to construct, for each subset $I’$ of $I$ found in step 3, a list $L_{I’}$

consisting of all pairs $\langle v_{1}, v_{2}\rangle$ of vertices in $V-I$ such that some $P$ in $L$

consists of $v_{1},$ $v_{2}$ , and the vertices in $I’$ .
5. In parallel, for each subset $I’$ of $I$ found in step 3, sort $L_{I’}$ to remove

duplicates from $L_{I’}$ (that is, if a pair appears in the original $L_{I’}$ twice or
more, then it appears exactly once in the resulting $L_{I’}$ ).
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6. Construct a list $L_{G}$ consisting of all triples $\langle v_{1}, v_{2}, u\rangle$ such that $u\in I,$ $v_{1}\neq v_{2}$ ,
$v_{1}\in N_{G}(u)$ , and $v_{2}\in N_{G}(u)$ .

7. In parallel, for each subset $I’$ of $I$ found in st$ep3$ , first merge $L_{I’}$ with $L_{G}$ ,
then sort the resulting list by the vertices in $V-I$ to find all vertices $u\in I$

such that there is some triple ( $v_{1},$ $v_{2},$ $u\rangle$ in $L_{G}$ with $\langle v_{1}, v_{2}\rangle\in L_{I’}$ , and finally
output $I’\cup\{u\}$ for all $u$ just found.

It is easy to see that after the above steps, we get all the subsets $U$ of $I$ such
that $G[(V-I)\cup U]$ has a k-cycle with all vertices of $U$ on it. We next consider the
resources needed by the above steps. It is easy to implement step 1 in $O(1)$ time
with $O(m^{k-2})$ processors. St$ep2$ runs in $O(\log n)$ time with $O(m^{k-2})$ processors.
Using a sorting procedure, step 3 can be done in $O(\log n)$ time with $O(m^{k-2})$

processors [6]. The resources need by steps 4 and 5 are the same as that needed
by step 3. Step 6 can be done in $O(1)$ time with $O(m^{2})$ processors. Since $I$ is an
independent set in $G$ , each subset $I’$ of $I$ found in step 3 has size $k’-1$ . Thus,
the number of subsets $I’$ of $I$ found in step 3 is at most $n^{k’-1}$ . Hence by using a
sorting procedure, step 7 can be done in $O(\log n)$ time with $O(n^{k’-1}m^{2})$ processors
[6]. Therefore, the theorem holds. 1
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