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TUNEL Terminal transferase biotin-dUTP nick end-labeling 
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4. Introduction 

  
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a wide spectrum 

of clinical and immunological disorders. Prevalence of SLE is higher in females, while males 

have lower survival rates (1). The mostly involved tissues in SLE include skin, joints, 

kidneys, central nervous system, serous membranes and hematological systems while other 

organs can also be affected but with lower frequency. SLE is characterized by presence of a 

bewildering range of antibodies against self antigens. Clinical manifestations of the disease 

are imposed by the tissue damaging impact of circulating autoantibodies and deposition of 

immune complexes.   

4.1 Epidemiology of SLE 
 
Epidemiological data demonstrate marked variations in gender, age and race. According to 

resent studies, the overall age-adjusted prevalence of SLE varies from 20.6 to 78.5 per 

100 000 persons (2,3) and is approximately 2 to 3 times higher in people of African or Asian 

background than in the white population (4). The incidence of the disease has increased 

approximately 3 times during the last 50 years, likely because of better diagnostics of mild 

SLE cases (5,6). The strongest risk factor of lupus is gender. In most studies, more than 90% 

of patients are women. The female-to-male ratio in general is 7:1, while in the childbearing 

years it increases to 11:1 (7). Known as a disease that develops mostly in women of 

reproductive age, in white population SLE however has the highest age-specific incidence 

rates after the age of 40 (8). Published data for Afro-Americans or HispanIC in USA and 

Latin America show that they develop lupus earlier in life (9-11).     

 

 

 5
 

 



 

4.2 Etiological factors 
 
Classically, three main factors are considered in the etiology of SLE: genetic, hormones and 

environment. 

Familial clustering, differences in the concordance rate between monozygotic (24-

57%) and dizygotic (2-5%) twins, suggest a genetic basis in lupus (12,13). Currently, more 

than 20 loci of SLE susceptibility genes are known to contribute to risk of the disease, most of 

which are involved in immune complex processing; Toll-like receptor function and type I 

interferon production; and immune signal transduction in lymphocytes (reviewed in  (14,15)). 

However, no single gene polymorphism was identified to cause lupus itself and SLE is 

considered as a genetically complex condition where 2 or more genetic risk factors need to 

occur in an individual to increase risk of the disease (14).  

Predominantly development of SLE in females, implicates an important role of sex 

hormones. Estrogen and prolactin have been shown to have influence on the regulation of 

immune system including alteration of B-cell maturation and selection, proliferation of T-

cells and promotion of a Th1 response (16-18). Several studies demonstrated increased risk of 

SLE in association with menstrual irregularity or with both short and long menstrual cycles 

(19-21). Protective effect of breastfeeding three or more babies compared with none was 

shown in the Carolina Lupus Study (20). Menopausal status, age at menopause and 

postmenopausal hormone therapy were also shown to be risk factors for SLE (20,21).  

Historically, SLE was considered to be a viral disease. However, last decades of 

investigation did not confirm a viral etiology of lupus. The most promising finding is 

serological evidence of Epstein-Barr virus (EBV) infection in SLE patients. In one study 

almost 100% of patients with pediatric SLE were sero-positive to EBV (22). Retrospective 

analysis of serum samples collected from US military recruits showed markedly higher anti-
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EBV antibody titer in people who later developed SLE compared to “non-lupus” individuals 

(23).  

Environmental factors which also can likely be etiological for SLE are chemicals. 

Exposure to silica has been associated with increased risk of SLE (24,25). There are several 

reports about hair dye use as a risk factor for lupus (26,27), however this observation was not 

confirmed in a large prospective study (28).  

4.3 Etiopathogenesis of SLE 
 
The pathogenesis of SLE is composed of two pathological processes: i. break of self-tolerance 

that results in production of antibodies to self-antigens and ii. organ-damaging impact of 

circulating autoantibodies and deposition of immune complexes (IC). 

The immune system normally defends our body from pathogens coming with bacteria, 

viruses or parasites. While the innate immune system acts fast, recognizes pathogens and 

responds in a generic non-specific way, the adaptive immune system has the an ability to 

recognize and remember specific pathogens with response getting stronger each time a 

pathogen is encountered. Aggression of immune system against the host organism is 

prevented through the mechanism of immunological tolerance where immature B- and T-cells 

which bind self antigens are eliminated in bone marrow and thymus (central tolerance) or 

mature autoreactive cells which enter the periphery are suppressed by T-regulatory cells and 

become anergic in the absence of co-stimulation by antigen presenting cells (peripheral 

tolerance) (29,30) 

Several B- and T-cell abnormalities were observed in human and murine SLE 

including abnormal B-cell activation and differentiation to memory or plasma cells (31) and  

regulatory dysfunction of T-cells (32). However, defects in B- and T-cells can not explain the 

main phenomena in the pathogenesis of SLE – how self intracellular antigens become 

immunogenic and trigger a strong and prolonged autoantibody response (33,34).    
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The central target for autoantibodies in SLE is nucleosomes. Nucleosomal antibodies 

have been shown to be highly specific for patients with SLE (35-37). Break of self tolerance 

to nucleosomes can similarly contribute to development of autoantibodies to dsDNA as well 

(37,38). Nucleosomes are normal products of apoptosis and generated in vivo only by 

endonuclease digestion of chromatin, therefore accelerated apoptosis, or defects in DNA 

fragmentation or impaired clearance of apoptotic cells can provide a potential mechanism for 

breaking self-tolerance and antigen-driven prolonged autoantibody response (39-41).   

4.3.1 Apoptosis in pathogenesis of SLE 
 
General characteristic of apoptosis 
 
Apoptosis is a programmed genetically controlled cell death characterized by condensation of 

chromatin, DNA fragmentation, membrane blebbing and externalization of 

phosphatidylserine (42). It is initiated through the ligation of specific death receptors on the 

cell surface (extrinsic pathway) or from within the cell as response to DNA damage, defective 

cell cycle, hypoxia or other types of cell stress (intrinsic pathway). The initiation of apoptosis 

is followed by a cascade of enzymatic activations (Figure 1) and identifiable morphological 

changes in cells and in nuclei (43). In the last stage, apoptotic bodies, carrying cellular 

components, present “eat-me” signals and are engulfed by macrophages or dendtritic cells 

(44,45). Clearance of intact dying cells prevents secondary necrosis of apoptotic cells and 

release of danger signals that may promote inflammatory process (46,47).  
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Figure 1. Death receptor signaling.   

 

Pathway diagram reproduced courtesy of Cell Signaling Technology, Inc. 

(www.cellsignal.com). Used with permission. 

 
Apoptosis and autoimmunity 
 
In contrast to apoptosis, primary necrosis is characterized by a rapid loss of the integrity of the 

cell membrane and exposure of intracellular components in the extracellular space, followed 

by activation of inflammasome (a large multimeric cytoplasmic protein complex that enables 

proteolytic processing of prointerleukin-1β to its active form (48)) (49). Apoptotic cells 
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maintain their membrane integrity during the early stage of apoptosis, however at a late stage 

membrane integrity may be lost and cells become “secondary necrotic” (50). If apoptotic cells 

enter the stage of secondary necrosis, they start to release intracellular danger signals 

including high-mobility group box 1 (HMGB1) associated with nucleosomes (51,52), 

caspase-cleaved autoantigens (53) and uric acid (54). Immune cells respond to those signals 

with activation of inflammasomes and recruitment of more immune competent cells, 

production of cytokines and the up-regulation of co-stimulatory molecules, which finally 

cause immune system to be “alarmed” and to break tolerance to intracellular self-antigens 

(reviewed in (54,55)) as shown on Figure 2.  

 

Figure 2. Danger signals from primary and secondary necrotic cells induce an alert immune 

system. 

 
 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology 

(55), copyright 2010.  
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Apoptosis and SLE 
 
An increase in the apoptosis rate may exceed the local phagocytic clearance capacity. This 

may lead to accumulation of apoptotic cells and their transformation into secondary necrosis. 

Increased apoptotic activity among peripheral blood cells from SLE patients including 

lymphocytes (56), neutrophils (57) and monocytes (58) and its positive correlation with 

autoantibody production and disease activity (57) has been shown by many researches. 

Correlation between SLE activity and the increased level of apoptosis suggests that high 

apoptotic rate may lead to the production of autoantibodies. Induction of apoptosis of 

monocyte/macrophage in vivo by the administration of chlodronate liposomes to lupus-prone 

mice results in increase of anti-nucleosome and anti-dsDNA antibody production and 

worsening lupus nephritis, while injection of chlodranate in non-lupus-prone mice lead to 

development of anti-nucleosome antibodies but not lupus nephritis (59). Induction of 

apoptosis has also been shown to be the initial event in the pathogenesis of pristane-induced 

lupus in mice (60), which also is complicated by development of lupus-like nephritis.  

In a contrast to increased apoptotic activity, reduction of apoptosis also leads to 

induction of autoimmunity. MRL-lpr/lpr mice which have no expression of a functional 

apoptosis-inducing ligand Fas, develop a spontaneous lupus-like syndrome including 

production of anti-dsDNA antibodies, lupus nephritis and skin lesion (61). Insufficient 

elimination of lymphocytes, observed in those mice, demonstrates that autoreactive T cells 

can survive and cause break of immunological tolerance leading to humoral autoimmunity to 

components of chromatin. In human SLE, the Fas-dependent apoptotic pathway was shown to 

be unaffected (62), however in some lupus patients anti-Fas ligand antibodies were found in 

circulation (63). In vitro, they inhibited Fas-mediated apoptosis in cell lines. This indicates the 

possibility of in vivo inhibition of Fas-mediated elimination of autoreactive lymphocytes and 

disturbance of peripheral tolerance (63).  
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Apoptotic bodies or microparticles? 
 
It has been shown that not only apoptotic bodies but microparticles (MPs) can also be 

generated during apoptosis. They incorporate nuclear and cytoplasmic components of dying 

cells and can mediate intercellular communication (64). The diameter range of MPs is 0.1-1.0 

μm. They contain RNA (including ribosomal, massager and microRNA) and cleaved DNA 

(65). Nucleic acids are presented both on the surface and inside the particles. MPs are 

proposed to participate in regulation of thrombosis, vascular reactivity, angiogenesis and 

inflammation (reviewed in (66)). Because of RNA and DNA incorporation MPs are suggested 

to act as autoadjuvants during the establishing of central B-cell tolerance (reviewed in (67)). 

Beside apoptosis they can also be generated during cell activation (64). 

The role of microparticles in pathogenesis of SLE is of high interest since they may 

participate in both central tolerance and peripheral activation of B cells (67). Nucleic acids 

located on the surface of microparticles can interact with B-cell receptors triggering their 

activation while translocation of nucleic acids from MPs into B cells will lead to their 

activation through toll-like receptors and non-toll like receptor sensors. In normal individuals 

this would cause central deletion of autoreactive B cells but in SLE patients this will rather 

contribute to promoting survival of autoreactive B cells due to demonstrated defects at 

checkpoints of negative selection of B cells (68,69). In the periphery, interaction of 

autoreactive B cells with MPs might further lead to their differentiation into autoantibody-

producing plasma cells (67). Therewith, MPs have been demonstrated to be a source of 

extracellular DNA and serve as an autoantigen for anti-DNA antibodies (65,70) and increased 

level of circulating MPs was observed in SLE patients (71,72).   
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4.3.2 Nucleases in pathogenesis of SLE 
 
In addition to dysregulated apoptosis or microparticles, impaired degradation of DNA during 

cell death is another process that may lead to extracellular chromatin exposure, break of self-

tolerance and appearance of autoantibodies to chromatin components.  

 
General characteristics of nucleases 
 
In cells undergoing apoptosis, chromosomes are condensed and cleaved at internucleosomal 

regions to generate approximately 200-bp DNA ladders. Chromosome fragmentation is a 

complex biochemical mechanism that involves endonucleases with distinct nuclease activities 

and substrate specificities (73). Two classes of apoptotic nucleases participate in programmed 

cell death according to Samejima and Earnshaw (reviewed in (74), Figure 3). Cell-

autonomous nucleases, which cleave the DNA within a cell, and waste-management nucleases, 

which digest chromatin originated from other cells, not from cells where those nucleases were 

produced. Cell-autonomous nucleases have direct access to the nuclei, while waste-

management nucleases are enclosed in lysosomes or secreted into the extracellular space. The 

lysosomal nucleases participate in chromatin degradation during, for example, phagocytosis, 

and in case of insufficient chromatin fragmentation by cell-autonomous nucleases perform the 

final DNA digestion (75). The secreted nucleases exert their function in the blood stream and 

gastrointestinal tract to clean up DNA released from necrotic cells. Some nucleases can 

represent both classes, when secreted waste-management nucleases could under certain 

conditions be released into cytoplasm of a cell and function as cell-autonomous nucleases (76).  
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Figure 3. Cell-autonomous and waste-management nucleases in apoptosis and necrosis. 

 

Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews (74), copyright 

2005.  

There are two apoptotic nucleases clearly identified to degrade DNA within a cell – 

caspase activated deoxyribonuclease (CAD) and endonuclease G (Endo G).  

CAD is the “professional” apoptotic nuclease. In cells it presents itself as inactive, in 

complex with the inhibitor of CAD (ICAD). When apoptotic stimuli activate the caspases, 

caspase 3 cleaves ICAD from the complex and active CAD digests double-stranded DNA at 

positions within internucleosomal linker DNA (77,78). Cleavage by CAD results exclusively 

in double-stranded breaks (79). In cells that are deficient in CAD or have a caspase-resistant 

form of ICAD, chromatin degradation is markedly reduced (75,80,81), suggesting that CAD 
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is the main cell-autonomous nuclease. At the same time, ICAD-deficient mice develop 

normally, lack of apoptotic DNA fragmentation does not lead to induction of autoimmunity in 

those mice  and they still show residual DNA fragmentation (80,81), suggesting the existence 

of other apoptotic nucleases (74,82). 

Endo G is identified as a mitochondrial endonuclease which can induce chromatin 

degradation in cells lacking CAD (82). It translocates to the nucleus after induction of 

apoptosis and proceeds DNA fragmentation (82). Endo G can be activated through caspase-

independent apoptotic pathway (pro-apoptotic factors Bid and Bim) (82), or in order to 

release of cytochrom c and caspase 3 activation – caspase-dependent apoptotic pathway (83). 

It was shown that cleavage by Endo G results in single-stranded breaks between nucleosomes 

and its function is optimized in presence of DNase I (84). Interestingly, expression of Endo G 

via cisplatin-induced kidney injury was lower in DNase I knockout mice than in wild-type 

mice, demonstrating a potential link between those two nucleases (85). Results of studies on 

Endo G knockout mice remain controversial. The first study showed that Endo G-deficient 

mice died prenatally (86), but the second study reported they are viable (87). In any case, 

living mice without Endo G expression in cells did not demonstrate a compromised immune 

system (87).  

DNase II is classified as a waste-management nuclease (74). It is packed in lysosomes 

and plays the main role in engulfment-mediated DNA degradation (88,89). DNase II has been 

shown to be essential for life since degradation of expelled nuclei from erythroid precursor 

cells proceeds by DNase II in bone marrow macrophages (88). DNase II-deficient mice die at 

birth, owing to severe anemia and defects in the diaphragm (88,89). Lack of DNase II 

expression in macrophages leads to accumulation of DNA fragments in those cells and 

hyperproduction of interferon-β (IFN-β) (75). DNase II knockout mice deficient in interferon 

type I receptor were born alive and normal. However, macrophages in 1-month-old mice 
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carrying undigested DNA started to produce TNF-α, and at 2-3 month of age mice developed 

polyarthritis resembling rheumatoid arthritis (88). Interestingly, the knockout of CAD gene in 

DNase II-deficient mice increases interferon-β production up to 10-fold (75). Thus lack of 

engulfment-mediated DNA degradation, especially in combination with reduced chromatin 

fragmentation via apoptosis, contributes to abnormal activation of the innate immune system 

(75).  

DNase I is a secreted protein detected in serum, saliva, intestinal juice, urine, seminal 

fluid and lacrymal fluid (90). Primary regarded as an enzyme of gastrointestinal tract that 

digests DNA in food, it has been found to be required in chromatin breakdown during 

apoptosis and necrosis (91-93), and to function as cell-autonomous nuclease in certain 

circumstances (76). Knockout of DNase I gene in mice on SLE-predisposed background leads 

to induction of autoimmunity, appearance of anti-nucleosome antibodies and development of 

nephritis (94). Indeed, DNase I-deficient mice with a “non-autoimmune” background have 

reduced DNA fragmentation in the intestine (95), indicating physiological role of DNase I in 

the death of intestinal cells. The same mice have been shown to be protected against cisplatin-

induced kidney injury (96)  and gamma radiation (95) – two circumstances known to be 

associated with endonuclease-mediated DNA fragmentation damage.      

There are three other nucleases that were reported to have 39-46% identity to DNase I 

– DNase I-like 1 (DNase IL1), DNase IL2 and DNase IL3. They can function as cell-

autonomous nucleases and participate in chromatin degradation during apoptosis (97-99). 

General characteristics of the nucleases mentioned here are summarized in Table 2.  

DNA degradation is an essential process for life and development. Therefore it is a 

well protected mechanism with complex nuclease interactions. Several cell-autonomous 

enzymes can cleave apoptotic chromatin, while the final digestion proceeds in lysosomes of 

macrophages by waste-management DNase II. DNase I is essential to degrade DNA in 
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extracellular space and body fluids, however it can also function as cell-autonomous nuclease  

(reviewed in (74)).  

 

Table 2. Properties of the main apoptotic nucleases.   
Nucleases  Cofactor pH 

optimum 
Inhibitor TUNEL* Location Secreted Ref. 

CAD Mg2+ Neutral  Zn2+ + Nuclei, 

cytoplasm 

Not (78) 

EndoG Mg2+, Mn2+ Neutral  Zn2+ + Mitochondria Not (84) 

DNase Il1 Ca2+, Mg2+, 

Mn2+, Co2+ 

Neutral  G-actin, 

Ni2+, Zn2+ 

+ Cytoplasm Not (98,100) 

DNase Il2 Ca2+, Mg2+, 

Mn2+, Co2+ 

Acidic  Zn2+ + Cytoplasm Yes (100) 

DNase Il3 Ca2+, Mg2+, 

Mn2+, Co2+ 

Neutral  Ni2+, Zn2+ + Nuclei Yes  (100-102) 

DNase I  Ca2+, Mg2+, 

Mn2+, Co2+ 

Neutral  G-actin, 

Ni2+, Zn2+ 

+ Cytoplasm Yes  (93,100) 

DNase II None Acidic  - - Lysosomes Not  (103) 

* the ”+” indicates that the nuclease generates 5’-P and 3’-OH ends that can be detected by TUNEL 
reaction.   
 
Nucleases and SLE 
 
Only one nuclease has been shown to be involved in the pathogenesis of SLE so far. Reduced 

serum DNase I activity has been reported in lupus patients (104-107) and lupus-prone 

(NZBxNZW)F1 mice (108,109) and was proposed to cause accumulation of undigested DNA 

and induce production of autoantibodies against chromatin components (104). Therefore, a 

study with administration of DNase I in lupus-prone mice that develop nephritis was 

performed by Macanovic et al. (110). Published data suggested positive therapeutic effect of 

DNase I since progression and severity of the disease were decreased in mice injected 

intraperitoneally with murine DNase I (110). However those results were not reproduced in 

larger study on lupus-prone mice (111) and intravenous and subcutaneous administration of 

recombinant human DNase I to 17 patients with lupus nephritis did not show any effect on 

 17
 

 



 

disease activity (112). Moreover in an experimental mouse model with pristane-induced 

lupus, mice deficient in CAD did not produce antinuclear antibody (113). Thus, animals 

lacking chromatin fragmentation are impaired in ability to produce antibodies against nuclear 

components. Therewith, knockout of the DNase I gene in mice with “non-autoimmune” 

background did not lead to induction of autoantibodies (96). Taken together those data 

suggest that lacking or reduced chromatin fragmentation per se does not contribute to break of 

immunological tolerance to components of chromatin.  

4.3.3 Impaired clearance of apoptotic cells in pathogenesis of SLE  
 
Increased amount of apoptotic, secondary necrotic chromatin as a main antigen in SLE can 

also occur in the case of impaired clearance of apoptotic cells. Normally, cells undergoing 

apoptosis are removed immediately by non-inflammatory phagocytosis (114). The fast, 

efficient and silent removal of apoptotic cells protects them from transformation into 

secondary necrotsis. If clearance is reduced, apoptotic cells reach a stage of secondary 

necrosis, expose danger signals (including HMGB1, heat shock proteins and uric acid) and 

trigger inflammation (reviewed in (55), Figure 2). Detection of nuclear remnants from 

apoptotic cells in germinal centers in association with the surfaces of follicular dendritic cells 

in SLE patients can explain the mechanism of termination of immunological tolerance to 

chromatin components in SLE (115). Several studies demonstrated functional defects in 

clearance of apoptotic cells in human and murine SLE (115-117). Mice deficient in C1q (C1q 

mediates immune complex and apoptotic cell opsonisation and phagocytosis) and MFG-E8 

(MFG-E8 recognizes and binds apoptotic cells that enhances the engulfment of apoptotic cells 

by macrophages) develop anti-nuclear antibodies and immune-complex mediated lupus-like 

nephritis (118,119). This indicates an important role of effective clearance of apoptotic cells 

as a defensive mechanism to maintain tolerance for e.g. chromatin autoimmunity. Only C1q 

deficiency so far was found to be strongly associated with SLE in humans (120,121). Other 
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genetic defects causing impaired clearance of apoptotic cells in SLE patients remain 

unknown.       

Thus, several pathological processes can contribute to termination of tolerance to self 

chromatin components in SLE and induce production of anti-dsDNA/anti-nucleosome 

antibodies. Interaction between the autoantibodies and antigens leads to formation of immune 

complexes (IC) that deposit in organs, trigger cascades of inflammation causing tissue injury 

and manifestation of clinical symptoms of the disease. Deposition of IC in patients with SLE 

has been identified in several sites including glomeruli, blood vessels and skin. IC presence 

may be explained by the deposition of circulating IC or by local formation of autoantibody-

antigen complexes in case when target antigen is present within the site. Circulating IC can 

effectively and quickly be cleared by the reticulo-endothelial system in liver and spleen (122-

124). Several studies have reported abnormal processing of IC in SLE patients (125-127) 

including reduced splenic uptake. This may likely be due to complement deficiency (125-

127). But at the same time uptake of IC by liver was found to be increased (125) and final 

clearance of IC was faster in lupus patients (127). On another side, several constitutively 

expressed components of glomeruli have been shown to be recognized by anti-chromatin 

antibodies (including laminin (128,129) and α-actinin (130,131)) while two main components 

of GBM - collagen IV and heparan sulphate, could serve nucleosome-mediated binding of 

anti-nuclear antibodies to glomerular membrane (reviewed in (132,133)). However, there is 

no international consensus about the mechanism of IC deposition in SLE and future 

investigations are required. Nevertheless autoantibodies can by themselves cause cell damage 

by Fc receptor mediated inflammation (134) and/or by direct cytotoxicity. Some 

hematological disorders in SLE as hemolytic anemia and thrombocytopenia are most caused 

by direct lytic effect of the autoantibodies (135,136).  
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4.4 Classification and diagnosis of SLE 
 
Since most organs can be affected by the disease, SLE often presents a diagnostic challenge. 

The main serological marker of SLE is presence of antinuclear antibodies including 

antibodies against dsDNA and nucleosomes. They are present in approximately 80% of lupus 

patients and correlate with disease activity (137,138). Prognosis of SLE is based on disease 

severity and known to be the most unfavorable in case of kidney and nervous system 

involvement. American College of Rheumatology (ACR) developed classification criteria for 

lupus, consisting of the most common clinical and laboratory manifestations, to classify SLE 

for clinical studies. Those criteria however are also provisionally used for the disease 

diagnosis. The 11 ACR criteria for SLE are presented in Table 1. Combination of 4 or more of 

them simultaneously or accumulated over time permits to classify lupus with 96% specificity 

and sensitivity between other autoimmune illnesses (139); nonetheless those criteria were 

never tested on non-autoimmune diseases (140). 

Table 1. Criteria for classification of Systemic Lupus Erythematosus (SLE) modified from 

Tan E.M. et al. (139).  

Criterion  Definition  

1.   Malar rash  Fixed erythema, flat or raised, over the malar eminences 

2.   Discoid rash  Erythematous circular raised patches with adherent keratotic scaling and follicular 

plugging; atrophic scaring may occur 

3.   Photosensitivity Exposure to ultraviolet light causes rash 

4.   Oral ulcers Includes oral and nasopharyngeal ulcers, observed by physician 

5.   Arthritis  Nonerosive arthritis of two or more peripheral joints, with tenderness, swelling or effusion 

6.   Serositis Pleuritis or pericarditis documented by ECG or rub or evidence of effusion 

7.   Renal disorder Proteinuria >0.5 g/d or +3, or cellular casts 

8.   Neurologic disorder Seizures or psychosis without other causes 

9.   Hematologic disorder Hemolytic anemia or leukopenia (<4000/mm3) or lymphopenia (<1500/mm3) or 

thrombocytopenia (<100000/mm3)  in the absence of offending drugs  

10. Immunologic disorder Anti-dsDNA, anti-Sm, and/or anti-phospholipid antibody 

11. Antinuclear antibodies An abnormal titer of ANA by immunofluorescence or an equivalent assay at any point in 

time in the absence of drugs known to induce ANAs 
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4.5 Lupus nephritis    
 
The classical immune-complex mediated complication in SLE is lupus nephritis.  

4.5.1 General characteristics of lupus nephritis 
 
Lupus nephritis is potentially the most severe clinical manifestation of SLE that affects 30-

60% of lupus patients (141,142). Before 1970, 5-year survival rate of SLE patients with lupus 

nephritis was low and reached only 25-40% (143). The situation has changed during the last 

decades and survival rate increased to 80-95% (144) as a result of using broad-spectrum 

immunosuppressive therapy, introduction of dialysis and renal transplantation. Despite 

intervention, the results of integrated therapy are still insufficient since complete remission 

rates of lupus nephritis are around 50% (145) with relapse rates of up to 30% over 2 years 

(146). Therewith the incidence of end-stage renal disease in SLE has tended to increase in US 

especially among African-Americans and HispanIC (147). 

The diagnosis of lupus nephritis also invokes challenges. The initial clinical symptoms 

of the disease are persistent proteinuria and/or appearance of cellular casts in urine, however it 

can manifest from full-blown nephrotic syndrome with fast progression into end-stage renal 

failure. Laboratory findings in urine as well as a monitoring of anti-dsDNA or other 

autoantibodies in serum do not indicate disease severity. The level of circulating 

autoantibodies is associated with overall disease activity but does not correspond to renal 

pathomorphological changes and degree of kidney damage (148). Correct evaluation of lupus 

nephritis therefore has to be performed by examination of renal biopsy. Histopathological 

evidence of inflammation and affection of different glomerular patterns has been shown to 

represent the extent of kidney injury and well predict the risk of development severe renal 

disease (149). At the same time, renal biopsy is an invasive procedure and has considerable 

procedural risk, and it needs to be repeated during disease progression to diagnose the 

possible transformation of one morphological pattern to another, and to provide correction in 
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therapy (150,151). Investigation of new less-invasive markers of the disease severity is of 

high interest in lupus nephritis. Several candidates were reported to provide sufficient 

prognostic value of the disease but future studies are needed to be performed to conclude their 

significance in practice (152-154). 

4.5.2 Classification of lupus nephritis 
 
There are six classes of lupus nephritis according to classification criteria developed by 

International Society of Nephrology and Renal Pathology Society (ISR/RPS) working group 

(155). The last revised form of classification from 2003 is presented in Table 3. This 

classification is based on light microscopy, immunofluorescent and electron microscopy (EM) 

analyses of renal biopsies and focuses exclusively on glomerular pathology. Histological 

findings in different glomerular patterns (mesangial, epithelial and endothelial) including 

active or chronic inflammation, necrosis, crescents and IC deposition allow to discriminate 

severity of the disease and renal outcome. Thus Class I lupus nephritis (characterized by 

mesangial IC deposits detectable only by EM and/or immunoflourescence) and Class II 

(appearance of mesangial hypercellularity and extended deposition of IC in mesangium) are 

silent disease, therefore usually non-symptomatic and rarely progress to renal failure 

(155,156). Class III lupus nephritis is characterized by segmental endocapillary proliferative 

lesions and immune deposits in subendothelial glomerular pattern that affect less than 50% of 

all glomeruli, whereas in Class IV more than 50% of glomeruli have to be affected (155). 

Clinically, Class III and IV lupus nephritis present with mild or severe proteinuria (including 

nephrotic syndrome) and are associated with rapid progression to end-stage kidney disease 

(156). Lupus nephritis patients with subepithelial immune deposition in glomeruli (Class V) 

have low rate of progression, typically present with nephrotic syndrome and have high risk of 

thromboembolic events (155,157). Class VI lupus nephritis is the final-stage when chronic 

glomerular inflammation transforms into global glomerulosclerosis (155).    
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ISR/RPS classification primarilly focuses on glomerular damage. However several 

studies have reported on the importance of tubulointerstitial inflammation (TI) and its 

predictive role for progression to renal failure (158-160). Since TI can occur independently of 

glomerular injury (161) and does not correlate with titers of anti-dsDNA antibodies it may 

indicate different pathogenic mechanisms for glomerular and interstitial tissue damages 

during development of lupus nephritis (160).  

 

Table 3. Abbreviated International Society of Nephrology and Renal Pathology Society 

classification of lupus nephritis (2003), modified from Weening at al. (155). 
Class I Minimal mesangial lupus nephritis 

Class II Mesangial proliferative lupus nephritis  

Class III Focal lupus nephritis (indicate the proportion of glomeruli with active and with sclerotic lesions)  

Class IV Diffuse segmental or global lupus nephritis (indicate the proportion of glomeruli with fibrinoid 

necrosis and cellular crescents) 

Class V Membranous lupus nephritis (may occur in combination with class III or IV in which case both 

will be diagnosed) 

Class VI Advanced sclerosis lupus nephritis 

 

4.5.3 Pathogenesis of lupus nephritis 
 
Since lupus nephritis is an IC-mediated disease (162,163) three main questions have to be 

addressed: i. which autoantibodies are nephritogenic, ii. what is the central renal target 

antigen and iii. where and how are IC formed.    

 A wide spectrum of autoantobodies has been shown to be associated with lupus 

nephritis including anti-C1q, anti-Ro, antiribosomal antibodies, antibodies to laminin, 

fibrinogen and collagen (reviewed in (133,164)). However, the central role in the 

pathogenesis of lupus nephritis has been attributed to anti-dsDNA and anti-nucleosome 

antibodies (132,165-167). A direct nephritogenic role of anti-dsDNA and anti-nucleosome 

antibodies is suggested by the correlation of serum antibody levels with nephritis (168,169) 
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and the presence of anti-DNA antibodies in glomerular immune deposits (170,171). 

Concentration of anti-dsDNA antibodies in eluates from glomeruli exceeds their 

concentration in serum (172) and administration of DNA to autoimmune mice with 

circulating anti-dsDNA antibodies accelerates the progression of nephritis (173). In addition 

injection of anti-DNA antibodies to non-immune mice can induce nephritis (174-176). 

However immunization with dsDNA failed to induce anti-dsDNA antibodies with lupus 

specific characteristics, while the positive results came after administration of dsDNA 

complexed with histone-like DNA-binding proteins (177-179). It has been also shown that T 

cells directed against histones or nucleosomes were able to provide help for the production of 

anti-dsDNA antibodies (36,180). Those observations lead to the conclusion that nucleosomes 

are the driving autoantigen in SLE and lupus nephritis.     

 At the same time there exists evidence that nucleosomes are the central renal targets 

for nephritogenic autoantibodies since they are found in electron dense structure (EDS) in 

murine and human lupus nephritis (165,166). However, many researches have demonstrated 

cross-reaction of anti-nucleosomes antibodies with glomerular membrane components such as 

laminin, α-actinin and collagen (128,131,181-184). Ultra structural analysis of glomeruli by 

various electron microscopy techniques did not show presence of those components within 

the EDS (185,186), and the in vivo-bound antibodies were not observed in regular membranes 

or matrices. Again the main SLE enigma – how can intracellular antigen (nucleosome) 

become able to impose an immune response and at the same time serve as an antigen for the 

induced autoantibodies? The possible mechanisms such as disregulation of apoptosis, 

defective DNA degradation by endonucleases and impaired clearance of apoptotic cells are 

discussed in chapter 4.3. With regard to lupus nephritis, abnormal levels of apoptotic activity 

were observed in diseased kidneys. However published results remain controversial. Several 

studies demonstrated an increase of apoptotic cells in lupus nephritis (165,187,188) while 
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other reported decreased renal apoptosis (189,190). In all of these studies conclusions are 

based on histological determination of amount of apoptotic cells on kidney sections. While 

investigation of renal apoptotic activity with integrated assessment of apoptotic triggers, 

executioners and effectors and detection of final apoptotic chromatin fragmentation were not 

performed.  

Decreased serum DNase I was found associated with active phase of class III/IV lupus 

nephritis (191) in respect to possible defect in endonuclease mediated DNA degradation. But 

involvement of serum DNase I in the pathogenesis of lupus nephritis remained elusive since 

administration of DNase I to patients with lupus nephritis did not have impact on the disease 

activity (112). Even the origin of serum DNase I is not well established. Just one recent set of 

data suggested liver as an organ secreting DNase I (192). At the same time little is known 

about DNase I expression and regulation in tissue and particularly in kidneys.  

The mechanism by which autoantibodies form immune complexes in glomeruli has 

been discussed over decades, and the international consensus is still absent. In general there 

are two main theories to consider: 1) pre-formed circulating IC are passively trapped into 

glomeruli and 2) autoantibodies bind directly to endogenous renal antigens. The first theory is 

challenged by evidence that circulating IC should be rapidly cleared by the liver and spleen. 

In addition, administration of DNA/anti-DNA complexes to lupus prone mice resulted in 

decreased disease activity by reduction of autoantibody production (193). The second theory 

has many versions of antibody-binding mechanism including cross-reactions with 

constitutively expressed components of glomeruli (discussed above), nucleosome-mediated 

binding (132) and binding to exposed undigested chromatin fragments (194). None of those 

mechanisms have been ultimately proved and still is a matter of debate.  

It is also not excluded that different stages of lupus nephritis relate to different 

pathogenetic antigens. Data from repeated renal biopsies of lupus patients suggest that 15-
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40% of them switch one class of lupus nephritis to another during continuous follow-up 

(150,151). Some patients experience progression from the mild mesangial form to full-blown 

membrano-proliferative nephritis, while others remain with a benign mesangial pattern 

throughout life. 

One of described mechanisms of lupus nephritis development suggests that deposited 

IC trigger a cascade of inflammatory events including activation of Fc receptors and 

complement (reviewed in (195)). Those events lead to recruitment of inflammatory cells. 

Infiltrating macrophages can be responsible for increased expression of metalloproteinase 2 

(MMP-2) and MMP-9 (196,197). Alteration in the composition or integrity of glomerular 

membranes possibly caused by increased MMP activities can facilitate subepithelial 

deposition of IC or chromatin fragments (198). However this mechanism is not well 

established and future investigation are required.  

4.5.4 Animal models for the study of lupus nephritis 
 
Studies of lupus nephritis on human tissue samples are limited for practical reasons. These 

include problem with amount of renal biopsy material, timing difficulties to follow all stages 

of lupus nephritis development in one individual and lack of renal histology information at the 

time of initiation of nephritis. Use of animal models helps to solve many of those problems 

but retains additional question about relevance of research in animals to the human 

counterpart of the disease.   

The (NZBxNZW)F1 mouse is known as an animal model that spontaneously develops 

SLE-like disease. They are generated by the F1 crossbreed progeny of New Zealand Black 

(NZB) and New Zealand White mice. (NZBxNZW)F1 mice develop typical lupus nephritis 

including production of anti-dsDNA antibodies, development of IC mediated 

glomerulonephritis and death from end-stage renal failure or cardiovascular disease (199-

201). Studies in this thesis were performed on (NZBxNZW)F1 lupus-prone mice. The 
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relevance of research findings in the animal model is currently tested in our group on human 

renal biopsies.    
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5. Aims  
 
 

 To investigate the mechanism of appearance and origin of chromatin fragments in 

glomerular EDS in kidneys of (NZBxNZW)F1 mice. (Paper I and II) 

 

 To characterize the apoptotic rate in kidneys of (NZBxNZW)F1 mice at different 

stages of lupus nephritis. (Paper II) 

 

 To determine the impact of anti-dsDNA antibodies, renal DNase I and MMPs on 

initiation and progression of lupus nephritis. (Paper III) 

 

 To analyze the organ specificity of acquired renal DNase I reduction and its selectivity 

among endonucleases in (NZBxNZW)F1 mice during development of lupus nephritis. 

(Paper IV)  
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6. Summary of the papers 

Paper I. 
 
Reduced fragmentation of apoptotic chromatin is associated with nephritis in lupus-

prone (NZBxNZW)F1 mice. 

Electron dense structures (EDS) containing IgG and chromatin fragments are observed in 

glomerular basement membranes (GBM) of human and murine lupus nephritis. However the 

size of chromatin structures found in EDS was never analyzed. Thus demonstration of 

nucleosomal DNA fragments within the kidneys may be consistent with increased production 

of apoptotic DNA or its impaired clearance since nucleosomes are products of apoptosis and 

generated in vivo exclusively by endonuclease-mediated cleavage of DNA. While the absence 

of low molecular DNA, may be due to reduced fragmentation of chromatin in SLE nephritis. 

We performed analyses of DNA isolated from kidneys of female (NZBxNZW)F1 mice at 

different stages of lupus nephritis and did not find nucleosomal DNA fragmentation even in 

proteinuric animals where TUNEL-positive chromatin particles were detected in glomerular 

membrane by co-localization TUNEL immune electron microscopy. Induction of apoptosis 

ex-vivo by camptothecin in isolated kidneys from young, autoantibody negative 

(NZBxNZW)F1 mice and in kidneys from proteinuric mice with severe nephritis 

demonstrated markedly reduced DNA fragmentation in comparison to age- and sex-matched 

controls. Analysis of mRNA level of central renal nucleases CAD, EndoG and DNase I 

demonstrated a dramatic loss of renal DNase I transcription in mice with nephritis, while 

mRNA levels of CAD and EndoG in all groups of lupus-prone mice remained unchanged 

compared to healthy controls. Thus TUNEL-positive chromatin particles deposited in the 

glomerular membranes of nephritic mice are likely large chromatin fragments accumulated in 

glomeruli due reduced chromatin fragmentation and clearance of chromatin in nephritic 

(NZBxNZW)F1 mice. 
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Paper II.  
 
Progression of murine lupus nephritis is linked to acquired renal DNase I deficiency and 

not to up-regulated apoptosis.  

Antibodies to dsDNA and nucleosomes are strongly associated with lupus nephritis. 

Accumulation of apoptotic DNA has been suggested as a possible mechanism of nucleosome 

conversion into self-antigens that may initiate autoimmune response and participate in 

glomerular immune complex deposition. Normally, apoptotic cells are rapidly cleared by 

macrophages. In case of increased apoptotic activity the local phagocytic clearance capacity 

may be exceeded and accumulation of apoptotic chromatin fragments may occur for example 

in glomeruli. Therefore we analyzed mRNA level of apoptosis-related genes and presence of 

activated apoptotic factors within kidneys in (NZBxNZW)F1 mice during development of 

lupus nephritis. We did not find changes in apoptotic activity in kidneys at the time of 

appearance of anti-dsDNA antibodies as well as at the time of formation of mesangial 

immune deposits. In contrast, in kidneys with membrano-proliferative lupus nephritis, 

characterized by deposition of large chromatin fragments in glomerular basement membranes, 

we found increased amount of activated caspase 3-positive cells in kidney sections, 

unchanged mRNA levels of the apoptosis-related genes and a dramatic decrease in renal 

DNase I gene expression. Accumulation of activated caspase 3-positive cells was also 

observed in isolated nephritic kidneys where apoptosis was induced ex-vivo by camptothecin 

and lack of apoptotic chromatin fragmentation was observed. Taken together, our data suggest 

that apoptotic activity in kidneys of (NZBxNZW)F1 mice is not accelerated. Down-regulation 

of DNase I leading to accumulation of undigested apoptotic cells may be responsible for the 

transformation of mild mesangial lupus nephritis into severe membrano-proliferative end-

stage organ disease.   
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Paper III. 
 
Anti-dsDNA antibodies promote initiation, and acquired loss of renal DNase I promotes 

progression of lupus nephritis in autoimmune (NZBxNZW)F1 mice. 

There is an international consensus that appearance of anti-chromatin antibodies is an initial 

event in the pathogenesis of lupus nephritis. The mechanism of the renal disease progression 

is elusive. We demonstrated that EDS in glomeruli of lupus-prone (NZBxNZW)F1 mice 

contain chromatin fragments and that there is a defect in apoptotic DNA fragmentation in 

nephritic kidneys associated with reduced mRNA level of renal DNase I. We have also 

reported that activity of metalloproteinases (MMPs) is increased during progression of 

nephritis in (NZBxNZW)F1 mice. To analyze the factors that contribute to lupus nephritis 

development we performed a study where mRNA levels and activities of DNase I, MMP2 and 

MMP9 were correlated with each other and with anti-dsDNA antibody production, with 

successive deposition of IC in the mesangial matrixes and in glomerular basement membranes 

(GBM), and with progressive proteinuria.   

We observed that lupus nephritis in female (NZBxNZW)F1 mice is principally two-

stepped organ disease. The early phase correlated with deposition of complexes of chromatin 

fragments and IgG in the mesangial matrix. Progression of the disease, which was 

characterized by deposition of large chromatin fragments in GBM and severe proteinuria, 

correlated with an acquired loss of renal DNase I mRNA level and enzyme activity. We 

proposed that loss of DNase I, as a dominant renal nuclease, leads to reduced chromatin 

degradation during regular apoptosis in the kidneys. In case of impaired clearance of 

apoptotic cells, this may explain exposure of chromatin fragments in membranes and matrices 

of affected glomeruli. Increased MMP2 and MMP9 expression, observed in nephritic kidneys, 

may contribute to alterations in the composition or integrity of GBM that facilitate binding of 

chromatin fragments to glomerular membranes.  
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Paper IV. 
 
Acquired loss of renal nuclease activity is restricted to DNase I and is an organ-selective 

feature in murine lupus nephritis. 

Reduced DNase I was observed in nephritic kidneys of (NZBxNZW)F1 mice at the stage of 

IC deposition in GBM. An acquired loss of renal DNase I has been suggested as a promoter of 

transformation of mild mesangial lupus nephritis into membrano-proliferative end-stage organ 

disease. However, DNase I expression in other organs of (NZBxNZW)F1 mice as well as 

expression profiles of other endonucleases in (NZBxNZW)F1 mice has never been examined. 

Only reduced serum DNase I activity in nephritic animals was reported but its importance in 

kidney pathology during development of lupus nephritis seems unclear. We analyzed mRNA 

level of DNase I, DNase IL1-3, caspase activated deoxyribonuclease (CAD), Dnase2a, and 

endonuclease G (Endo G) in kidneys, spleens and livers isolated from lupus-prone mice at 

different stages of lupus nephritis. DNase I activity and total nuclease activity were measured 

in kidneys, livers, spleens and sera of (NZBxNZW)F1 mice during progressive kidney 

disease. Our results demonstrate no reduction of DNase I mRNA level and enzyme activity in 

liver, spleen and serum samples of (NZBxNZW)F1 mice throughout all stages of lupus 

nephritis. DNase I was dramatically and selectively reduced only in kidneys of mice with 

severe nephritis and was the only nuclease that was down-regulated, while 6 other nucleases 

(Dnase1L1-3, CAD, Dnase2a, and Endo G) in kidneys were normally expressed. Loss of renal 

DNase I was not accompanied by changes in serum DNase I activity, suggesting an 

independent mechanism of the nuclease regulation in circulation and in kidneys and absence 

of compensatory up-regulation of serum DNase I activity in the case of renal DNase I 

deficiency. Thus, silencing of renal DNase I is a unique renal feature in membrano-

proliferative lupus nephritis.      
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7. Discussion 
 

7.1 Origin of chromatin fragments in glomerular EDS – accelerated renal 

apoptosis or defect in renal DNA degradation?   

 
Antibodies to dsDNA and nucleosomes are strongly associated with lupus nephritis. 

Nucleosomes were suggested to play a dual role in the pathogenesis of the disease; they may 

initiate an autoimmune response and participate in glomerular immune complex deposition 

(34,132). Electron-dense structures containing TUNEL-positive autoantibody-binding 

chromatin are associated with glomerular capillary membranes and mesangial matrix in 

nephritic lupus-prone (NZBxNZW)F1 mice (165,166,202). Presence of TUNEL-positive 

extracellular chromatin indicates DNA fragments with 5’-P and 3’-OH ends that are generated 

by endonucleases during apoptosis. Accessibility of such fragments for autoantibody binding 

at physiological circumstances is prevented by formation of apoptotic bodies containing 

degraded DNA and their rapid clearance by macrophages. Thus appearance of chromatin 

fragments in EDS and manifestation of lupus nephritis likely occur due to disturbances in 

apoptotic DNA cleavage and/or impaired clearance of apoptotic cells.  

The origin of IC accumulated in glomerular membranes is not clear. They can come 

from circulation and deposit due to filtration through the capillary walls or they can be formed 

locally with glomerular antigens. Studies with administration of pre-formed IC demonstrated 

their deposition mainly in mesangial matrix and subendothelial spaces, but not subepithelially 

(reviewed in (203,204)). In situ deposit formation was shown to occur in all glomerular 

patterns: mesangial, subendothelial and subepithelial (204). Different structures that can serve 

as a renal antigen in lupus nephritis were matter of discussions during the last decades. Cross-

reaction of anti-dsDNA antibodies with inherent glomerular components like laminin (129)  

or  α-actinin (182), or  with mesangial cells components (205) was shown by many researches 
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and proposed as a central mechanism of antibody-binding in glomeruli. However those 

structures were not indentified in EDS by EM analysis (185,186). In respect to presence of 

DNA fragments in EDS and inability of circulating IC to deposit in subepithelial glomerular 

spaces as demonstrated experimentally (204) we proposed that pathological process leading to 

accumulation of chromatin within glomeruli can rather have a renal origin at least at the stage 

of membrano-proliferative nephritis. One simple explanation could be an increase in 

glomerular cell apoptosis as was already reported by different research groups (165,187,188). 

However they based the conclusion only on increased amount of apoptotic cells in kidney 

sections that can also occur due to impaired clearance of apoptotic material by macrophages. 

Moreover some studies demonstrated reduced apoptosis in lupus nephritis (189,190). To 

thoroughly determine the renal apoptotic rate in lupus nephritis we performed an integrated 

assessment of apoptotic triggers, executers and effectors in kidneys of (NZBxNZW)F1 mice 

at different stages of the disease (206). Our results demonstrate no evidence of accelerated 

renal apoptosis before or at the time of anti-dsDNA antibody production as well as at the time 

of clinical manifestation of kidney disease (mesangial nephritis). Only slightly increased 

amount of activated caspase 3-positive cells was found in kidney sections from mice with 

membrano-proliferative lupus nephritis mostly in tubular cells and in the interstitium (206). 

This increase was not accompanied by changes in mRNA level of apoptotic regulators and 

executors. These data suggested that rate of apoptosis in kidneys of (NZBxNZW)F1 mice is 

not increased by activity, and accumulation of extracellular chromatin in glomerular 

membranes at the stage of nephritis most likely occur due to other pathological processes. 

This conclusion was also consistent with our previous observation, that presence of TUNEL-

positive chromatin particles in glomerular membranes in kidneys of (NZBxNZW)F1 mice 

correlated with lack of detection of LMW DNA fragments in DNA isolated from nephritic 

kidneys (202). Demonstration of oligonucleosomes in kidneys with glomerular EDS would 
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suggest increased ongoing apoptosis and/or impaired clearance of apoptotic cells. Absence of 

low molecular weight DNA in kidneys with TUNEL-positive EDS in glomerular membranes 

could indicate presence of large chromatin fragments that most likely appear due to defects in 

apoptotic chromatin fragmentation.  

We determined LMW DNA in kidneys of (NZBxNZW)F1 mice using the Agilent 

bioanalyzer that is a sensitive electrophoretic assay. Clear LMW DNA ladders were observed 

in isolated BALB/c kidneys exposed to apoptosis inducer camptothecin (CPT), whereas only 

few active caspase 3-positive cells were present. Surprisingly, when we induced apoptosis ex-

vivo by CPT in isolated kidneys from (NZBxNZW)F1 mice we found markedly reduced 

DNA fragmentation compared to age- and sex-matched healthy controls (202). The amount of 

active caspase 3-positive cells observed in those kidneys was significantly higher then in 

controls (206) demonstrating that apoptosis was induced in (NZBxNZW)F1 mice but was not 

completed with final DNA degradation. These results together indicate that TUNEL-positive 

extracellular chromatin particles found in EDS can represent large DNA fragments 

accumulated in glomeruli due defective chromatin fragmentation in kidneys of 

(NZBxNZW)F1 mice. Defects in DNA cleavage may be explained by lack of DNase I since 

dramatically reduced mRNA level of this nuclease was found to be associated with nephritis 

in lupus-prone animals (202,206).  

7.2 Acquired loss of renal DNase I in development of lupus nephritis 
 
DNase I in kidneys has been shown to represent approximately 80% of the total nuclease 

activity and mostly expressed in tubular epithelial cells (96,202). Role of the enzyme is not 

well established but it has been reported that mice deficient in DNase I expression are 

protected from kidney injury mediated by cisplatin (96). This chemotherapeutic drug induces 

apoptosis and necrosis in cells in a dose-depended manner (207,208). Moreover DNase I was 
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up-regulated during kidney injury induced by ischemia-reperfusion in in vivo experiment 

(209). Those data indicate an importance of DNase I to clear death-associated chromatin. 

The mechanism of chromatin fragmentation and breaking down during necrosis by 

serum DNase I was experimentally demonstrated. Results showed that the nuclease can 

penetrate necrotic cell, accumulate in the cytoplasm and nucleus and proceed DNA cleavage 

(92). How DNase I can participate in apoptotic chromatin fragmentation is not clear since this 

is a secreted protein and does not have direct access to the cell nucleus. Data from 

experimental induction of apoptosis in cells deficient to DNase I are also controversial. While 

one paper demonstrate resistance to apoptotic stimuli in cells after disruption of the DNase I 

gene (76), another paper report that no difference in the sensitivity towards the induction of 

apoptosis was observed in tissues and cells from DNase I knockout mice with lupus 

predisposed background  in comparison to wild-type animals (210). On the other side, 

reduced chromatin fragmentation and cell death was found in the intestine of DNase I 

deficient mice with “non-lupus” background (95). In spite of contradicting results, the fact 

that DNase I activity in kidneys is dominant compared to other nucleases and importance of 

DNase I in renal cells death implicates its essential role for DNA digestion during the cell life 

cycle.  

Abnormal levels of DNase I activity was observed in association with a variety of 

diseases. A high serum DNase I was measured in patients with advanced liver diseases (211), 

acute hemorrhagic pancreatitis (212), several cancers (213-215) and renal failure (216), 

whereas low level was found in patients with xeroderma pigmentosum (108).  Involvement of 

DNase I in the pathogenesis of lupus nephritis was discussed back in 1981 when decreased 

serum DNase I activity was observed in lupus patients (107) and later on in lupus-prone mice 

(108). Detection of DNA in circulation together with low DNase I activity in serum could 

indicate insufficient DNA fragmentation in blood and was proposed as a promoter of 
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autoimmunity to self chromatin in SLE (107). Interest to this idea was cooled down when 

intravenous administration of DNase I to patients with lupus nephritis did not lead to 

suppression of disease activity (112).  

Discovery of a defect in apoptotic DNA fragmentation of ex-vivo camptothecin 

induced apoptosis in kidneys of (NZBxNZW)F1 mice stimulated us to analyze renal 

expression of endonucleases during development of lupus nephritis (202). The mRNA levels 

of CAD, EndoG and DNase I were measured in kidneys of (NZBxNZW)F1 mice at different 

age groups. Dramatic reduction of the transcription level of DNase I was observed when 

mesangial nephritis progressed into end-stage organ disease, whereas CAD and EndoG 

remained unchanged in all groups of animals. To investigate the relevance of DNase I renal 

gene expression to development of lupus nephritis we performed a longitudinal study where 

we analyzed mRNA level and enzyme activity of DNase I in kidneys of (NZBxNZW)F1 mice 

and correlated the data with appearance of circulating anti-dsDNA antibodies, deposition of 

IC in the mesangial matrix and/or glomerular membranes, and with proteinuria (217). Our 

data demonstrate that initiation of lupus nephritis was associated with anti-dsDNA antibody 

production and correlated with appearance of EDS in the mesangial matrix. End-stage 

nephritis on the other hand, was characterized by severe proteinuria and IC deposition in 

GBM and an acquired loss of renal DNase I (217). Based on these results we proposed that 

lupus nephritis in female (NZBxNZW)F1 mice is a two-stepped organ disease with possibly 

two different pathogenetical mechanisms of forming deposition of IC in glomeruli. Initiation 

of lupus nephritis can be due to deposition of IC possibly coming from circulation. It can 

explain the systemic character of tissue damage in SLE. Comparative studies of components 

of IC and their localization in skin and glomeruli demonstrated that they have similar 

structure and are consistently observed in capillary lumina in both skin and kidney (218,219). 

However, no other associations between skin and glomerular deposits were found (218,219). 
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Importantly, deposition of IC in glomeruli did not predict deposition in skin. Examination of 

DNase I and MMP expression in skin in MRL-lpr/lpr mice demonstrated stable low activity 

of DNase I and an increase in MMP-2 and MMP-9 enzyme activities during disease 

progression (219). Those results confirm that circulating IC can be an initial event of SLE 

manifestation in different organs, but mechanism of tissue damage progression might be 

organ restricted. Our data suggest that progression of lupus nephritis is caused by 

accumulation of large chromatin fragments in glomeruli due to insufficient DNA 

fragmentation in kidneys deficient of renal DNase I expression. Access of such fragments in 

GBM can be facilitated by increased MMP activity since increased expression and activities 

of MMP-2 and MMP-9 were observed at the time when severe nephritis developed in 

(NZBxNZW)F1 mice (217).   

7.3 Loss of renal DNase I – a systemic error or an organ-selective feature? 
 
Distribution of the DNase I activity in different tissues and cells has been published for 

humans and other mammals (90,220,221). According to the expression pattern within the gut 

they can be grouped into three types: pancreas type (pig and human), parotid type (rat and 

mouse) and mixed pancreas-parotid type (bovine and rabbits) (221). Difference in DNase I 

expression is most probably reflecting variation in the eating habits (221). Furthermore beside 

the intestinal juice, DNase I is secreted into urine (kidney), seminal fluid (prostate), 

lacrhrymal fluid (lachrymal gland) and serum (90). The origin of serum DNase I is not 

known. Recent data indicated liver as a source of DNase I in serum (192). The dominant 

function of serum DNase I is digestion of chromatin material released in circulation. If serum 

DNase I contribute to intracellular DNA fragmentation has never been shown.  

Reduced serum DNase I activity was demonstrated in human and murine SLE. We 

found lack of DNase I in kidneys at the time of severe lupus nephritis in (NZBxNZW)F1 

mice. Therefore, it became important to verify if loss of the DNase I expression is an organ-
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specific feature or if it reflects a systemic error in BW mice. In Paper IV we performed analysis 

of DNase I expression and enzyme activity in spleen and liver tissues in comparison to 

pathological changes in kidneys during progressive lupus nephritis. Our data demonstrate that 

loss of renal DNase I is an organ-selective feature in lupus-prone mice with membrano-

proliferative nephritis. Moreover analysis of mRNA levels of 6 other known endonucleases 

(DNase Il1-3, CAD, Dnase2a, and EndoG) demonstrates absence of compensatory up-

regulation in kidneys or livers, neither at the time of mild nephritis nor after it transformation 

into severe disease with renal DNase I deficiency.  

Interestingly we did not observed reduction in serum DNaseI activity in mice with 

full-blown nephritis in contradiction to previously published data (109). Nuclease activity in 

serum of (NZBxNZW)F1 mice with membrano-proliferative nephritis measured by a DNase 

radial diffusion assay and serum DNase I activity measured by denaturing SDS-PAGE 

zymography were comparable to activities detected in pre-nephritic animals. Notably, the 

degree of serum DNase I activity in the different groups of (NZBxNZW)F1 mice correlated 

with DNase I activity in the liver and not in the kidney, in accordance with results provided 

by Ludwig at. al. (192). Those findings refer to the important question - is serum DNase I a 

required pool for the kidneys in the situation were renal DNase I is lost? We do not have data 

to provide an answer to this question. Oppositely, failure of an affect on lupus nephritis after 

DNase I administration in lupus patients (192) or in (NZBxNZW)F1 mice (111) indicates 

low-relevance of serum DNase I in renal environment. This leaves us with the perception that 

renal, intra-cellular DNase I is required for safe degradation and elimination of chromatin 

from dying renal cells. Without this enzyme, chromatin degradation is impaired, which results 

in deposition of large chromatin fragments in situ, where they are released from dying cells.  

 

 39
 

 



 

7.4 Clearance deficiencies in lupus nephritis 
 
A large amount of cells undergo apoptosis every day but to detect them in situ is difficult, 

because they are quickly engulfed by macrophages and immature dendritic cells (44). An 

accumulation of apoptotic cells in the bone marrow and in the skin of lupus patients has been 

reported (222,223) as well as decreased clearance of apoptotic cells by macrophages in human 

and murine SLE (115,117,224). The exact mechanism leading to impaired clearance of 

apoptotic cells in lupus is not known. Deficiency in the components of the classical 

complement cascade including C1q, C2 and C4 are associated with high risk of SLE (225). 

Mice deficient in C1q develop lupus-like disease (226). Acquired and transient deficiency of 

C1q commonly found among SLE patients may be due to consumption by large amounts of 

IC or binding to anti-C1q antibodies rather than genetic defect (226).  

Professional phagocytes detect apoptotic cells due to recognition of “eat-me” signals 

on their surfaces (including phosphatidylserine, intercellular adhesion molecule-3, Annexin I 

and cardiolipin) (227-229). Absence of such signals or defects in phagocyte recognition may 

lead to impaired clearance of apoptotic material (119,230). The uptake of apoptotic cells by 

phagocytes induces the expression of “tolerate me” signals including interleukin 10 (IL-10), 

transforming growth factor β (TGF-β) and prostaglandin E2 (PGE2) (55,231). If apoptotic 

cells reach a stage of secondary necrosis due to for example impaired clearance, their uptake 

is followed by production of pro-inflammatory cytokines and up-regulation of co-stimulatory 

molecules. In other words, impaired clearance of apoptotic cells may lead to central 

pathological processes in the pathogenesis of SLE: i. it may break self-tolerance to chromatin 

and ii. it may enable exposure of extracellular chromatin (self antigen) in tissue (reviewed in 

(55,194)).   

Generation of large chromatin fragments due to lack of DNase I likely can be 

connected to defective “eat-me” signal presentation. In this case loss of renal DNase I may 
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contribute to clearance deficiency and accumulation of extracellular DNA in nephritic kidneys 

(reviewed in (232)). 

7.5 Why is renal DNase I shutting down? 
 
Based on our data, the question “why is renal DNase I shutting down? “, becomes the most 

important to answer since factors regulating renal DNase I can be future therapeutic targets in 

lupus nephritis. So far the mechanisms leading to silencing of renal DNase I are not clear but 

are currently analyzed in our laboratory. Contemporarily we follow three lines of analyses: 

transcriptional interference with convergent encoded genes, regulation by microRNAs, or by 

DNA methylation. The initial event, accounting for DNase I shut-down may, however, 

represent a response to inflammatory signals provided by early mesangial nephritis - the 

deposition of IC in the mesangial matrix.  
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8. Concluding remarks  
 
Our investigations illuminated important mechanisms in the pathogenesis of lupus nephritis. 

We proposed the origin of chromatin fragments in glomerular EDS and processes leading to 

their formation. We have demonstrated defects in the process of apoptotic chromatin in 

kidneys of lupus-prone mice and have renewed an interest to the dominant renal nuclease 

DNase I. Our data allow us to generate new idea to describe kidney disease progression in 

SLE. We demonstrated that lupus nephritis in lupus-prone mice is initiated through deposition 

of anti-DNA antibody-nucleosome complexes in glomerular mesangial matrixes, a process 

that largely is sub-clinical. Transformation of mild mesangial nephritis into membrano-

proliferative end-stage kidney disease is accompanied by severe proteinuria and is associated 

with a dramatically reduced renal DNase I. We have shown that shut-down of renal DNase I 

contribute to accumulation of large chromatin fragments observed as EDS in glomerular 

membranes. Deposition of such IC promotes transformation of mild mesangial nephritis into 

membrano-proliferative nephritis, induction of severe proteinuria and end-stage kidney 

disease. The observed defect in renal DNase I expression is demonstrated to be organ specific 

and shut-down of renal DNase I is shown to be selective among 7 nucleases analyzed in this 

study. Future investigation of mechanism leading to DNase I down-regulation may provide a 

new therapeutic target in lupus nephritis.               
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