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Abstract

To perform a quantitative analysis with gene-arrays, one must take into account inaccuracies (ex-
perimental variations, biological variations and other measurement errors) which are seldom known.
In this paper we investigated amplification and noise propagation related errors by measuring in-
tensity dependent variations. Based on a set of control samples, we create confidence intervals on
up and down regulations. We validated our method through a qPCR experiment and compared it
to standard analysis methods (including loess normalization and filtering methods based on genetic
variability). The results reveal that experimental variability and amplification related errors are a
major concern that should be accounted for.
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1 Introduction

The transcriptome contains all the mRNA transcripts in a specific cell(type) under certain conditions.
Depending on these conditions, the amount of individual mRNA may vary. Microarray studies allow the
rapid identification of many transcripts in cells under controlled conditions and can be used to compare
expression patterns of genes between cell systems under different circumstances. For example, one can
monitor the transcripts in normal versus diseased cells, or control cells versus cells lacking a specific gene
or overexpression of a particular protein or a mutated form of a protein.

Analysis of such differential expression experiments often involves normalization [SS03, CGS92], data
filtering [DYCS00] and reporting measured changes. Subsequently, neural networks [SOMO03], eigenvalue
decomposition [SMRL05, ABB00] and various cluster algorithms [BL02, NGKO01] can help to elucidate
the results. Annotation of genes with their cellular location, function or gene-category/sequence then
provides more insight into the effects of the altered gene expression.

In this paper we focus on the measurement processes involved in such experiments. Microarrays
contain a number of error-sources [RCBT01], some of them physical (quenching [Kub94, RW97]), some
chemical (hybridization), some related to the electronics (gating [SN06], dynamic range [dINVHTO06],
saturation [LBST04]). In most microarray experiments the measurement errors remain unknown, but
they are widely believed to follow Lorentz distributions [PTVF03, BWWQO02]).

The general assumption with such experiments is that ’strong signals are better signals’. However,
given the realization that cell systems might propagate/amplify noise throughout genetic pathways, we
hypothized that strong signals might be subject to greater measurement errors. Instead of having an
absolute error one would then find a relative error as well. To study such errors we conducted a number
of experiments that all included a control sample. That control sample would simultaneously account for
experimental-, biological- and machine-related variations, after which we could assess the error distribu-
tions on an intensity specific basis. Based on the error model, our technique reports confidence intervals
for up/down regulation.

This study is set in the context of three experiments. The first involves the mitogen-activated protein
kinase-activated protein kinase-5 (MAPKAPKS5 or MK5). This murine protein kinase belongs to the
MAPK signaling pathway and at present, knowledge of its role in cellular processes remains limited
[Gae06]. To examine a possible effect of MK5 on transcription, we constructed a doxycycline-inducible
PC12 cell line that allowed inducible expression of a constitutive active form of MK5 (MK513374). RNA
was purified from three independent samples of cells grown in the presence of doxycycline (no expression
of activated MK5) and from three independent samples of cells in which the expression of MK5 was
turned on by removal of doxycycline. Each microarray slide (KTH Rat 27k Oligo Microarray-Operon
ver3.0) was loaded with one sample uninduced (Cy5) and one sample induced (Cy3) (for a reference
on Cy5/Cy3 see [MEM™93]). We added a fourth slide containing two induced samples as a control for
measurement errors.

The second experiment involves the TATA binding protein Associated Factor 4 (TAF4). The tran-
scription factor TFIID is a multiprotein complex composed of the TATA box-binding protein (TBP)
and multiple TBP-associated factors (TAFs). TFIID plays an essential role in mediating transcriptional
activation by gene-specific activators. TAFs have been postulated to exert several important roles in
transcription acting as core promotor specificity factors and co-activators. Genetic studies in vertebrate
cells also point to an essential role of TAFs in cell cycle progression [TC06, NBT01, AT00, DKFMO05].
Using siRNAs we measured the influence of TAF4 depletion on the transcriptome!. These experiments
were performed in HeLa cells and SK-N-DZ cells. For each cell type we used 4 slides with scrambled
siRNAs and 4 slides with TAF4-directed siRNA. The microarrays relied on DIG (digoxigenin) labeling.

The third experiment focuses on a putative glycosyltransferase. A number of congenital muscular
dystrophies (CMD) are now known to be associated with mutations in genes encoding for proteins that
are either putative or determined glycosyltransferases lending support to the idea that aberrant post-
translational modifications of proteins may represent a new mechanism of pathogenesis in the muscular
dystrophies. One of these genes, fukutin-related protein (FKRP), is thought to be coding for a putative
glycosyltransferase, but its function has not yet been established [BBBF02]. To evaluate the possible
effect of FKRP on transcription we transfected C2C12 cells with siRNA that targets FKRP. The results
of the transfection were measured using microarray analysis using DIG labeling. Table 1 gives an overview
of the different experiments.

ISiRNA will bind to the transcript and activate the destruction or prevent translation of the target sequence [Elb01].



Experiment| Constitutive Active MK5 | FKRP Knockdown | TAF4 Knockdown
Labeling CY5/CY3 DIG DIG

KTH Rat27K Oligo m.a, %pepéfﬁggjﬁéeﬁyggsﬁ Applied Biosystems Human Genome
Hicroas OperonV3.0 Tecan HS 4800 DIG Labe};in e Survey m.aV2.0
Y Genepix 40008 Aolied Bios Stenfs 1700 DIG Labeling
Genepix Pro 6.1.0.2 pp sca:ner Applied Biosystems 1700 scanner
Groups Fgg;a' ?"C';g)md”cec’ Fﬁ?:t:?l SiRNA #1 SIRNA #2 [Scrambled siRNA Scrambled [siRNA Scrambled
Amount| 3 3 | 1 | 3 | 2 3 | 4 @ 4 4 | 3
Cellline| PC12 TetOff for MK5L337A cz2ci12 SK-N-DZ Hela
Requested 2. siRNA#1 vs Scrambled 4. siRNA vs 5. siRNA vs
Comparisons 1. Normal vs MK5 Induced | 3.siRNA#2 vs Scrambled |  Scrambled Scrambled
Microarray facility Tromsg UNIGEN (Tronheim) UNIGEN (Tronheim)
Loess normalization Quantile Normalization Quantile Normalization
Blind analysis| 57468 reported of which 4007 | o ¢ submitted ,
in agreement not submitte 0
Both Quantile & no Applied Biosystems | Applied Biosystems
Intensity dependent normalization Inter-array normalization Inter-array normalization
analysis 2497 (22 validated
1422 2977 576 661 through qPCR)
Overlap 311;:;';2;‘%";2;135;2 the 0 0 not applicable 65

Table 1: Overview of the different experiments.

2 Analysis Method

The presented analysis method measures the variance of a control sample, then uses it to model an
intensity dependent error distribution and based on that defines confidence intervals for each individual
spot, or group of spots. Regulations are reported as terms within a confidence interval of 95%. Conversion
to ratios can be performed as necessary.

2.1 Acquiring the Error Model

To acquire the error model, one can employ two techniques. The first supplies a number of identical
pairs of biological samples and puts them on different slides. For instance, one slide can contain the
TAF4 downregulated transcript, while another slide contains the normal transcript. One can then use
the inter-slide variance to develop an error model. A second approach, and the one used for the MK5
experiment, acquires the error on the regulation difference. In this setup, one provides the same sample
for red and green. Because red and green have the same content one expects both channels to be equal
for all spots. In the discussion below we assume that red and green name two samples that ought to be
compared. Whether they are using Cy5/Cy3 staining or DIG labeling is irrelevant for the discussion.

Figure 1 plots the red and green channel of such a control slide. We find that the variance around the
expected values increases together with the spot intensity. This phenomenon indicates relative errors,
and is the main reason why one relies on a log-transform. However, in the second half (with red or green
intensities larger than 32768) the variance decreases with increasing spots intensity. A partial reason for
this might lie in the number of saturated pixels.
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Figure 1: Scatterplot of the control slides and the two measurements of the MK5 experiments. The red
points are from slide 1. The green points are from slide 3. The blue points are from the control slide.
Horizontally the red channel is set out, vertically the green. The bend is due to quenching [Kub94]. The
variance of the control slide can be observed in the width of the blue area. It increases up to 32768
(indicated with gray dotted lines), after which it decreases again. In a perfect world, the control sample
should have the same red as green value, and be a straight line.

The above observation on the error distribution prohibits us to use a maximum likelihood estimation of
the absolute and relative errors [ITAL0OO, PTVF03]. Instead, we model a collection of error distributions:
one for each intensity. A two-dimensional map will count the number of spots with a specific intensity and
deviation. Spot intensity (set out horizontally) is calculated as the mean of the red and green channel.
Spot deviation (set out vertically) is red subtracted from green. Afterward, the algorithm normalizes the
two-dimensional histogram so that each intensity has: a) a proper cumulative probability distribution
and b) relies on enough samples to have a good estimate of the modeled error. This process is detailed
in section 7 and results in two functions F' and G. They produce respectively a probability distribution
and cumulative probability distribution for each intensity (z).

G(m)(y):p(r_ngith?";g:x)

For illustrative purposes, we added x and y labels to Figure 1. Figure 2 plots the error distribution
of the MK5 experiment. When the error model is obtained from different slides then the probability
distribution F (and associated cumulative distribution G) is based on the error model of each slide and
convolved accordingly.
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Figure 2: Error Distribution of various up/down regulation experiments. Horizontally the spot intensity is
set out. Vertically the measurement error is set out as a cumulative distribution function. The cumulative
distribution expresses the probability that a specific difference will occur due to experimental, biological
or measurement variations. The colors are more intense within the 95% confidence interval. With such a
diagram one can to determine the limits in which a regulation is very likely to fall. The multiple diagrams
are measurement errors obtained from different experiments and different machines. The MK5 sample
was Cy5/Cy3 stained and scanned on a Tecan scanner. All other samples were DIG labeled and scanned
on an Applied Biosystems 1700 microarray scanner. As an example how to read the diagrams: in the
MKS5 diagram (top right) we find that the biological variation is larger for spots with intensity 32768. If
a measured spot has intensity 32768, then its 95% confidence interval on the difference between the two
channels is around[—9000, 9000] (marked with a white arrow).

2.2 Confidence Intervals on One Measurement

Assuming that the probability distribution f expresses the error distribution of a specific spot, and that r
is the real (but unknown) regulation, then our measurement m will report a value in the range m = r+e,
in which e satisfies f. In other words, instead of measuring the real regulation, we will always measure
the real regulation with some extra unknown error. Since we know m and have some understanding of e
(its distribution) we can state that = m — e. Thus, by determining a confidence interval on ¢ we can
report a confidence interval on r as well.

A 95% confidence interval for spots with intensity z is given as [G™! () (0.025) : G~* (z) (0.975)]. If
a spot measures as m, then in 95% of the cases, the real regulation falls within

[m — G~ (Im]) (0.025) : m — G~ (|m]) (0.975)]



2.3 Reporting Regulations

A widely accepted method for quantitative measurement are log-ratios. Despite widely used, they have a
number of important limitations. First, the log ratio cannot capture information such as the measurement
error. For instance the ratio 2/1 has probably more errors involved than 2000/1000. The log,, ratio will
report 0.3 regardless. Secondly, the log ratio has numerical problems near zero. An up- or downregulation
from zero to 1416 might make biological sense but it seems inappropriate to express it as a (log-)ratio of
00.

To approach these challenges, our method reports the measured regulation as the difference between
two slides, thereby including the lowest and highest expected differences (Table 2). In many cases this
leads to an up- or downregulation. Such non-sensical regulations ought to be filtered out since the
possible error outweighs the actual measurement. Eg, a confidence interval of [—1950 : 1950] for a spot
with a regulation of —500 indicates that the real regulation-difference will range within [—2450 : 1450].
Figure 3A illustrates a set of points omitted due to such filtering.

Difference Summed Values Regulation Ratio
o T T
c c

# 3% 4 H % s % £ g
) €& 3 [ 2 g el % g 2 g
E c 3 2 3 £ b k-] 3 E K g £
o SE < = < S & &|a & = &
1[-6430.72:6840.32] | -39267.7 -32837 -25996.7| 39613 6776 2| down 4.84 5.85 114.73
2[-2447.36:2242.56] | -7807.36 -5360 -3117.44| 6191 831 2| down 4.75 7.45 inf
3[-2355.2:2129.92] -5122.2 -2767 -637.08| 3807 1040 2| down 1.61 3.66 inf
4[-2775.04:2754.56] | 1531.96 4307 7061.56] 2531 6838 6 up 1.61 2.7 inf
5[-2437.12:2447.36] | -5919.12 -3482 -1034.64| 5215 1733 4| down 1.6 3.01 inf
6[-2037.76:2457.6] 472.24 2510 4967.6 809 3319 2 up 1.58 41 inf
7[-3532.8:3430.4] 2701.2 6234 9664.4)] 4818 11052 4 up 1.56 2.29 7.96
8[-1812.48:1536] -3697.48 -1885 -349| 2514 629 2| down 1.55 4 inf
9[-2590.72:2621.44] | -6302.72 -3712 -1090.56| 5684 1972 6| down 1.55 2.88 inf
10[-2170.88:2314.24] 969.12 3140 5454.24| 1854 4994 6 up 1.52 2.69 inf
11[-3461.12:3686.4] 2038.88 5500 9186.4| 3982 9482 2 up 1.51 2.38 32.08
12[-2283.52:2048] -5168.52 -2885 -837| 4528 1643 2| down 1.51 2.76 inf
13[-8448:8704] 10789 19237 27941| 21540 40777 2 up 1.5 1.89 3.18
14[-2754.56:3368.96] 765.44 3520 6888.96| 1555 5075 2 up 1.49 3.26 inf
15[-1771.52:1986.56] 438.48 2210 4196.56 914 3124 2 up 1.48 3.42 inf
16[-6082.56:5898.24] | 5740.44 11823 17721.2| 12046 23869 2 up 1.48 1.98 3.88
17[-2078.72:2211.84] | -4762.72 -2684 -472.16] 3708 1024 2| down 1.46 3.62 inf
18[-2119.68:2037.76] | -4787.68 -2668 -630.24| 4044 1376 2| down 1.46 294 inf
19[-1781.76:1792] 314.24 2096 3888 688 2784 2 up 1.46 4.05 inf
20[-3932.16:4259.84] | 2675.84 6608 10867.8 5984 12592 2 up 145 21 7.3
21[-10455:10915.8] -36683 -26228 -15312.2| 85832 59604 2| down 1.26 1.44 1.75
22[-7700.48:7782.4] 5041.52 12742 20524.4) 20556 33298 2 up 1.25 1.62 2.61
23[-2140.16:2273.28] 320.84 2461 4734.28| 1321 3782 2 up 1.24 2.86 inf
24[-2621.44:2979.84] | -6161.44 -3540 -560.16 5883 2343 2| down 1.24 2.51 inf
25[-3450.88:3952.64] | -8665.88 -5215 -1262.36| 10529 5314 2| down 1.24 1.98 5.65
26[-2232.32:2600.96] | -5150.32 -2918 -317.04| 4264 1346 4| down 1.24 3.17 inf
27[-2181.12:2099.2] 202.88 2384  4483.2 867 3251 2 up 1.23 3.75 inf
28[-3758.08:3768.32] | 1212.92 4971 8739.32] 5296 10267 4 up 1.23 1.94 6.72
29[-4925.44:5857.28] | 2682.56 7608 13465.3| 11941 19549 2 up 1.22 1.64 3.21
30([-2426.88:2887.68] 418.12 2845 5732.68] 1909 4754 2 up 1.22 2.49 inf
31[-5980.16:5867.52] | -14564.2 -8584 -2716.48| 20997 12413 2| down 1.22 1.69 3.26
32[-4423.68:4966.4] | -11228.7 -6805 -1838.6| 15221 8416 4| down 1.22 1.81 3.81
33[-1771.52:1484.8] | -3399.52 -1628 -143.2| 2307 679 2| down 1.21 3.4 inf
34[-3491.84:3481.6] 331.16 3823 7304.6| 5513 9336 4 up 1.06 1.69 4.6

Table 2: Gene regulation induced by MK5 activation. Each regulation is listed as a term with a confidence
interval covering 95% of the real values. Gene regulation is calculated as the mean of all the measured
oligosequences/probes. The reported confidence interval is the result of a convolution of the respective
error distributions. The yellow row is explained in detail in the text.

When a consensus on the regulation exists (lowest boundary and highest boundary have the same
sign), we can calculate the regulation ratios by assuming that either red or green could have been fully



responsible for the measurement error. In such extreme cases the highest ratio can have a value of oco.

2.4 Confidence Intervals on Multiple Measurements

When multiple measurements are available, we can make the final confidence intervals smaller by con-
volving their respective probability functions. Section 7.4 covers the details. Table 2 illustrates the
combination of oligosequences belonging to the same gene and consequently reports smaller confidence
intervals.

As an illustrative example of the advantage of combining the different probability distributions we
investigate gene #34 (Table 2). The microarray measures this gene using two distinct probes, labeled
Rn30006190 and Rn30021393. On slide 1, Rn30006190 has an upregulation in the range [—455 : 2504]
(measured as 999). On slide 2, it has an upregulation in the range [—256,675] (measured as 184). On
slide 1, Rn30021393 has an upregulation in the range [—815 : 3106] (measured as 1017). On slide 2, it has
an upregulation in the range [—1080 : 4131] (measured as 1623). None of these individual measurements
can tell us something about the gene regulation since they all could have been downregulated as well.
However, by combining their error distributions we are able to report that the overall gene is upregulated
with at least a 6% increase and at most a 4.6 times increase (last row of Table 2).

3 Validation

We validated our method by means of qPCR and by comparing it to standard analysis protocols. For MK5
this analysis was performed at the Microarray facility in Tromsg. For the FKRP and TAF4 experiments,
this analysis was performed by UNIGEN (Trondheim).

3.1 Quantitative PCR

To validate the regulations we found in the TAF4 experiment, we selected 22 genes and monitored their
transcript levels by quantitative PCR, (qPCR). Such gPCR results should be treated with caution. First,
it is an inherent different measurement technique and thus it is unexpected that the results will completely
fall within the reported confidence intervals. Secondly, the quantitative PCR experiment is often based
on a new batch of cells, which means that the transfection efficiency can be different, and thus the actual
results as produced in the qPCR can be a ratio higher or lower. A new batch was used for the TAF4 HeLa
cells. The SK-N-DZ cells were based on the same batch. To account for the transfection efficiency, we
performed a least square fit of the qPCR results to the microarray results. Thirdly, the primer sequences
can be slightly different leading to different measurement efficiencies. Fourth, the housekeeping gene used
in the gPCR experiment can be indirectly linked with the genes we measure, leading to a gene specific
bias. And as a last remark, since we do not have an error model of the qPCR measurements, the dynamic
range of the housekeeping gene might put a limitation on the gPCR accuracy. Notwithstanding these
considerations, we performed 22 qPCR experiments, which confirmed that our technique is a valuable
analysis method. Table 3 summarizes the results.



qPCR results Microarray results
TAF4‘ # Mean CT Ratio Fixed *1 |Ratio least most [Comments
1 29.88down 1.33 1.6/down 1.2 2.45/0K
2 29.72down 1.32 1.59/up 1.07 1.66(NO, *2
3 29.41 up 1.03 1.24|up 1.22 1.78|0K
4 30.84up 1.09 1.32|up 7.84 inf[NO, *6
5 25.46 up 2.76 3.34|up 2.64 5.01|0K, *6
6 down large large/down 122.53 inflOK, *3,6
“ 7 38.93down 2.67 3.23|down 3.57 inflOK, *3
8 8 38.26 down 1.25 1.52|down 3.18 8.5|0K, *3
© 9 34.02 up 1.04 1.26|up 1.13 1.88/0K
. 10 31l.1down 1.2 1.45|down 1.22 2|0K
I 11 26.09 down 1.02 1.23|down 1.23 1.91/0K
12 35.48up 1.38 1.67|up 1.03 1.59|NO, *4
13 34.03 down 1.05 1.27|up 1.1 1.65|NO, *2,5
14 35.99up 1.03 1.25/down 1.11 1.54|NO, *2,5
15 31.38down 2.04 2.47/down 1.5 2.23|NO, *4
16 31.01up 1.06 1.28|up 1.08 1.65/0K
17 34.67 up 1.49 1.8|up 1.36 3.320K
18 28.73 down 1.47 1.47|down 1.16 1.7/ 0K
B w 19 28.15down 1.52 1.52|down 1.03 1.98|0K
=z 20 35.02up 1.38 1.38|up 1.06 2.96 0K
%U 21 33.11down 1.49 1.49|down 1.09 1.87|0K
22 38.04 up 1.24 1.24|down 14.99 inf(NO, *2,3

All results are reported as a ratio from the scrambled siRNA to the specific siRNA

* ) Hela cells results have been multiplied to account for transfection efficiency; 2) Requlation direction reported wrong;
3) qPCR result difficult to obtain due to large CP values; 4) Microarray upperbound too low; 5) Difficult consensus on PCR
results; 6) Also listed in the genvar analysis

Table 3: Quantitative PCR analysis to verify differentially expressed genes. A number of the genes that
were reported to be expressed differentially by the microarray analysis were measured using quantitative
PCR.

From the 22 measurements, 3 were not used because we could doubt both the PCR and microarray
results. In particular, a number of qPCR measurements could be considered up or downregulated depend-
ing on the analysis process followed (eg. mean of ratios versus ratio of means). From the 19 remaining
genes, 12 were fully correct, that is, the qPCR results fell within the reported confidence interval. For 2
genes, the predicted upperbound was too low. For 3 genes, the microarray reported strong regulations,
however the qPCR measurement was unable to measure the exact value because the CP values were too
large. For these genes it is very likely that the microarray reported correct. One gene did not match
between both experiments. And for 1 gene the microarray experiments reported a confidence interval
that was substantially larger than the qPCR value.

In the strictest sense (upperbounds and lowerbounds match), our method was able to match 79% of
the qPCR results. If one is satisfied with proper lower bounds, then 89% of the results were reported
accurately.

3.2 FKRP and TAF4

Next to the qPCR validation, we compared our method to a blind analysis by other groups. The blind
analysis for the FKRP and TAF4 experiments followed the guidelines of [ACPS06]. The PCA analysis
revealed no outlier for any of the slides. The analysts attempted to gage the genetic variations (abbrevi-
ated: genvar) between the different slides and then report those that changed significantly. For the TAF4
HeLa cells experiment, the genvar error model reduced the dataset to 70 significant genes, while the
intensity dependent analysis (abbreviated: indep) retained 2497 genes®. Five genes were only reported
in the genvar set. Those 5 were all below the average gene intensity and the mismatch may be due to
the normalization differences (quantile vs Applied Biosystems) or microarray outliers. We would liked to

2The TAF4 SK-N-DZ was not sent for analysis, but to be complete, we found 661 to be significant.



have validated those 5 mismatches through qPCR, but no probe sequences, nor gene annotations were
available, so we could not verify them. The previous 22 qPCR measurements did however include 3 genes
that were reported in the genvar analysis. Two of these produced qPCR values with large CP values
(thus with a high error rate), thereby offering little extra information. For the FKRP experiment there
were no significant alterations which was, according to the report, due to the few samples we provided
(4 replicas vs 3 replicas). The indep analysis reported 2977 regulations for the siRNA#1 group and 576
regulations for the siRNA#2 group.

Compared to a standard analysis, our method reported more genes. In the TAF4 experiment, we
found 35x more genes than the standard analysis. Most of these genes could be validated with qPCR,
leading to the conclusion that standard analysis methods may be too stringent.

3.3 MKS5

The standard microarray analysis, based on loess normalization [CGS92, SS03], contained 27648 spots for
each slide, of which 4007 pairs in agreement (both slides reporting the same qualitative regulation, being
up or down). Based on both slides, our method only reported 1422 spots. Three hundred and eleven
spots occurred in both methods, 1111 spots were unique to our analysis and 3696 spots were unique to
the standard analysis.
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Figure 3: Plots illustrating the difference between standard filtered results (based on loess normalization
and a consensus for both slides) and the filtering based on the confidence intervals for the MK5 experiment.
A) the red spots are reported by the standard method but no longer by the confidence interval method.
The green spots are the control slide, illustrating the large variance of the measurement. All spots omitted
in the confidence interval method were too close to the measurement error to be useful. B) The red spots
are those reported in the confidence interval method but not in the standard analysis. The green spots
again represent the control slide.

To better understand the differences in reported genes, it is helpful to include a picture (Figure 3)
that illustrates both the variance on the measurements and the samples we removed/retained.

The first consideration regards spots that occurs in the loess set but not in our analysis. Is there a
good reason why we should not take those particular data points into account ? Figure 3A illustrates the
spots that only occurred in the loess set (red) as well as the variance of the experiment (green). Clearly,
the omitted spots were too close within the expected variance to be useful.

The second concern regards those spots that only occurred in our analysis. These are pictured in
Figure 3B. The main reason why our method was more sensitive and could report them lies in the
convolution of the error distributions of similar spots. This information was unavailable to the loess
method since there we were forced to stick to a more rigid approach that both slides agreed qualitatively.

The last concern regards overlapping spots. All of them should report at least the same qualitative
regulation. From the 311 spots, 10 failed to do so. Looking at the non-normalized data (Table 4) we
find that all spots were correctly reported by the confidence interval method. The reason why the loess
method failed, probably lies in the model fitting that will inevitable position certain spots at the wrong
side of the zero-line (a ratio of 2 is after all closely located to zero when expressed as a log; ratio).



confidence c. Difference Values Factor
intervals e Low Norm__Hi Green BEEI Count Lo Mes
loess D4D1 D6D3 Regulation
non-normalized Slide 1 Slide 3
-3983.36:3993.6 -277.64 -426 -8254.6 2down 1.03  0.6|confidence interv
RN30026543 0.49 0.55 up loess
non-normalized
[-1904.64:1812.48] -41.36 -1946 -3758.48 2down 1.02 0.29|confidence interv
Rn30009746 0.12 0.02 up loess
non-normalized
-2918.4:3246.08 -545.6 -3464 -6710.08 2 down 1.09 0.57|confidence interv
Rn30025831 0.21 0.41 up loess
non-normalized
-8212.48:8407.04 -1460.52  -9673 -18080 2down 1.04  0.77|confidence interv
RN30026511 0.43 0.06 up loess
non-normalized
[-5539.84:5683.2] 11256.8 5717 33.8 2up 1 1.4|confidence interv
RnN30023124 -0.13 -0.11 down loess
non-normalized
[-2959.36:2826.24] -580.64 -3540 -6366.24 2down 1.18 0.33|confidence interv
Rn30026938 0.02 0.02 up loess
non-normalized
[-7618.56:8785.92] 17364.6 9746 960.08 2up 1.01 1.09confidence interv
RN30026618 -0.01 -0.13 down loess
non-normalized
038.88:3481.6 -444.1 -3383 -6864.6 2down 1.08 0.55|confidence interv
Rn30026891 0.01 0.1 up loess
5737 non-normalized
[-6338.56:7075.84] 13860.6 7522 446.16 2up 1 1.07|confidence interv
Rn30000378 -0.26 -0.12 down loess
non-normalized
[-1904.64:1853.44] 3883.64 1979 125.56 2up 1.07 3.33|confidence interv
RN30018614 -0.1 0 down loess
non-normalized

Table 4: Wrongly reported datapoints in the loess normalized data. We compared the regulations of
our method to a standard loess normalization and found 10 spots for which the two methods disagreed
qualitatively. Each case contains the data as found on the non-normalized microarray (reported in the
two first green/red columns). The reported log ratio after loess normalization is given in the second row
of each case. The reported confidence interval is presented in the first row of each case.

4 Discussion

Our method was validated using qPCR and we found that it reports useful confidence intervals (79%
correct, 89% when omitting the upper limit). We also found that the method surpasses standard methods
in the number of genes it reports (x35 in our case).

4.1 Difference between machines, cell lines and experiments

The sampling of the error distribution is specific to the gain of the acquisition hardware, the biological
sample, the slide quality, slide facturer, supplier of the microarray hardware, temperature, sample han-
dling and probably many more influences. Therefore, the error model must be developed for each specific
experiment. This is illustrated in Figure 2, which visualizes the difference between a number of these
variables.

1. We illustrated the technique on a knockdown of a gene as well as on a constitutive active gene.
Figures 2A & B are the constitutive active MK5. Figures 2C, D, E & F are those with a knockdown
of a gene. These figures also illustrate the technique on two different scanners. Figures 2A & B
are made on a Tecan scanner with Cy5/Cy3 labeling. All others are made with DIG labeled slides
scanned on an Applied Biosystems 1700 scanner.

2. Figures 2G, H & I versus Figures 2C, D, E & F illustrate the differences between scrambled siRNA
and specific siRNA. The results show that scrambled siRNA introduces more variability in the cell
system than previously anticipated. This might suggest that a scrambled siRNA alone as a negative
control might not be sufficient, or will in a sense, reduce the number of useful results that can be
obtained from this type of experiment.

3. We illustrated the technique on the same experiment, but with different cell types. Figures 2C, G
are performed in HeLa cells, while Figure 2E, I plots the data from SK-N-DZ cells. Compared to
the FKRP experiments, they reach their maximum variability point at lower intensities. Between
the two different cell types we find that the SK-N-DZ cells reached their maximum variability point
also at lower intensities.
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4. Figure 2D plots siRNA#1 while Figure 2F plots the siRNA#2, which target slightly different FKRP
mRNA. The small variations in Figure 2F might suggest that we would obtain more data from this
experiment. This however is incorrect. For stRNA#2 we only obtained 576 valuable genes, while the
siRNA#1 group produced 2977 genes. This probably happened due to either a bad transfection
efficiency (leading to low variations, but also to little useful data) or a low siRNA#2 impact in
general. This illustrates that the size of the error as such does not provide much information, it
must always be related to the impact of the cell alteration itself.

5. Figures 2D, F, H are mouse survey gene arrays, while Figures 2C, E, G, I are human genome survey
arrays. We find little overall impact of the type of array in the shape of the error plots.

6. Figure 2A is made using Cy5/Cy3 labeling without normalization. Figure 2B is the same figure
but relying on quantile normalization. Figure 2C-I are based on the applied biosystem inter array
normalization algorithm. The differences in confidence intervals between Figure 2A and Figure 2B
illustrates how our algorithm can model the inter-filter effect [Kub94]. Instead of having a flat ’eye-
shaped’ error model (Figure 2B), one finds back a banana-shaped error model. This means that
the model is independent from a particular normalization to account for light reabsorption. Using
confidence intervals, there is no particular need to perform separate dye specific normalizations.

Looking at these observations, we see that the machine fabricant and normalization algorithm have a
major impact on the shape of the error plots. The type of cell perturbation, in our case, is a second
major factor (scrambled siRNA vs specific siRNA). The specific cell lines (HeLa vs SK-N-DZ), actual
genes (TAF4 vs FKRP) and type of microarray (mouse versus human) have a lesser impact on the overall
shape of the error plot.

4.2 Optimal areas of measurement

Looking at the results (Figure 2 and 3B), our observations do not support the general believe that bright
spots are good spots’. Actually, we find that intense spots are subject too much larger errors. Therefore
we might wonder whether there are measurement areas that produce the most information. In our MK5
error model we find that the bright spots are the ones that should be removed from the data set since
they are too close to the expected error, while the darker spots often fall outside the measurement error
(see Figure 3A). Figure 3B illustrates this further: contrary to what one would expect we find the largest
collection of useful spots at the edges around the origin.

4.3 Amplification errors seem to outweigh genetic variability

Given the considerations these days on genetic pathways and genetic variability, we now discuss how
these two factors influence our analysis method. The first concern is that certain genes have a larger
natural variability (unstable expressed genes) than other, more stably expressed, genes. Since our method
does not assess genetic variability, it might omit significant changes in stable expressed genes if they are
too close to each other. It might also report highly unstable expressed genes as significantly altered
while, in reality, they might just have fallen outside the confidence interval by chance. While there may
be such genes, our initial observations does not seem to be influenced by it. Our PCR results confirm
our confidence intervals, which seems to indicate that the impact of genetic variability is much lower
than anticipated. Instead we find that the experimental variability, cell perturbation and consequent
amplification /propagation cascades outweighs natural genetic variability.

The second concern addresses genetic pathways: the gene expression pattern in a cell is the result
of a cascade event, where products of primary gene transcripts can affect the expression of other genes.
Of course, when measuring the same samples, one still expects to find the same values (eg. in Figure 1,
regardless of the gene linking, the control should be a straight line). However, if an error or a variability
occurs in the initial perturbation, then it is not unexpected that this error will propagate along the same
pathways. This effectively leads to a cascade of expression patterns, in which every step can reduce or
increase the net output effect. In other words, the amount of transcribed gene can be dependent on
the amount of transcripts of linked genes, but multiplied with an unknown factor. Very seldom will we
find that one expression pattern produces a new expression pattern with exactly the same amount of
transcripts. So, by pooling together a random set of transcripts based on their intensity, we substantially
limit the impact of genetic pathways. In the worst case scenario, if there were a significant collection
of dependent transcripts, all with the same expression levels, then they would be placed in the same
intensity-slice, thereby sharpening the probability distribution on that slice. This would in turn lead to
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a list of genes that could contain non-significantly altered gene expressions. In our work, we did not find
much evidence that our intensity-based pooling is inadequate and/or overly sensitive to genetic pathways.
The entire collection of probability distributions was in all our experiments smooth without outliers.

4.4 Lorentz distributions

We believe that the presented method makes a fair trade off between a full understanding the gene
linkages/variations (which is something we cannot measure with 3 or 4 slides) and error models that do
not take such possibility into account at all. Standard microarray error models are often based on the log-
scale of the two channels (red/green or slidel/slide2) [BWWQ02, HvHV04]. The resulting distributions
appear as a Lorentz distribution [PTVF03, BWWQO02]. However, such distributions cannot capture
relative errors in the experimental process. This leads to standard error models that are too wide for low
intensity spots and too small for high intensity spots.

4.5 Gating

Aside from the advantages listed above we also found an interesting side observations, which was a form
of gating on the Tecan scanner. Figure 4 plots the one dimensional distribution of all intensities, and one
would expect either a Lorentz distribution [PTVFO03] or a normal distribution, instead we find something
in between that has a plateau around zero (marked with a red circle).
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Figure 4: Univariate probability distribution of the spot values on the Tecan scanned slides (MK5). Red
is the first slide, green is the second slide and blue is the control slide. The plateau around 0 is currently
unexplained. It might be due to a form of gating in the electronics of the acquisition hardware. It might
also be related to a chemical critical mass.

We marked the plateau with a red circle (See Figure). At this point, we have merely been speculating
about an explanation for this local uniformity

1. The plateau is not related to an error in the background subtraction because that would widen the
entire probability distribution.
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2. A hybridization problem might have occurred. This will place many dots around 0. This however
is not consistent with the scatterplot, which does not hint at such a large non-hybridization rate.
Since all microarrays had a similar distribution, this becomes very unlikely.

3. The microarray age might be an explanation, but this should not have occurred since we bought
them just before the experiment.

4. The electronics of the microarray scanner might be subject to a form of gating [SN06]. This will
produce random results for a signal until the signal is strong enough to be picked up properly.
Because we did not see the same plateau at low intensities, this might hold some ground.

5. Highly speculative is a chemical critical mass of sorts that will randomly fluctuate unless there is
enough material to produce a stronger signal.

6. A systematic production error on the microarray slides, but this is difficult to verify without close
cooperation with the slide fabricator.

7. It might be a specific feature of the MK5 cell system, with a large collection of genes only marginally
expressed.

Deconvolution of error distributions Regarding future work, we might improve the method through
deconvolution of the DIG labeled error distributions. When acquiring the error model based on the differ-
ences between replica slides, one actually measures the auto-convolved error distribution. As such, it will
be slightly larger than the real error distribution. This can be improved through deconvolution techniques
such as adaptations to the Richardson-Lucy algorithm [RLAA93], but in general seems unnecessary.

5 Conclusion

We presented a method to analyze differences between groups of microarrays, such as often found in
differential gene expression experiments. Instead of reporting one single number for each regulation, we
report the regulation including its confidence interval. The confidence interval is obtained from an error
model that must be measured within the experiment itself.

We compared our method to a standard analysis method and illustrated its capability to filter out
spots that are too close to the error to be useful. For indicative purposes we compared the reported results
to standard analysis methods. We also performed a limited qPCR experiment. Although a relative small
number of samples have been investigated, they support the credibility of our analysis method.

6 Material and Methods

Manufacturers instruction are used unless stated otherwise.

6.1 Constitutive active MKJ5 cell-line

To clone the cDNA sequence of MK5, we introduced two mutations in the pcDNA-HA-MK5y, 1 plasmid
[STHT02]. Both used the Stratagene mutagenesis kit. The first mutation assured compatibility with
the pTRE2 plasmid and used a forward primer 5-CCC-AAG-CTT-GAC-GCG-TCC-ATG-TAT-GAT-G-
3’ with complementary reversed primer. The second mutation turned the wt MKS5 into a constitutive
active MK513374 mutant. The resulting MK5 ¢cDNA sequences were excised by Miul/Notl digestion
and cloned into the corresponding sites of pTRE2. We verified the plasmid by sequencing. Two 6-well
plates with 5.105 PC12 TetOff cells (BD Biosciences) were transfected with 14ug of pTRE2-MK57,337.4
and 2ug pTKHyg per well using lipofectamine 2000 (Invitrogen) [PBB102]. After 3.5h, the medium
was changed and supplemented with 10ng/ml Doxycycline (Sigma). 24h after transfection, cells were
transferred to 10 cm dishes with fresh medium and Doxycycline. 48h after transfection, 100ug/ml of
Geneticin (Gibco) and 200pg/ml Hygromycin B (Invitrogen) was supplied additionally to the medium.
The cells were grown until visible colonies of resistant cells could be detected. From each plate two colonies
were transferred in threefold dilution to a 96 well plate. For positive clones, we confirmed the transgene
expression though reverse transcriptase-PCR and western blot. Cells were maintained in DMEM supplied
with 10% horse serum and 5% fetal bovine serum, 2mM L-glutamine, penicillin (110 units/ml) and
streptomycin (100ug/ml). Additionally, 50ug/ml of Geneticin, 100ug/ml Hygromycin B were supplied to
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maintain selection. To suppress HA-MK5/ 3374 expression during ordinary cell culture, we added 10ng/ml
Doxycycline.

6.2 TAF4/FKRP knock-down using siRINAs

SiRNAs introduced into the cells lead to degradation of mRNA having the complementary sequence,
thereby silencing/depressing gene expression. SiRNAs were pre-designed and ordered from Qiagen
(http://www.qiagen.com/). For the FKRP experiment, the siRNAs sequences targeted AACCTCC-
TAGTCTTCTTCTAT; AACCCAAAGACTGGAGCAACT. For the TAF4 experiments, the siRNA tar-
geted AAGGCCTGTGGATACTCTTAA . Cells were plated at 10° cells/ml into a 6-well dish. Because
of different growth-rates, HeLa and C2C12 cells were transfected after 24 hours, while SK-N-DZ cells
were transfected after more than 48 hours. Two different transfection mixes were made. Both included
90 vol% D-MEM(SBS). The first transfection mix contained 10 vol% TAF4 siRNA (30nM siRNA /well).
The second transfection mix contained 10 vol% scrambled siRNA. The different mixes were vortexed, 7.5
ul RNAiFect was added and then incubated for 15 minutes (room temperature). D-MEM was aspirated
from the wells. Subsequently, 100ul of the transfection mixture was added to each well in addition to 1.9
ml fresh D-MEM (10% FBS + antibiotics). We produced each transfection mix in triplicate. Twenty-four
hours after transfection, RNA was to be extracted for further analysis. The same procedure was followed
in the FKRP knockdown experiments.

6.3 RNA extraction and cDNA Synthesis

C2C12 (FKRP), HeLa (TAF4) and SK-N-DZ (TAF4) cells were plated at 2.10° cells per well in a 6 well
dish; MK5 stable cells at 5.10°cells per 6 well dish. For the TAF4 and FKRP experiment, cells were lysed
by incubation in lysis buffer containing chaotropic salt and Proteinase K, after which RNA was isolated
with the MagNA Pure Compact RNA system (Roche-Applied-Science). For the MK5 experiment, we used
the Nucleospin II RNA isolation kit (Machery-Nigel). The Nanodrop ND-1000 (Nanodrop technologies
Inc.) verified RNA concentrations and purity. One pg of RNA was reverse transcribed to cDNA using
the iScript ¢cDNA synthesis kit (Biorad) (MK5) and SuperScript’™II from Invitrogen”™™ (remaining
experiments).

6.4 Quantitative Realtime PCR TAF4 related genes

We made 4 cDNA dilutions: 1:2, 1:5, 1:10 and 1:50. All were supplemented with mastermix, primers,
probe and water. Relative expression for each target gene was normalized to GAPDH using the 2dcp
method [LS01]. The expression differences between scrambled and normal siRNA were calculated by
dividing the averages of each cell type. The qPCR experiments were performed on LightCycler 480
(Roche), with accompanying software version 1.2.0.0625.

6.5 Microarray

The number of slides and their layout is provided in Table 1. For the MK5 experiment, we made 3 slides,
each containing an induced (Cy3) and uninduced sample (Cy5). The 4th slide contained two induced
samples. Samples were labeled with the 3SDNA 3508 HS labeling kit (Genisphere). Hybridized slides were
scanned using the Genepix 4000B (Molecular Devices) with a constant gain of 950/800. We obtained
more than 70% hybridization (measured as #spots > median + 1SD). Spots with too large an intensity
(> 90% of the maximum) or too large a regulation (> x10) were removed. For standard analysis, we
relied upon a blind analysis of the microarray facility in Tromsg, which used loess normalization [CGS92].
Our own analysis used quantile normalization [DYCS00]. For the FKRP & TAF4 experiments, we used
an Applied Biosystems 1700 scanner, with AB. v2.0 slides surveying respectively the mouse genome and
human genome. UNIGEN in Trondheim performed a blind data analysis following the guidelines of
[ACPS06]. This included quantile normalization on the raw machine output. Our analysis was based on
the already normalized output of the Applied Biosystems scanner.
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7 Detailed Analysis Method

7.1 Notation

We denote every slide with a number which is placed top-right. The control slide is marked with a c. In
the bottom-right we refer to either the red or green channel. Eg d’ refers to the red channel of spot d
in slide 7. Each channel must be measured, with or without quantile normalization, but always without
taking the logarithm. The maximum measurable value is expressed as C, which typically is 65535 (this
is the maximum value that can be expressed using 16 bits). The dataset is preferably already filtered for
false positives. The norm of a spot d is written as

dr +dg
2
The difference between the two channels is subscribed with a § subscript. Eg ds = d. — d,.

|d| :=

7.2 Creating Histograms

We model the error distributions as a collection of histograms in function of spot intensity. We rely
upon s, bins, each in which we store a histogram. We denote h, the histogram for bin x. It will cover
all the spots within intensity range [Z—C, ””C%C[ The histogram h, counts the occurrences of a specific
intensity. Using 2.s, bins, h;, will cover all the spots for which the difference lies within [ys—c, yc%c[
© Y Y
The creation of these histograms obviously starts with each h,, = 0. The algorithm below calculates

the 2 dimensional histogram.

foreach spot d

. ldlse
Ti= =5

. dssy
Y=g
hoy = hay +1

7.3 Smoothing

After performing this process we smoothen out the distribution along the intensity axis. This ensures
that each histogram contains a minimum amount of measurement-error measurements. The smoothing
is performed adaptively by widening a window around each intensity until enough points are gathered.
If we call s, the minimum mass of each histogram, then the algorithm below will create a smoothed
collection of probability distributions and store it in g.

foreach intensity X
w:=0
do
gx = Zi{:;(u—w hl’
wi=w+1
while ) gx < sp

9x

9X = Tgx

In the above, the total mass of a histogram is written as Y h. The addition of histograms is the same as
the addition of the counts in each bin. If a and b are two histograms then c=a+b < ¢; = a; + b;.
We use similar notation for division.

7.4 Multiple Measurements

Assume that we have a set of spots M, all measuring the same process (eg the same oligosequence, or
the same gene), then we can define the overall measurement m as m, = _,c,,dr and mg = >,/ dg.
Then we also have that

m(;:Zd(;

deM

The error distribution associated with a specific spot is written as d
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For each value of ds we have an associated error distribution. The overall error distribution for mg
will consequently be the convolution of the underlying error distributions (written as ).

m * d

7.5 Confidence Intervals

The confidence interval of k associated with m, given the error distribution m is given by

1—«x K+ 1
DF=! DF:' [ ———
[C m ( 2 ) 7C m < 2 )}

my; and my, are the lowest and highest boundaries for measurement m.

7.6 Regulation Factors

Converting absolute regulation differences to regulation ratios requires that we assume that either m,.
or mg could have been fully responsible for the measurement error. This leads to the following possible
regulation ratios:

. mg —m
fi =if myg —m; < 0then oo else g d
¢ myg
. mg —m
f2 =if my —my, < Othen oo else —Z h
m
g

f3 =if m,. +my; < 0 then oo else m, + my

fa =1if m,. +my < 0 then oo else m,. +myp,

Min ({ f1, fa, f3, fa}) reports the lowest possible regulation ratio. Max ({f1, f2, f3, fa}) reports the
highest possible regulation ratio.
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