

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

Automatic Image Tagging based on

Context Information

Martin Hætta Evertsen

INF-3981

Master's Thesis in Computer Science

June, 2010

ii

iii

Abstract

People love to take images, but are not so willing to annotate the images af-

terwards with relevant tags. Manually tagging images is both subjective

(dependent on annotator) and time consuming. It would be nice if the tag-

ging process could be done automatically. A requirement for effective

searching and retrieval of images in rapid growing online image databases is

that each image has accurate and useful annotation.

This thesis shows that automatic tagging of images with relevant tags is

possible by using a combination of the capture location, the date/time when

the image was captured and an image category. The use of image categories

(together with location and date/time) ensures that many relevant tags are

returned and restrict the occurrence of noisy tags to a very low level despite

using a noisy image database (Flickr). Other methods used for further re-

stricting noise are to restrict usage of more than one image from same user

(as basis for tagging the query image) and a dynamic approach for using

many images when possible, and fewer images when not many relevant im-

ages are found.

The designed system is able to tag an image as long as there are a sufficient

number of geo-referenced and already tagged images that is relevant for the

query image available on Flickr. The query image must also have been geo-

referenced and it is assumed that the user provides an image category. Im-

ages are processed based on which category the images belongs to, i.e. an

image is processed with the best method to handle images belonging to that

specific category. In short, this means that images of objects or places are

processed differently than images from events.

The evaluation of the system indicates that usage of image categories is very

helpful when tagging images. The system finds more relevant tags and few-

er noisy tags than baseline systems using only location. It also performs

good compared to a system using both location and content-based image

analysis.

iv

v

Acknowledgements

First of all, I would like to thank my supervisor, associate professor Randi

Karlsen, for the idea of this work and for very constructive guidance along

the way. Your availability, feedback and knowledge are very much appre-

ciated.

I would also like to thank Jan Fuglesteg for help with administrative and

practical issues. Many thanks also to family and friends for support and mo-

tivation.

Finally, a special thanks to my fellow student David Sundby. We have stu-

died, collaborated, struggled, discussed, laughed, partied and had fun all

these five years. Thank you, and good luck with little Theo!

vi

vii

Contents

1 Introduction .. 1

1.1 Motivation .. 1

1.2 Problem description and contribution .. 3

1.3 Categories .. 3

1.4 Approach .. 4

1.5 Assumptions ... 5

1.6 Image copyrights .. 5

1.7 Terminology ... 6

1.8 Organization ... 7

2 Background ... 9

2.1 Context ... 9

2.2 Image retrieval ... 10

2.3 Automatic image tagging ... 11

2.4 Semantic gap .. 11

2.5 Category ... 12

2.6 Location ... 12

2.7 Synonyms ... 13

2.8 Relevancy ... 14

3 Related Work .. 15

3.1 Location ... 15

3.2 Category ... 16

3.3 Time ... 17

3.4 Visual similarity ... 17

3.5 Other related work ... 18

4 Problem Description .. 21

4.1 Problem definition ... 21

4.2 Contribution ... 22

4.3 Scenario .. 22

4.4 General problems and limitations .. 24

viii

5 Approach ... 27

5.1 Location ... 27

5.2 Category ... 30

5.2.1 Overview of usage ... 30

5.2.2 Overview of categorization ... 32

5.2.3 Objects ... 32

5.2.4 Events .. 33

5.2.5 Categorization ... 34

5.2.6 Usage in more detail .. 35

5.2.7 Synonyms .. 36

5.3 Handling several images from the same user .. 37

5.4 Tag processing .. 38

5.4.1 Deciding how many tags that are relevant .. 38

5.4.2 Tag filtering ... 39

5.4.3 Handling whitespaces .. 39

5.4.4 Usage of other information than tags .. 40

6 Design .. 41

6.1 Naming the image tagging system ... 41

6.2 Web interface ... 41

6.3 Flickr .. 42

6.4 Overall view ... 43

6.5 Presenting the result ... 43

6.6 Assumptions ... 44

7 Implementation .. 47

7.1 Hardware .. 47

7.2 LoCaTagr ... 47

7.3 Web interface ... 48

7.4 Flickr API ... 48

7.5 Synonyms ... 49

7.6 EXIF-header ... 49

8 Results and Evaluation .. 51

8.1 Comparison systems .. 51

8.2 Comparison method ... 52

8.3 Images and results .. 53

ix

8.4 Evaluation .. 66

8.4.1 Famous attraction .. 66

8.4.2 Attractions taken from distance ... 67

8.4.3 Not so famous attraction ... 67

8.4.4 Not so famous attraction near famous attraction 68

8.4.5 Overview images ... 69

8.4.6 Short-lasting events ... 69

8.4.7 Long-lasting events ... 70

8.4.8 More on events .. 70

8.4.9 Importance of correct sub-category ... 71

8.4.10 Images with same location .. 73

8.4.11 Runtime comparison ... 74

8.4.12 Place names ... 76

8.4.13 Summary ... 76

9 Future Work ... 83

10 Conclusion .. 87

References ... 89

Appendix A – List of images ... 91

Appendix B – LoCaTagr code ... 92

Appendix C – Web interface code .. 101

C.1 index.html .. 101

C.2 menu.html .. 104

C.3 useexample.pl ... 106

C.4 usequery.pl ... 107

C.5 upload.pl ... 108

C.6 runscript.pl ... 110

C.7 manually.pl ... 115

C.8 example_images.pl ... 117

C.9 newcat.pl .. 118

C.10 makecat.pl .. 120

x

List of tables, figures and images

Number Content Page

Image 4.1 Example image of Big Ben (same as Image 1A) 23

Image 4.2 Example image from a U2 concert at Camp Nou (same as Image 7) 23

Table 4.3 List of tags for Image 4.1 and 4.2 24

Figure 5.1 Illustrative example of radius sizes 28

Table 5.2 A dynamic approach for deciding size of result set 30

Figure 5.3 The image categories used in the system 35

Figure 6.1 Web interface homepage 42

Figure 6.2 Graphical overview of the system and the workflow 44

Figure 6.3 Example of result page on web interface 45

Image 1A Big Ben geo-referenced at exact location of Big Ben 55

Image 1B Big Ben geo-referenced at position of image capture 56

Image 2 Eiffel Tower geo-referenced at exact position of Eiffel Tower 57

Image 3 London Eye geo-referenced at position of image capture 58

Image 4 Ishavskatedralen / Arctic Cathedral in Tromsø, Norway 59

Image 5 The aquarium Cineaqua near Eiffel Tower, Paris 60

Image 6 Overview of Paris from Montmartre 61

Image 7 U2 concert at Camp Nou, Barcelona 62

Image 8 Independence Day (2009) at the Washington Monument 63

Image 9 Roskilde Festival 2009 in Roskilde, Denmark 64

Image 10 Winter Olympics 2010 in Vancouver, Canada 65

Table 8.1 Tags found with different sub-categories 72

Table 8.2 Comparison of tags found for images with same location 74

Figure 8.3 Overview of runtime 75

Figure 8.4 Average runtime 76

Figure 8.5 Graphical overview of different types of tags found 77

Figure 8.6 Percentage of different types of tags found 77

Table 8.7 Overview of statistics 79

Table 8.8 Average (arithmetic mean) of statistics 79

Figure 8.9 Graphical overview of tags found for Image 1A -10 80

Figure 8.10 Graphical overview of Precision1 81

Figure 8.11 Graphical overview of Precision2 81

1

Chapter 1

Introduction

This chapter is an introduction to the thesis that will discuss the motivation

behind the work, the problem and contribution, a quick overview of what

has been done, the assumptions, some basic terminology and finally an

overview of the organization of the thesis.

1.1 Motivation

Whereas in the past a roll of film was sent in to a professional photographer

to get images developed into handheld photographs that were later glued in-

to photo albums, today most or practically all images are taken and stored

digitally. People capture images at an ever-growing rate. It is driven by the

development in storage and capture devices (such as digital cameras and

camera phones). The cost for these capture devices and storage keeps de-

creasing, and is affordable for the average person.

Handling large volumes of digital information becomes vital as online re-

sources and their usage continuously grows at high speed. Online image

sharing applications are getting extremely popular. Flickr
1
 is one of the most

popular of these applications hosting over 4 billion
2
 images. Over 100 mil-

lion of these images are geo-referenced. Flickr reports that currently more

than 2 million geo-referenced images are uploaded every month. Panora-

mio
3
 is another popular image sharing website where all of the over 10 mil-

lion images are geo-referenced. Flickr and Panoramio have been bought by

the well-known and powerful companies Yahoo!
4
 and Google

5
 respectively,

1
 http://www.flickr.com/

2
 http://blog.flickr.net/en/2009/10/12/4000000000/

3
 http://www.panoramio.com/

4
 http://www.yahoo.com/

5
 http://www.google.com/

2

which shows the potential of these online image collections.

Datta et al. [1] performed a test using Google Scholar
6
 that indicated an ex-

ponential growth in image retrieval and closely related topics during the pe-

riod 1995 - 2005. This increase in image related topics seems to have con-

tinued over the last five years.

Manually tagging images is both time consuming and subjective. People

simply do not bother or have time to tag their images. Furthermore, human

beings are and think differently, meaning that similar images will be tagged

differently by different people. This can be caused by differences in lan-

guage, mood, vocabulary, education, culture, taste etc.

Some of the digital cameras on the market today already have built-in GPS

(for example Panasonic TZ10
7
), and the number is increasing. There also

exist solutions where a GPS receiver is attached to the flash connector of

digital cameras. The images are then geo-coded when they are transferred

from the digital camera to a computer with Internet connection. Further-

more, several of the mobile telephones on the market today (for example

Nokia N-95 and iPhone 3GS) are equipped with both accurate GPS systems

and cameras able to take images with high quality.

There is also a significant increase in tools and applications for manually

geo-referencing images. The usage is often very simple; the users drag and

drop their images to the position on the map where the image was taken.

These applications can show maps where users can see where their own im-

ages were taken and also images from other users. Flickr and Panoramio of-

fer built-in geo-referencing using Yahoo Maps and Google Maps respective-

ly. Actually, it is a requirement in Panoramio because all of its images have

to be geo-referenced.

Thus, it is very likely that a lot of images in near future will have GPS coor-

dinates available, generated either automatically or manually. The location

where an image is taken can be a very valuable asset when tagging images.

Location can be combined with other contextual information sources such

as weather information, nearby buildings and facilities, date/time (in case of

an event taking place), other images taken nearby and geo-referenced ar-

ticles. This information can for example be helpful when automatically tag-

ging images.

The increase in digital images and research in image related topics together

with the problems concerning manually tagging of images indicates that

there is a need for automatic image tagging.

6
 http://scholar.google.com/

7
 http://panasonic.net/avc/lumix/compact/zs7_tz10/functions.html

3

1.2 Problem description and contribution

The specific goal of the work in this thesis is to design, implement and eva-

luate a system that automatically finds tags for images based on location

(GPS coordinates), date/time and image category. The tags are to be col-

lected from an online image sharing database (Flickr) with images that are

already tagged. However, the information in these community based collec-

tions is often highly unreliable and noisy. Therefore, the thesis will further

focus on the relevancy of the collected tags, and how this is affected by us-

ing a combination of the context sources (location, date/time and image cat-

egory) as input to the system.

Location is generally a widely used context source, and there exist several

location based image tagging systems (discussed in related work in Chapter

3). However, as far as I know, no previous work has looked into the possi-

bility of combining location with image categories and date/time. The sug-

gested approach is to handle similar types of images (belonging to the same

image category) in a specific way giving the best results for that specific

type of image.

The contribution of this work is to explore the possibility of making an au-

tomatic image tagging system based on combining category, location and

date/time. Further, the most interesting aspect of this work will be to eva-

luate if it is beneficial for an automatic image tagging system to handle im-

ages differently based on which image category the images belong to. The

hypothesis is that using categories together with location and date/time will

result in more relevant and less non-relevant tags than by using other ap-

proaches.

This thesis is part of the CAIM
8
 (Context Aware Image Management)

project. CAIM is a research project with the goal of developing methods and

tools for context aware image management in distributed, multimodal and

mobile environments. The project is a collaboration between the University

of Tromsø, the University of Bergen, NTNU
9
 and Telenor R&D

10
.

1.3 Categories

Location and date/time information is assumed to be available in the EXIF-

header of the image. Category is not. The idea is that users should provide

the image categories along with the query images (the images that are to be

tagged).

8
 http://caim.uib.no/index.shtml

9
 NTNU (Norges Teknisk-Naturvitenskapelig Universitet) (http://www.ntnu.no/)

10
 Telenor Research & Development (http://www.telenor.com/rd/)

4

In another work in the CAIM project named InfoAlbum [2, 3], useful in-

formation related to an image is found based on category, location and

date/time. The system use external sources on Internet for finding relevant

information by using a mixture of category, location and time as input.

Weather information and relevant articles are some of the information the

system can find for images. The category is used (1) to determine how in-

formation sources are searched, (2) as a keyword when searching the Inter-

net, and (3) to rank the collected information. Some typically used catego-

ries in InfoAlbum are concert, tower, church and football match.

We think that users will take the effort of providing image categories if that

can provide useful and valuable information to the images. As long as the

user interface for the categorization process is rather structured and simple,

the effort in choosing categories should be affordable. An important aspect

is that categories are to be re-used, i.e. several images can fit into each cate-

gory.

User studies [4] have shown that in general people are willing to devote

some effort and time to annotate and tag images with the motivation of mak-

ing them more accessible for image retrieval. However, users are not likely

to be willing to devote enough time to tag all their images or devote enough

time to find many relevant and descriptive tags for each image. It is there-

fore possible that users instead would prefer to only provide image catego-

ries to their images if an image tagging system is able to find a set of rele-

vant tags based on the image category (in combination with other available

information such as date/time and location).

Another aspect is that people do not necessarily remember the names of all

the attractions they have visited. But with categories, it is sufficient to know

that the image is taken for example of a tower or a church or at a concert or

a football match (which should be fairly obvious by looking at the content

of the image).

The work in this thesis will try to tag query images based on their image

category combined with the location and time of image capture. The main

categories used in the system are basically objects and events. The sugges-

tion is that user-defined categories such as tower and church belong to the

main category object whereas user-defined categories such as concert and

football match belong to the main category event.

1.4 Approach

The automatic image tagging system designed and implemented in this the-

sis can basically be divided into two parts. The first part consists of retriev-

ing a set of images that are considered to be relevant for the query image

(the image that is to be tagged). The second part consists of collecting and

processing the tags of the images in the image set found in the first part.

5

The images used as basis for tagging the query image are retrieved by send-

ing search requests to Flickr. An important part of the implementation is a

dynamic method for deciding how many images to use as basis for tagging

the query image. The method ensures that many images are used when

many relevant images are available and that few images are used when few

relevant images are available. The method basically consists of starting with

a small search radius and then increase the search radius until enough im-

ages are found.

Categories are used to specify the search requests so that mostly relevant

images are used as basis for tagging the query image (i.e. the occurrence of

non-relevant images is restricted). This is achieved by using different search

parameters for the different main categories. The main categories used in the

system are mainly object and event. One of the differences is that date/time

is used as search parameter for events but not for objects. Another difference

is the usage of the user-defined categories in the search process.

The second part consists of processing (sorting, handling whitespaces, filter-

ing etc.) and using the tags of the images found in the first part to tag the

query image. Basically, the tags that appear most frequently in the set of im-

ages found in the first part are used to tag the query image.

The approach will be discussed in more detail in Chapter 5.

1.5 Assumptions

The assumptions are as following:

• It is assumed that there exist a representative set of already geo-

referenced and tagged images on Flickr. The tags of these images are

used to tag the query images.

• It is assumed that the user specifies an image category along with the

query image that is to be tagged.

• It is assumed that the location where the image was captured is

available in the EXIF-header of the query image in the form of GPS

coordinates.

• It is assumed that the date and time of image capture is available in

the EXIF-header of the query image.

The assumptions will be discussed in more detail in Chapter 6.6.

1.6 Image copyrights

All images used to test and evaluate this work are under a Creative Com-

6

mons
11

 license which allows usage, adaptation (editing) and distribution as

long as the work is attributed. The source of the images used to test and eva-

luate this work can be found in Appendix A. GPS coordinates and date/time

information have been added to the EXIF-header of these images. There-

fore, the information might not correlate to where and when the images

were actually taken.

1.7 Terminology

A tag is a keyword or term assigned to an image that helps describe the im-

age and its content so that it can easily be retrieved when searching or

browsing for it. Image tagging is the process of assigning tags to an image.

Image annotation is the process of annotating images with relevant informa-

tion. Tags consists of one or two words (e.g. “London” and “Eiffel Tower”),

whereas annotations often consists of several words combined into descrip-

tive sentences. Automatic image tagging is the process performed by a com-

puter system of automatically assigning tags to an image.

The query image is the image that is to be tagged by the automatic image

tagging system. The user of the automatic image tagging system is a person

who has a query image that he or she wants to tag with relevant tags. The

result set is the set of returned images that is considered relevant to the

query image. Tags from images in the result set are used to tag the query

image. Required images are the number of images required in the result set.

This number can vary depending on how many relevant images that are

found for a specific query image.

Noisy tags are tags that are assigned to an image and that is not relevant for

the image. An example is if the tag “castle” is assigned to an image of a

church. It is common (although not used in this work) to use a training set,

which is a small and controlled set of correctly tagged images that are used

to train a system using machine learning techniques. The noise level in the

training sets are very low compared to the relatively high noise level in

community image sharing applications such as Flickr. The work in this the-

sis will use images from Flickr and not a training set.

A geo-referenced image has the geographic location where the image was

captured available. A geo-coded image has the geographic location stored

internal in the EXIF-header of the image, whereas a geo-tagged image has it

stored with its external tags.

11

 http://creativecommons.org/licenses/

7

1.8 Organization

The rest of this thesis is organized as follows. Some useful background in-

formation is presented in Chapter 2, and related work follows in Chapter 3.

The problem and some limitations are discussed in more detail in Chapter 4.

The selected approaches are discussed in Chapter 5, and the overall design

is presented in Chapter 6. Some implementation specific details can be

found in Chapter 7. The results and evaluation of the results is presented and

discussed in Chapter 8. Some possible future work is discussed in Chapter

9, before the conclusion in Chapter 10. The implementation code can be

found in the appendices behind the list of references.

8

9

Chapter 2

Background

In this chapter some background information relevant for the thesis is pre-

sented and discussed.

2.1 Context

A commonly used definition for context is suggested by Dey [5]: “Context

is any information that can be used to characterize the situation of an entity.

An entity is a person, place, or object that is considered relevant to the inte-

raction between a user and an application, including the user and applica-

tions themselves”. In the work of this thesis, the entity is an image. In other

words, the context of an image is all relevant surrounding situational envi-

ronment and information that describes or belongs to that specific image.

Only relevant information can be regarded as context, i.e. information that is

usable for some purpose. But almost all kind of information can be used in

some way. The key is to use the information that will assist most in achiev-

ing the desired goal. For images, it could be important to know where, when

and in which situation the image was taken or what the main subject of the

image is.

Images taken by digital cameras store a lot of contextual information in the

EXIF-record of the image. This record contains information such as lens set-

tings, focal time, scene brightness, exposure time, camera information and

settings, whether the flash was fired or not, the time and date the image was

captured and possibly GPS coordinates if the camera is equipped with the

Global Positioning System
12

.

12

 http://www.gps.gov/

10

2.2 Image retrieval

The main reason to tag images is for improving the usability of image re-

trieval systems. Image retrieval systems can be used to find images of inter-

est in both large online public image databases (such as Flickr and Panora-

mio), and personal image collections stored on home computers. Images

that are tagged with a set of relevant tags are easier to find than untagged

images. Therefore, image tagging is vital for being able to manage and

search effectively in large image collections.

Current image retrieval systems such as Google Image Search
13

 and Micro-

soft Bing Image Search
14

 are based on the text surrounding images. While

this approach is successful for text retrieval, it is unfortunately not the case

with image retrieval. Looking at the surrounding text of an image is not a

good approach because it is difficult to know whether and which parts of the

text that are relevant for a given image.

Another image retrieval approach is query-by-example or content-based im-

age retrieval [6]. With this approach, images are retrieved based on either an

example image or drawing, where the content of the example image is used

to find similar images with visual similarities or features such as colors,

shapes and textures. However, this approach requires the user to supply an

example image, which is not very convenient. Also, it is not useful in cases

where the user wants to find all images from a specific event or object

where the content of the image can vary a lot. Furthermore, people are fa-

miliar with the regular way of searching (“googling”) on the Internet by typ-

ing in one or more keywords to a search engine, and there is no reason to

believe that it will be any different with images.

Manual image tagging is both time consuming and subjective. If two people

are to tag the same image, it is almost certain that the two individuals will

not use the same set of tags. Even the same person is likely to tag the same

image differently if being asked to do so with a significant period in be-

tween. Moreover, the effort and time required to tag all images manually is

too demanding. Hiring people to tag images is not realistic either, as it

would imply many thousands of work hours.

To summarize, it is fundamental for image retrieval systems to have the im-

ages tagged, and doing it manually is not a realistic option. There is a need

for images to be automatically tagged.

13

 http://images.google.com/
14

 http://www.bing.com/images/

11

2.3 Automatic image tagging

The idea with automatic image tagging is that tags are automatically cap-

tioned and assigned to the digital image. These tags should describe every

important part or aspect of the image and its context. Automatic image tag-

ging can be done based on the visual content of the image, contextual in-

formation, or using a mixture of these two approaches.

By looking at the visual content of an image, it could for example be possi-

bly to predict that an image where most edges are vertical or horizontal con-

tains a building. Another approach is to find a set of images that are visually

similar to the query image in existing image databases consisting of already

tagged images, and then pick the most relevant tags from the set of similar

images [7, 8].

The context in which the image was taken can also be used to tag images [9-

11]. Context is as discussed in Chapter 2.1 all relevant surrounding situa-

tional environment and information. Location and date/time are the most

commonly used context sources for most context-aware applications.

The key task for an automatic image tagging system is to be able to tag the

query image with relevant tags. The problem is that it is hard for a system

knowing exactly what is relevant and what is not relevant for a specific im-

age. Therefore, the results are strictly speaking predictions, and the focus

should be on making the predictions as good as possible. The main chal-

lenge with automatic image tagging is that many images are difficult to de-

scribe in words, particularly those where feelings are involved. The problem

is known as the so-called semantic gap.

2.4 Semantic gap

A semantic gap occurs when human observations or behavior are transferred

to computational representations. Smeulders et al. [12] defines the semantic

gap: “The semantic gap is the lack of coincidence between the information

that one can extract from the visual data and the interpretation that the

same data have for a user in a given situation”.

In other words, there is a lack of correlation between the way humans un-

derstand information and the way computers represent the same informa-

tion. Whereas words and text usually have a clear semantic meaning, the

same is not the case with images. Analyzing images requires reflective

thinking that computers are not capable of, not today and not in foreseeable

future.

Textual annotations are unreliable as they depend on attributes of the anno-

tator such as knowledge, culture and language. This makes automatic image

tagging challenging because computers and computer systems in general

12

have limited knowledge and limited capability of expression. They lack the

ability to think, reflect and learn
15

 upon ideas and previous experience. This

is in big contrast to humans, where mature and adult people often are better

decision makers than young people because they take use of knowledge and

experience acquired during their lifetime.

Closing the semantic gap is one of the main challenges in image related top-

ics, and a lot of research has been devoted to the problem [1, 6, 12]. This

work (and all other image tagging systems) indirectly tries to minimize the

gap by finding as many relevant tags as possible to query images.

2.5 Category

The idea of structuring things in categories (categorization) is that a set of

things that are somewhat similar or share some specific characteristics are

grouped into the same category. This way of representing things is funda-

mental in everyday situations, for educational purposes, in research, for

companies to structure their products and in many other areas and situations.

There are many different ways to categorize. A common organization is to

organize objects into categories and sub-categories. People naturally cate-

gorize objects into basic categories such as vehicles or tables based on cha-

racteristics such as visual appearance, movement and attributes [13].

For the purpose of this work, images are to be categorized such that all the

images in one category can be handled equally. In other words, the image

tagging process is performed the same way for all images in one image cat-

egory. Images in another image category is handled another way, which is

the best approach for that specific category.

The game of football can be used as an example. It could mean the ball used

to play football with (the object), or the event of a football match taking

place at a stadium. Furthermore, someone could visit a football stadium

without a match taking place. It is possible that these three different cases

should be handled differently by an automatic image tagging system to

achieve the best possible results. This can be achieved if the images are

placed into different categories (such as object, event or place).

2.6 Location

Location information is likely to be well known information for more and

15

 Although machine learning is an interesting area of research, it will not be discussed in

this work.

13

more images in the future because of the increase in digital cameras with

built-in GPS and the possibility to geo-reference images manually. Informa-

tion about where an image was captured can be very useful when tagging

images. For any image with capture location available, useful information

can be found by combining location with other information sources such as

weather databases, nearby buildings and facilities, time (in case of an event

taking place), other geo-referenced images taken nearby and geo-referenced

articles on the Internet [2, 3].

Geo-referenced images taken nearby can be found using both Flickr and Pa-

noramio. Flickr is used by the automatic image tagging system designed in

this thesis. The usage will be more discussed in Chapter 5 and 6.

GeoNames
16

 is an online geographical database available free of charge

containing over eight million geographical names updated by users using a

simple wiki interface. One of the web services they offer return nearby loca-

tion names based on GPS coordinates. This is called reversed geo-coding,

and is very useful for automatic image tagging because the location names

themselves are often useful tags. An image taken in Paris could be tagged

with location names spanning all the way from Europe and down to the

name of the neighborhood or even street name in Paris.

Further, it gives the opportunity to search for useful information concerning

the location where the image was taken. For example, another service based

on GPS coordinates offered by GeoNames, finds nearby geo-referenced Wi-

kipedia
17

 articles
18

. The articles can provide useful information about the

subject of the image. For example, for an image taken next to the Eiffel

Tower, the Wikipedia article about the tower could provide useful informa-

tion.

2.7 Synonyms

Another interesting issue concerning image tagging is handling synonyms.

For example, it should be obvious that train and railroad are two words for

the same thing. Images tagged with train could therefore possible be tagged

with railroad as well. Another possibility is to use it the other way around,

meaning that image retrieval systems searching for images with trains will

use both train and railroad in the search request.

STANDS4 LLC
19

 is a leading provider of free online reference resources of-

fering a simple API for retrieving synonyms for English words. WordNet
20

16

 GeoNames (http://www.geonames.org/)
17

 Wikipedia – The Free Encyclopedia (http://en.wikipedia.org/)
18

 http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Geographical_coordinates/
19

 http://www.abbreviations.com/about.aspx
20

 http://wordnet.princeton.edu/

14

[14] is a large more advanced lexical English database where nouns, verbs,

adjectives and adverbs are grouped into sets of cognitive synonyms.

2.8 Relevancy

Tagging images is subjective, and the same applies to deciding whether tags

are relevant or not for a specific image. Whereas one person might consider

a tag relevant for an image, another person might consider the same tag as

noisy for the same image. There are many tags that are potentially hard to

decide whether are relevant or not. An example is information relevant for

the position of image capture but that is not visible on the image. Another

example is whether tags that do not give any meaning on their own without

being combined should be regarded as relevant (e.g. big and ben for an im-

age of Big Ben).

Precision and recall are two widely used statistical classifications for mea-

suring relevancy in information retrieval systems. It can also be used to

measure relevancy of tags:

• Precision is the fraction of tags that are relevant. In other words, it is

the number of relevant tags found (for an image by an image tagging

system) divided by total number of tags found for the image by the

image tagging system. A perfect precision score of 1.0 means that all

tags returned are relevant.

• Recall is the fraction of tags that are relevant divided by the total

number of relevant tags that should have been found. A perfect recall

precision score of 1.0 means that all relevant tags that could be

found was found.

15

Chapter 3

Related Work

In this chapter some related work and their difference to the work in this

thesis will be discussed. The related work is grouped into location-based,

category-based, time-based and visual similarity-based image tagging.

3.1 Location

SpiritTagger
21

 [7] is a geo-aware tag suggestion tool using Flickr that sug-

gests geographically relevant tags for images with GPS coordinates. It does

so by combining the geographical context with content-based image analy-

sis. Geographic mining is done by collecting a set of images that are within

a certain radius of the candidate image to be tagged. This set of images is

narrowed down by using visual similarity techniques. The tags of the images

in the set are then compared to their global frequency. Local frequency re-

fers to the frequency of a tag in the result set, whereas global frequency re-

fers to the frequency of a tag in all images on Flickr. Tags with higher local

frequency than global frequency are assumed to be relevant for the query

image. Experiments shows that SpiritTagger works well compared to base-

line methods that only use geographical context. The work of SpiritTagger is

related with the work in this thesis in that uses Flickr for finding relevant

images. Further, it uses location to find nearby and possibly relevant images,

but whereas SpiritTagger use content-based image analysis to narrow down

the set of images, the work in this thesis will use a combination of category

and date/time. SpiritTagger is used in the evaluation (Chapter 8) for compar-

ison against the system designed and implemented in this thesis.

MonuAnno [15] automatically annotates landmark images. They refer to

landmarks as geographically situated objects or small areas such as Eiffel

Tower and Big Ben. An important part of the system is a reference database

of landmarks generated based on image locations and visual similarity from

21

 http://cortina.ece.ucsb.edu/index.php

16

images on Flickr and Panoramio. The annotation of a query image consists

of two steps. The first step is to decide which of the nearest landmarks the

query image belongs to. The second step is to verify that the query image

indeed belongs to that landmark. Visual similarity and location is used in

both steps. Whereas they use a reference database of landmarks, the work in

this thesis will use categories. Further, the work in this thesis will not only

support landmark images. Finally, whereas MonuAnno only tag with the

name of the landmark, the focus of this work will be to find a set of relevant

tags for a query image.

ZoneTag [10] is a mobile phone application allowing and encouraging users

to easily upload images taken with their mobile phones directly to Flickr at

the time of capture. It also suggests tags based on context information such

as previously used tags and names on nearby attractions. The client (mobile

phone) communicates with a server that performs computational and time-

consuming tasks unsuitable for mobile platforms. It differs from the work in

this thesis mainly in that ZoneTag does not use categories. Further, location

information is only approximated if exact GPS location is not available. Al-

so, ZoneTag is a mobile application that uploads images as they are taken.

3.2 Category

AnnoSearch [8] is a system that annotates images based on search using a

keyword and the image itself. First, a text-based web search is performed to

find a set of semantically similar images. AnnoSearch then use the query

image to find a set of visually similar images. Next, the two set of images

are clustered into sets of keywords (for example castle, cloud and tree). Fi-

nally, these keywords are ranked according to frequency and visual similari-

ty to the query image. The top ranked keywords are assigned as tags to the

query image. Experiments on 2.4 million images proved the effectiveness

and efficiency of the system. AnnoSearch is related with the work in this

thesis in that it use and require a keyword/category from the user, but while

AnnoSearch combines it with the use of visual similarity techniques, the

work in this thesis combines it with location and date/time.

Rattenbury et al. [16] shows that it is possible to determine whether an ex-

isting tag on Flickr represents an event or a place. They demonstrate that if a

certain tag represents an event or a place, then that tag must have a signifi-

cant higher frequency in a certain time scale and/or in a certain area com-

pared to its general frequency outside this time scale or area. Whereas they

in [16] categorize existing tags from already tagged images on Flickr based

on location and date/time, the work in this thesis will focus on the process of

tagging un-tagged query images by using the location, date/time and user-

defined categories. Thus, the work in [16] automatically categorize existing

tags (not images) whereas the work in this thesis will automatically tag im-

ages based on given image categories. However, the work in [16] proves

that it is possible to identify different categories on Flickr. Further, and out-

17

side the scope of this work, it could be possible to build on the work in [16]

to automatically categorize images (discussed more in future work in Chap-

ter 9).

The problem of image classification (categorizing images) has been looked

into by some other works, especially in relation to machine learning tech-

niques. The work in [17] looks at how the two problems of image classifica-

tion and image annotation can be connected. Their method consist of using

content-based image analysis, machine learning and probabilistic models on

a training set to automatically classify images and annotate images. Their

work indicates that categorizing images is supportive when annotating im-

ages. However, they do not take use of location information nor date and

time information. Further, they use a training set with around 200 images for

each class/category with no or very little noise whereas this work will use an

existing and real image database where noise must be considered as normal

rather than as exception.

3.3 Time

Date and time in itself is often not enough to base automatic image tagging

systems on. But it can be very useful when used in addition to other ap-

proaches.

The work in [18] indicate that people often tag their images with when it

was taken (in addition to where it was taken and the content of the image).

User studies in [19] demonstrate that finding images on image browsers us-

ing date and time are significantly faster compared to finding the images in

image browsers not taking advantage of date and time information.

The work in [16] use time to detect events. A certain tag could represent an

event if that tag has a significant higher frequency in a limited time scale

compared to its general frequency outside the limited time scale.

The work in [20] found that in general, they believe that fewer people geo-

reference images of events. When fewer images are available to work with,

it is obvious that it is more difficult to find relevant tags. This seems to

agree with the general consensus in the field of image retrieval and image

annotation; that handling events is a difficult task.

3.4 Visual similarity

For systems using content-based image analysis / visual similarity tech-

niques (e.g. SpiritTagger, MonuAnno and AnnoSearch), non-relevant im-

ages can be discarded based on their low similarity score compared to the

query image. On the same basis, images that get low similarity score com-

18

pared to the majority of the returned images (or the normal of the returned

image set) are also likely to be non-relevant. This is an advantage compared

to systems not using visual similarity because it is harder to discard images

that are not relevant when the visual content of the image is not analyzed.

However, a severe problem with the content-based image analysis is that

images are taken from different views and angles. This makes it harder to

find visual similarity among images of the same attraction. The back side of

a building is not necessarily very similar to the front side of the building,

and the background can also be significantly different on images taken in

opposite directions (or in a different season, time of day etc.). Similarly, im-

ages from an event does not necessarily have to be visually similar (consider

a concert where images are taken both of artists and spectators). Another re-

lated problem is that people often take images of themselves in front of at-

tractions, which will disturb the visual similarity techniques. The approach

of the work in this thesis avoids these problems because only metadata in-

formation is used to locate relevant images.

3.5 Other related work

In a related master thesis completed in January 2010, Jakobsen [3] proved

that it was possible to collect relevant context information related to an im-

age using date/time of image capture, capture location and a user-defined

image category. The InfoAlbum prototype demonstrating the information

collection is reported in [2]. InfoAlbum utilizes many external sources to

acquire information such as location names (reversed geo-coding), weather

information (from a weather history database) and location specific articles.

These works demonstrate that it is possible to use category, date/time and

location to collect relevant information about the image. The work in this

thesis will focus on collecting relevant tags to a query image based on re-

lated images found by using a combination of category, date/time and loca-

tion.

Ames and Naaman [4] performed a user study using Flickr and ZoneTag and

exposed that the main motivation for tagging images is functionality. People

want to tag and organize images to make it easier both for themselves and

for others to search, browse and retrieve images. Sigurbjornsson et al. [18]

found that users of Flickr tag their images with (1) where the image was

taken, (2) who or what is on the image, and (3) when or in which occasion

the image was taken. This was found by performing an experiment classify-

ing tags from a set of images on Flickr with the use of the classification sys-

tem used by WordNet [14].

Kennedy et al. [21] reports that it for any given tag on an image on Flickr is

only roughly 50 percent likely that the concept of the tag actually appears on

the image. This can be caused by noisy tags or disagreements in concept de-

finition. The latter can be caused by disagreement in whether an image tak-

19

en from a given building (but where the building itself is not on the image)

should be tagged with the name of the building or not. There is also a prob-

lem in deciding whether the location name where images are captured (Par-

is, Greece, London etc.) should be included as tags to query images. And

further, which accuracy of location names to use (e.g. Europe and/or Down-

ing Street and/or something in between).

20

21

Chapter 4

Problem Description

In this chapter the problem to solve and some of its difficulties and limita-

tions will be presented and discussed in more detail.

4.1 Problem definition

As stated in the introduction, this thesis is part of the CAIM
22

 (Context

Aware Image Management) project, which is a research project with the

goal of developing methods and tools for context aware image management

in distributed, multimodal and mobile environments.

The general problem to solve is to automatically tag images. The tagging

process will be based on images from Flickr that are already tagged and

geo-referenced. Community based image collections like Flickr usually

have much noisy information, but is preferred as the collections are big, eas-

ily accessible and rapidly growing. This makes them more interesting than

training sets made especially for tagging purposes. A combination of meta-

data / context sources (image category, location given by GPS coordinates

and date/time of image capture) is to be used to find relevant images and re-

strict the occurrence of images that are not relevant. Tags from these images,

considered as relevant for the query image, are then to be used as basis for

tagging the query image.

Relevant images are to be found by using the image category combined with

the location and time of image capture. User-defined categories such as

tower and concert should belong to a main category. The main categories

used in the system are basically objects and events. The main categories

should be used to define the search parameters when searching for a set of

relevant images. Thus, the search parameters for the different main catego-

ries are different. The user-defined categories can be used as one of the

22

 http://caim.uib.no/index.shtml

22

search parameters. Location and date/time are other possible search parame-

ters.

4.2 Contribution

The contribution of this work is to explore the possibility of making an au-

tomatic image tagging system based on combining category, location and

date/time information. Further, the work will evaluate whether it is benefi-

cial for an automatic image tagging system to use image categories. The hy-

pothesis is that using categories together with location and date/time will re-

sult in more relevant and less non-relevant tags than by using other ap-

proaches.

4.3 Scenario

Bob and Alice have just returned from a round trip all over Europe, and

have taken a lot of images with their new digital camera. The camera is

equipped with a GPS system. After uploading the images from the camera to

their computer, they can browse the images based on capture dates. They

can also use an application presenting where on a map the images were tak-

en (since the images have been geo-referenced). But they soon realize that

there is no real structure on the images. They want to have relevant informa-

tion assigned to each image about where the image was taken, what the con-

tent of the image is and when or in which occasion the image was taken

[18]. Further, they want to be able to allow themselves, friends, family and

possible everyone to easily find for example all images of castles or all im-

ages from concerts [4]. Image tagging is the solution, but they do not have

(or take) time to do it manually. In fact, they probably do not remember the

names of all the different objects, places and events they have visited.

Instead, they use the automatic image tagging system designed in this thesis

which tags images based on three context sources; location, date/time and

category. Location and date/time are automatically obtained from the EXIF-

header of the query image, while the users must manually specify the image

category. The system will then use a combination of the three context

sources to find a set of relevant images. Tags are collected from this set of

relevant images and used to tag the query image.

Two images, Image 4.1 and Image 4.2, are used as examples. Bob and Alice

assign the images the categories tower and concert respectively. These cate-

gories belong to the main categories object and event respectively. The tags

listed in Table 4.3 are the set of tags that the automatic image tagging sys-

tem in this thesis found for the two query images. Note that there exist more

tags that can be considered as relevant, and some of the tags listed might not

be considered relevant. Other image tagging systems may find another set of

23

tags, as they collect tags using other techniques and parameters. The rele-

vancy of the tags will be discussed in the evaluation in Chapter 8.

Image 4.1 – Image taken at Westminster Bridge in

London showing Big Ben which is part of Houses of

Parliament.

Image 4.2 – Image from a U2 concert at Camp Nou

in Barcelona during their 360 tour in 2009.

24

Tags for Image 4.1 Tags for Image 4.2

London Barcelona

Big Ben U2

tower Camp Nou

England 360

clock Spain

Westminster concert

UK Bono

clock tower tour

United Kingdom Nou Camp

Parliament edge

big The Claw

ben Catalonia

 Concierto

 Catalunya

Table 4.3 – List of tags found for Image 4.1 and Im-

age 4.2 by the automatic image tagging system de-

signed and implemented in this thesis.

Everyone with access to the their image collection can now easily search for

specific images, and will have useful information available when browsing

the images without the need for Bob or Alice to guide them and trying to

remember the names of the different attractions. Bob and Alice can now

happily go and do something useful as the images are both categorized (ma-

nually) and tagged (automatically).

4.4 General problems and limitations

Consider an image taken from the same location as Image 4.1 but in the op-

posite direction. Because the location is still the same, some tags such as

London and possibly Westminster Bridge are relevant for both images. But

other tags are not. Big Ben is an obvious tag for the original image, but it is

not relevant for an image captured in the opposite direction. Instead, other

objects are relevant, the most obvious being London Eye, a large passenger-

carrying Ferris wheel located on the other side of the River Thames than Big

Ben. Two possible approaches for distinguishing the two cases are with use

of content-based image analysis or use of image categories. The usage of

content-based image analysis has been investigated by others (as discussed

in related work in Chapter 3). The work in this thesis will focus on image

categories and not use the visual content of the image.

Location is used as one of the search parameters, and therefore only images

inside a certain radius is used as basis for tagging the query image. There

must therefore be enough images available on Flickr that is relevant for the

query image before the system is able to tag the query image with relevant

25

tags. Images taken of a random object will probably not get relevant results

because the probability that other users have taken images of the same ran-

dom object nearby the same location is very low. In fact, it is likely that

nearby images are taken of other objects (since the original object is not

special, i.e. not an object that many people take image of). However, these

objects can possibly be recognized by the content of the image using visual

similarity techniques, but that will not be the focus of this work.

The red double-decker bus in Image 4.1 is interesting in that it is an object

that many people take images of although it is not location dependent. The

bus can occur at several different locations in contrast to Big Ben and many

other objects and events that have a fixed location. However, it only exists

at certain locations in the world (most famously in London). Regarding Im-

age 4.1, it is difficult to argue that the bus is the main object in the image.

However, treating it as the main object will give fairly good results using the

system implemented in this thesis. This will be discussed further in the

evaluation in Chapter 8.4.9.

The bridge (Westminster Bridge) in Image 4.1 is hard or even impossible to

spot on the image. It could be argued that the bridge is of no relevance to the

image despite the fact that the image is taken from the bridge. Similarly, it is

difficult to tell that the concert in Image 4.2 is at Camp Nou by just looking

at the content of the image. Still, the name of the stadium where the group

performed is a relevant tag for the image.

In Image 4.2, U2, Bono (main vocalist in U2) and Edge (another member of

U2) can possible be detected using face detection or something related. But

that would require advanced visual similarity techniques and a big, accurate

and up-to-date database of famous people. Further, it is likely to have a high

error rate as artists tend to change their image and visual appearance fre-

quently. Also, as can be seen on Image 4.2 it is not easy to spot the faces of

the artists. In addition, some event related tags are not detectable from the

content of the image. It is for example not possible to see visually that the

image was taken from the “360 tour”. Therefore, it might be easier to find

this information by handling it as contextual information. The system im-

plemented in this thesis should be able to collect tags for an event as long as

there are enough relevant images available on Flickr from the event.

Regarding events in general, it should be easier to find tags for public events

because it is likely that there exist more images from these events than it

does for private events. Private events are for example weddings, family

dinners or birthdays, whereas public events are for example concerts, festiv-

als and football matches. Further, for a private event taking place at some

kind of “party house” and/or church, it could exist images from previous

private events with other families that are not relevant. It is not desirable to

tag a wedding image with wrong names on the newlyweds.

Tags can also be found by combining information from the EXIF-header

with external information sources. Weather information can be acquired by

specifying location and time to a weather database. Time of day or season

26

can be found by combining location and time using calendars and time

zones. Using this approach, Image 4.1 could have been tagged with sunny,

hot, morning and summer. Similarly, Image 4.2 could have been tagged with

temperate, summer and evening. The approach of finding weather informa-

tion have been explored [2, 3, 9, 11] and will not be implemented in this

system.

Similarly, location names can be found by specifying GPS coordinates to

GeoNames. Image 4.1 could have been tagged with location names ranging

all the way from Europe, United Kingdom, England, London, Central Lon-

don, Westminster and down to Westminster Bridge Road. Again, this ap-

proach has been explored [9, 11, 22]. The biggest problem with location

names is to decide which accuracy to use. The work in this thesis will not

use GeoNames to find location names, but instead use the location names

that exist on related images. The idea is that location names used frequently

in related images should be suitable choices for describing the location of

the query image.

27

Chapter 5

Approach

In this chapter the selected approaches are presented and discussed. The first

part consists of retrieving a set of images that are considered as relevant for

the query image. This will be the subject of Chapter 5.1, 5.2 and 5.3. The

second part consists of processing the tags of the images in the result set and

is the subject of Chapter 5.3 and 5.4.

5.1 Location

The location of the image is assumed to be available in the EXIF-header of

the image in the form of GPS coordinates. The location of an image can re-

fer to the camera position at the moment of capture or the exact location of

the subject of the image. Images automatically geo-coded by digital cameras

with built-in GPS will use the position of the camera at capture time whe-

reas users manually geo-referencing images often will use the exact position

of the subject of the image even if the image was taken from distance to the

subject. Thus, both approaches are used, and must be taken into considera-

tion. Further, images can be slightly wrongly geo-referenced because of in-

accurate GPS systems or sloppy users.

The location radius to use when searching for nearby images is an important

aspect of image tagging systems using location. Theoretically, the radius

should be as small as possible as long as it covers the area of interest and as

long as there are enough images inside the area that are relevant. Practically

it is not so easy, however. If the chosen radius is too small, there is a possi-

bility that not enough images will be found inside the radius.

However, there is also a problem with using a too big radius. Imagine an

area with two attractions where one of the attractions has a lot more images

than the other attraction. This is illustrated in Figure 5.1. The query image is

located in the middle of the Figure with the small attraction in the middle.

The bigger attraction to the right is not relevant for the small attraction. The

28

Figure 5.1 - Overview map of two bunches of images and

three varying radius sizes. The images are represented by

dots and the radiuses are represented with circles. The at-

traction of interest is the small attraction in the middle of

the figure, whereas a big attraction not relevant for the

small attraction is located in the right hand side of the fig-

ure.

dots represent images and as can be seen, the bigger attraction has more im-

ages available than the small attraction. The circles on the figure represent

three selected radiuses that can be used for retrieving images. With the smal-

lest radius, just a few images are found. Therefore, it is tempting to increase

the radius to find more images. But only a few more images are found when

the radius is increased. However, when increasing the radius even more, a

lot more images are found. But the problem is now that since there are more

images from the bigger attraction than the smaller attraction, the automatic

image tagging system is likely to select tags that are related to the bigger at-

traction. In this case, that could lead to selecting wrong tags because the at-

tractions are not related at all.

Another related problem is that there are a different amount of relevant im-

ages available for each query image. For example, there are a lot of images

of famous buildings (e.g. Eiffel Tower and Big Ben) available, and as a re-

sult a lot of relevant images are located in a very narrow area close to the

actual object. Contrary, events often have fewer images available divided

over bigger areas. There are fewer images available because events are time

limited in contrast to objects where images captured at any time can be

used. The search radius for events must therefore often be increased to find

enough relevant images to add to the result set. Further, the area for events

is often bigger because an event can occur over a bigger area whereas an ob-

ject is usually constant placed.

29

Because of these problems, it was not easy to decide which radius to use and

how many images to use (required size on result set). It does not help to in-

crease the result set if the result set is filled with images that are not relevant

to the query image. Contrary, it is not desirable to use too few images if

there are more images available that are relevant for the query image. This is

because using more images will give better and more secure results than us-

ing just a few images (as long as the images added to the result set are rele-

vant).

A try and fail approach were used to find a general solution working both

for images with many relevant images available and for images with few

images available. As expected (due to the varying amount of relevant im-

ages), choosing a constant number of required images worked badly. Simi-

larly, using a constant radius was not useful. Further, it was not a good idea

to require fewer images for events and more images for objects. This is be-

cause some objects only have few relevant images available and some

events have many relevant images available.

Instead a more advanced dynamic approach is taken. The goal is to use

many images if there are many images available close to the query image,

and fewer images if there are not many images located close to the query

image. The reasoning is that if many images are geo-referenced very close

to the query image, it is likely that these images are relevant, and therefore

as many of them as possible should be used. Contrary, if few images are

found very close to the query image, it is likely that it does not exist that

many images that are relevant for the query image. Therefore, fewer images

should be used. But there might exist relevant images that are not located

very close to the query image, and these images should be used if there are

few relevant images available. These images could have been taken from

distance to the object/event, the images could be wrongly geo-referenced or

the object/event might cover a big area.

The solution is therefore to start the image search to Flickr with a very small

radius (0,001 km = 10 m) and a fairly high amount of images required (50)

in the result set. In the first search using radius at 0,001 km, the result set is

big enough if 50 or more images are returned. If enough images are re-

turned, then the tags of these images can be processed. If not enough images

are found, then the radius is doubled and the images required in the result

set is decreased with one tenth of its last value as shown in Table 5.2 (50 –

(50 / 10) = 45). The image search to Flickr continues until the result set have

reached the images required variable. The maximum allowed radius to use

in Flickr is 32, and the search process will therefore end when the radius

reaches 32 even if no images are found.

The result set is regarded as big enough the moment it has exactly enough

images required in the result. The other possibility would have been to use

all images returned in the latest search for tagging the image. However, this

was found to be ineffective as it sometimes caused the runtime of the system

to be slower since more images were processed (sometimes up to several

hundred) without giving notably better results. Thus, it was found to be suf-

30

ficient to only use exactly the number of required images as shown in Table

5.2.

Radius of image

search (km)

Images required

in result set

0,001 50

0,002 45

0,004 41

0,008 36

0,016 33

0,032 30

0,064 27

0,128 24

0,256 22

0,512 19

1 17

2 16

4 14

8 13

16 11

32 0

Table 5.2 – A dynamic approach for deciding re-

quired size of images in result set. The search for re-

levant images is performed (starting at the top) until

there is enough images in the result set (second col-

umn). The radius (first column) is doubled for each

search (down the list).

5.2 Category

Location and time is available in the EXIF-header of the image. Category is

not. It is assumed that the user should provide a category along with the

query image.

5.2.1 Overview of usage

The objective is to handle each of the categories differently such that the re-

sult for each category is optimized. In other words, the query image should

belong to the category which gives the best tags for that specific type of im-

age. Each category should thus process its set of images in a specific ap-

proach, which is the best possible approach for that specific type of image.

Further, the image categories are divided into main categories and user-

defined sub-categories:

• The main category is used to specify which search parameters to use

when searching for relevant images on Flickr. Basically, the two

main categories used are object and event. Users cannot make new

main categories, as they are part of the implementation.

31

• The sub-category belongs to a main category. Sub-categories such as

castle and tower belong to the main category object. Other sub-

categories such as concert or Halloween belong to the main category

event. Sub-categories are user-defined. Each of the main categories

can therefore have many sub-categories.

The user must provide an image category when uploading an image. The

image can be placed in one of the existing sub-categories if the image fits

into an existing sub-category. If the image does not fit into one of the exist-

ing sub-categories, the user can make a new sub-category. To make a new

sub-category, the user must specify a name for the sub-category and choose

which of the main categories the new sub-category should belong to.

Users cannot make new main categories, as the main categories are part of

the system. They are used to define which search parameters to use in the

search process. The goal is to select search parameters such that many rele-

vant images are returned and in the same time restrict the occurrence of im-

ages that are not relevant. Date/time and sub-category can be used as search

parameters. Location is another possible search parameter, but as described

in Chapter 5.1 it will handle all images using the same method regardless of

category.

Image 4.1 has the sub-category tower which belongs to the main category

object whereas Image 4.2 has the sub-category concert which belongs to the

main category event. Therefore, these images are handled differently by the

image tagging system. More specifically, date and time information is used

as search parameters for the concert image but not for the tower image.

Another difference is that the sub-category is used as a search parameter for

the tower image but not for the concert image.

The usage of the sub-category as a search parameter can be explained by an

example. Image 4.1 has the category tower, and therefore images which

have tower associated with itself (in its tag, title or description) are likely to

be relevant for the image. Therefore, tower is used as a search parameter.

Thus, only images where the word “tower” appear in the metadata informa-

tion is used by the image tagging system for tagging the query image 4.1.

The usage of date/time as search parameter can also be explained by an ex-

ample. Image 4.2 has the category concert which belongs to the main cate-

gory event. Since events occurs inside a given time interval, only images

captured inside the given time interval is used by the image tagging system

for tagging the query image 4.2.

A more detailed description concerning the usage of both main and sub-

categories will follow in Chapter 5.2.6, but first categorization must be dis-

cussed in more detail.

32

5.2.2 Overview of categorization

An important part of the work is to decide which main categories to use in

the system. There are many aspects to consider when categorizing. The

overall goal is to choose main categories in such a way that all kinds of situ-

ations are covered, and that the results for each of these situations are opti-

mized based on the input and other variables. On the other hand, having too

many main categories is not desirable. That would just confuse the user and

introduce or increase the error rate because it could lead users into choosing

wrong main categories when they create sub-categories. Some users could

even just give up and choose a random main category if there are too many

choices. Thus, the number of main categories should be restricted.

Another aspect is that the main categories and their names should be easy to

understand, meaning that the users should not need to reflect and analyze on

what is actually meant with the name of the category. Further, it should be

evident whether a certain image belongs to that or that category. This re-

quires that the category names are chosen such that they reflect their com-

mon semantics, meaning that (at least most) people will recognize and un-

derstand the name of a category and its meaning in the same way.

But how can images be separated and categorized? There are basically two

ways to approach the question. The first approach is to look at the main sub-

ject of images in general. Some common subjects are people (portraits or

group of people), buildings, concerts, landscapes, overviews, animals,

churches, flowers, castles, football matches etc. The second approach is to

categorize images into categories that will have a significant difference for

an automatic image tagging system. For example, images captured at an

event must have been taken during a limited time interval, the time interval

when the event occurred. However, images taken of objects can be and often

are relevant regardless of image capture time. Objects and events are the

most distinguishable main categories. However, there exist several different

types of objects and events.

5.2.3 Objects

In the InfoAlbum [2] system, objects are divided into sub-categories such as

man-made objects, natural objects, landscapes and living things. The catego-

ries are used for collecting and ranking relevant information to images from

external sources.

However, the question is whether dividing objects this (or any other) way

makes any sense for the work in this thesis. For it to make sense, the differ-

ent types of objects must be handled differently, i.e. the search parameters

must be different when searching for relevant images. But there are no such

obvious differences between for instance man-made and natural objects.

Landscape and overview images of cities or areas are interesting type of im-

ages. These images are both time-based (if season or time of day is of im-

33

portance) and location-based. Tags most relevant for these images are loca-

tion names and contextual information such as weather or season informa-

tion (which as discussed in Chapter 4.4 is not the focus of this work). There-

fore, it seems satisfactory to handle these images as objects, and use suitable

sub-categories such as overview, city view, landscape or something similar.

However, it could be confusing for users to place overview images of cities

and landscapes into the category object. Therefore, another category named

place is introduced. This category will be handled the same way as objects

and are only made to avoid confusion for the users of the system. Some sub-

categories such as aquarium and stadium can be regarded as object or as

place by different users. However, this is not a problem since object and

place are processed the same way by the system. Thus, object and place are

in essence the same category only with different names.

Images of living things and people (portraits) are a common type of images.

The problem is that these images are neither time nor location-based unless

one or more objects in the background are significant or the image is taken

in connection with some kind of event. If so, they can be divided into one of

the two discussed categories object or event respectively.

To summarize, no noticeable way of dividing objects into more defined cat-

egories were found by doing experiments (although place is used as another

main category).

5.2.4 Events

Date and time of image capture is stored and available for most digital im-

ages. Images taken around the same time as the query image could be rele-

vant for the query image because it is possible that some kind of event have

occurred if several images are taken somewhat nearby at the same time.

An event can have short or long duration. While a concert usually last for

only some hours, a festival might last for several days or even weeks. Early

experiments indicated that using the same method for tagging images from

events such as concerts and festivals did not work well. The problem was

that using a long time interval on concerts (lasting only for hours) intro-

duced noisy tags, whereas using a short time interval on festivals (lasting for

several days) lead to few images being returned. The approach taken is to

split into events that last for a short period of time (up to one day) and

events that last for a longer period of time (up to around a month).

A second possible way of dividing events, is to take use of that some events

are special events only occurring once, whereas some events could occur

more than one time based on some kind of pattern in time. For example, an

event such as Halloween occurs every year on the exact same date (at least

in USA), whereas a specific concert is a special event without any signifi-

cant time pattern.

For an event such as Halloween it might not be important that images are

34

captured at a specific year as long as the images are from Halloween regard-

less of which year the images are captured. But for other yearly events such

as the Roskilde Festival in Denmark, it is not desirable to tag an image from

the festival in 2009 with something related to 2008. Thus, for a given re-

peating event, it might and it might not be important that images are taken at

a certain year as long as they are from the same kind of event but taken in a

different year.

Another problem with repeating events is that they can have very different

time patterns such as quadrennial (every forth year), yearly, monthly, week-

ly and so on making them hard to handle. Further, the time patterns can be

skewed between each interval (e.g. Easter and Rio Carnival not occurring at

exactly same time every year).

While experiments did indicate that it for some scenarios could have been

useful to divide and handle one-time events versus repeating events, the

gain was small and considered not worth the effort because of the discussed

problems. Further, as discussed in 5.2.2, it is not desirable to have too many

categories and introducing more event categories would at least double the

number of events as there must be support for both short/long-lasting repeat-

ing events and short/long-lasting one-time events. There would also be fur-

ther requirements on user input (e.g. when and how often the events are re-

peated).

5.2.5 Categorization

To summarize, the four discussed main categories listed below and shown in

Figure 5.3 are found to be sufficient for the image tagging system designed

in this thesis. Some examples of sub-categories are also shown in Figure

5.3. As previously discussed, sub-categories are user-defined and can be

made by users of the system while the main categories are part of the im-

plementation. However, it is possible to add support for more main catego-

ries to the implementation later in future work if and when the system is ex-

panded.

1. Object – a wide range of objects with sub-categories such as tower,

castle, stadium etc.

2. Place – images with sub-categories such as overview, city, city view,

landscape etc.

3. Short-lasting event – events lasting for up to one day with sub-

categories such as concert, Halloween, football match etc.

4. Long-lasting event – events lasting for up to around a month with

sub-categories such as festival, Olympics, carnival etc.

This categorization means that the users of the system will initially only see

the sub-categories. However, if their image does not fit into one of the exist-

ing sub-categories, they must make a new sub-category. When making a

new sub-category, they must choose between one of the four main catego-

ries in addition to a name for the new sub-category. The importance of the

35

chosen name is discussed in the evaluation in Chapter 8.4.9.

Figure 5.3 – The image categories used in the image

tagging system. The sub-categories (bottom) are ex-

amples and can be anything that will fit into the

main categories (top).

5.2.6 Usage in more detail

The dynamic method used to decide the size of the result set (Chapter 5.1)

handles all categories equally. It could have been useful to require more im-

ages from objects than for events, but as discussed there are objects with

few images available and there are events with many images available.

Therefore, a general solution for handling the size of the result set was

found to be the better option.

The most important part of the image tagging system is to find a set of rele-

vant images (result set) on Flickr that is to be used as basis for tagging the

query image. Because location and location radius are handled equally for

all categories, the two changeable search parameters are date/time and sub-

category. The usage of the four main categories to specify the search para-

meters for the image search requests to Flickr is as following:

1. Object

• Images taken at any date/time can be used (no requirement

on date/time of image capture).

• The sub-category is used to only return images that have the

sub-category in its metadata information (i.e. in their title,

36

description or tags).

2. Place

• Same as object

3. Short-lasting event

• Find only images taken inside a time interval of 24 hours be-

fore and after the capture time of the query image.

• Sub-category is not used as search parameter.

4. Long-lasting event

• Find only images taken inside a time interval of 30 days be-

fore and after the capture time of the query image.

• The sub-category is used to only return images that have the

sub-category in its metadata information (i.e. in their title,

description or tags).

This means that the search requests to Flickr will vary depending on which

category the image belongs to.

The usage of sub-category in the search process of short-lasting events were

found to be unnecessary and resulted in usage of even fewer of the available

images (there are generally fewer images available for events than for ob-

jects). It is not necessary to use the sub-category because almost all images

taken during the short time interval are relevant for the query image. There-

fore, no further information for preventing the occurrence of images that are

not relevant is needed. It could however lead to problems if many short

events occur at the same time and place.

The experiments further indicated that the sub-category should be used in

the search process for long-lasting events to prevent the occurrence of im-

ages that are not relevant. This is because the time interval for long-lasting

events is significantly larger than for short-lasting events. Therefore, there

might be several events occurring around the same place inside the time in-

terval and thus there is a need to differentiate the events. Further, it is no

longer as likely that the images inside the time interval are relevant for the

query image since the time interval is larger. Thus, there are more images

inside the time interval that is not relevant for the query image, and there-

fore the sub-category is used as a search parameter for finding relevant im-

ages.

5.2.7 Synonyms

The sub-category is used in the image search requests as a search parameter

for all the main categories except short-lasting events. This means that only

images that have the sub-category (e.g. castle or festival) in its metadata in-

formation (title, description or tags) will be used by the system. This could

be very restrictive (result in usage of few images) although it is a very good

approach for limiting the occurrence of noisy tags. To allow usage of more

images (that is relevant), all synonyms of the sub-category are used in the

search process, such that images that have the sub-category or a synonym of

the sub-category in its metadata information are used. Synonyms are col-

37

lected using an online API (see Chapter 7.5).

For example, for the sub-category castle, the synonyms palace and rook are

returned. The image tagging systems will therefore use all images where one

of the words castle, palace or rook appears in the metadata information.

This introduce the possibility of more noisy tags appearing because some of

the synonyms might not be relevant for the query image (for example, rook

(piece in the board game of chess) is not likely to be relevant). However,

this occurs very seldom and often do not interfere the result (e.g. not many

chess images close to a castle). Further, the benefit of making the search

process less restrictive (allowing usage of more images that are relevant) is

higher (than the possible disadvantage of introducing noise).

5.3 Handling several images from the same user

Some people upload many images with the same set of tags. This can hap-

pen if several images are taken from the same event or object. While many

of the tags probably are relevant for all the images, it is not desirable to use

the same tags from the same user more than once. The reason is non-

relevant tags which could for example be the name of the person who cap-

tured the image, the name of the (uninteresting) people on the images, the

name of the camera used to take the image with, tags that are only relevant

for the specific user (e.g. honeymoon) and other similar information. These

noisy tags could get a high frequency and therefore be selected as one of the

top ranked tags by the automatic image tagging system. Therefore, only one

and not more than one image should be allowed from the same user.

However, using only one image per user can lead to a very small result set

for query images that have only few relevant images. This is because images

from very active users (who captures/uploads many images) are discarded.

Currently there are not enough geo-referenced images available to be able to

only use one image per user without limiting the number of images availa-

ble significantly for certain query images. Also, images from active and

productive users often have very relevant and good tags compared to images

from less active and productive users. To counter for this observation, a me-

thod where all images from users that already had an image in the result set

were put in a waiting list. The tags of the images in the waiting list were lat-

er added as tags if these tags were used by enough of the other users. This

lead to significant increase in images in the result set, but it also increased

the appearance of noisy tags and made the tag frequencies very uneven. This

was because many images from the same user could end up in the result set,

and thus tags used by this user (in all of the images from the user) would get

an artificial high frequency which made it hard to decide which tags that

were relevant.

Further experiments demonstrated that using only one image per user and

decreasing the amount of required images in the result set provided best re-

38

sults. A final addition to this approach is made to allow tags from different

images by the same user to be used as long as the tags are not similar to tags

already added from other images from the same user. Thus, each unique tag

can only be used by the image tagging system once per user. In other words,

if there already exist an image from Bob in the result set, then a tag from

another image from Bob is only used if the tag has not already been added

by any other image from Bob that already is in the result set. This allows

usage of all unique tags from users who have several relevant images with

different sets of relevant tags (initially only tags from one (the first) image

per user were used).

5.4 Tag processing

The image tagging system now has a result set of images that are regarded

to be relevant for the query image (found by using the methods described in

Chapter 5.1 – 5.3). The next step is to handle the tags of the images in the

result set. These tags are to be used to tag the query image.

5.4.1 Deciding how many tags that are relevant

The most obvious approach is to simply tag the query image with the 5 or

10 most frequently used tags among the images in the result set. But there

are images where many tags are relevant and there are images where few

tags are relevant. It is not desirable to tag a query image with many tags if

that only results in adding noisy tags. Contrary, it is not desirable to tag a

query image with only x tags if more than x relevant tags are collected. A

more dynamic approach is needed.

Another possibility is to discard tags with low frequencies because tags oc-

curring in just some of the images are likely to be noisy, as opposed to tags

occurring in many of the returned images. The approach taken is to only use

tags that are used in at least 20 % of the images in the result set. Therefore,

for a tag to be selected as relevant for the query image, the tag must appear

in at least one fifth of the images in the result set. The usage of 20 % was

found to be effective for discarding noisy tags.

When there are less than 15 images in the result set, the minimum times a

tag must appear in the result set is set to 3 (instead of 20 %) to prevent noisy

tags from appearing (for example, 20 % of 10 is 2). The reasoning is that a

tag used by 3 different users is not likely to be noisy. Experiments using 2 as

the minimum required tag frequency introduced noisy tags, and it is better to

not return many tags than to return many tags where several of them are

noisy.

Regarding this approach, it is worth mentioning that images without any

tags are not used by the system. It is important to discard these images be-

39

cause they would disturb the selection as they would increase the total num-

ber of images in the result set without contributing with any tags. This

would make it harder for tags in the result set to be selected as relevant.

Therefore, images without any tags are not added to the result set. Similarly,

images with only one tag are not added either. One reason is that experience

shows that the one and only tag from images that only have one tag more of-

ten than not is just a noisy tag (often just a whitespace). Another reason is

that images with only one tag are not desirable to use as they provide very

little valuable information.

5.4.2 Tag filtering

Some tags are not usable; they simply are of no interest to any image. The

quite frequently used tag geotagged is the most common occurrence of these

kinds of tags. Although you could argue that it is of interest to know wheth-

er an image is geo-referenced, it is actually of no interest because all the im-

ages used by a location-based automatic image tagging system must be geo-

referenced. Another example is tags consisting of just a whitespace.

Some people tag images with the camera they have used to capture the im-

age with, and some users (and/or applications) tag images with the name of

the application used to edit or upload the image. This is not relevant for the

query image, but it could lead to tags with commonly used cameras and/or

applications to be selected as tags for the query image.

There is no reason to use these kinds of tags, and they can safely be filtered

because they are noisy tags. They are removed with use of a filter list with

unwanted tags. The filter list currently consists of tags such as geotagged,

flickr, (whitespace), latitude and nikon. The tag filtering can be compared to

email filtering where spam mail is filtered out.

5.4.3 Handling whitespaces

A whitespace is an empty character in between two words. Some tags such

as “Big Ben” consists of more than one word, and the whitespace in the

middle is part of the tag. For these kinds of tags, it is also common to tag

without whitespaces, which in this case would be “BigBen”. These two tags

(“Big Ben” and “BigBen”) can be handled as separate tags by an image tag-

ging system, and this causes two problems. The first problem is that both

tags can be assigned as tags to the query image. The second problem is that

the combined frequency should be higher, or in other words, the frequency

is lower than it should be, because the tag is split up into two separate tags

when it is obvious that both tags have the same meaning. This can therefore

lead to a situation were neither of the tags are selected (if both have fre-

quencies below 20 % of the number of images in the result set).

In the implementation, this problem is solved with the following steps. First,

all duplicate tags are located where removing whitespaces from a tag makes

40

it equal to another tag. Then the less frequent of these two tags is removed,

and the frequency of the less frequent tag is added to the more frequent tag.

For example, if there are two tags Big Ben and BigBen with frequencies of

30 and 19 respectively, then the tag BigBen is removed, and the tag Big Ben

will get a new frequency of 30 + 19 = 49.

Upper and lower case characters are handled the same way as whitespaces,

meaning that two tags “big ben” and “Big Ben” with frequencies of 4 and

30 respectively would lead to “big ben” being removed and “Big Ben” get-

ting new frequency of 30 + 4 = 34.

However, an optimization of the implementation removed whitespaces and

forced all characters into lower case characters. Initially, tags were collected

with one request to Flickr for each image in the result set resulting (in addi-

tion to image search requests) in as many requests to Flickr as images in the

result set. The optimization consisted of requesting the tags to be sent along

with the result set of images returned by the image search request. This way,

only the search requests are needed (as tags are now sent along with the re-

sult set of images), improving the performance of the system considerably.

However, the backside is that Flickr removes any whitespace character and

transforms any upper case character into lower case character when the tags

of the images are returned along with the result set of images. Whitespaces

and upper case characters could be reintroduced at the expense of perfor-

mance. Another possibility is that Flickr change their API such that whites-

paces and upper case characters are not lost when tags are returned in the

search request.

5.4.4 Usage of other information than tags

It was tested whether usage of image title and/or image description in addi-

tion to image tags would be useful. The short story is that it was not. Most

useful words in the title or description are often also included as tags. Fur-

ther, the image title is often meaningless (e.g. DSC1001), and image de-

scriptions are descriptive sentences and therefore they consist of a lot of

regular words. However, this could be handled by known natural language

processing and information extraction techniques that for example remove

so-called stop words (it, is, the, are etc.) and other irrelevant information.

But the usage of these techniques has not been explored as the relevance for

this work is limited. It should be enough to use the tags of the images in the

result set, and it is not certain that the image descriptions will provide more

useful information without introducing noise.

41

Chapter 6

Design

In this chapter an overall view of the automatic image tagging system is dis-

cussed and presented. The name of the system, its user interface, the

workflow of the system and the assumptions of the system will be dis-

cussed.

6.1 Naming the image tagging system

Until now, the automatic image tagging system designed and implemented

in this thesis has been referred to as just that without a proper name. How-

ever, it proved useful to give the system a name when describing the design

and performing the evaluation. The suggested name is LoCaTagr, which

stands for Location, Category and Time-based automatic image tagging

system using Flickr. The ending (r) indicates that Flickr is used, and there-

fore also slightly that images are tagged since Flickr is a well known image

sharing database.

6.2 Web interface

The user interface for testing the implementation is a simple web interface

where users can upload .jpg images that have location and date/time infor-

mation available in the EXIF-header. The category must also be provided by

the user. New categories can be made if the image does not fit into one of

the existing categories.

Some example images which are used in the evaluation (Chapter 8) can be

used as example images for users that do not have .jpg images with location

and date/time stored in the EXIF-header of the image available. Further, it is

also possible to plot GPS coordinates and date manually without using any

image. This is possible because the actual content of the image is not ana-

42

lyzed by LoCaTagr.

The tags selected by the image tagging system are presented in a result table

on the web interface. The tags are not stored back to the image because the

web interface is only a test environment made to show the results of LoCa-

Tagr rather than being a finished image tagging tool ready for commerciali-

zation.

The front page of the web interface is shown in Figure 6.1. The web inter-

face can be accessed on the following address:

• http://caim00.cs.uit.no/LoCaTagr

Figure 6.1 – Front page of the web interface. The

simple menu is located to the left.

6.3 Flickr

Flickr offers a public API which can be used to write applications that use

Flickr in some way. LoCaTagr use Flickr to find a set of relevant images and

retrieve tags from these relevant images.

43

Since Flickr is currently the only information source used, LoCaTagr is li-

mited in that it will only work using Flickr and the images that are available

there. Supporting more image sharing applications would increase the num-

ber of images but the type of images in these other image sharing applica-

tions are likely to be similar to what can be found on Flickr. Therefore, the

limitation becomes which images that are typically uploaded to image shar-

ing applications.

6.4 Overall view

The overall workflow in LoCaTagr (and its web interface) is listed below. A

graphical overall view is shown in Figure 6.2 where LoCaTagr is

represented by the blue box on the right hand side of the image.

1. The user provides a query image and image category through a sim-

ple web interface that start the execution of the LoCaTagr system.

2. LoCaTagr reads GPS coordinates and date/time from the EXIF-

header of the provided query image.

3. LoCaTagr generates a search based on which category the query im-

age belongs to (discussed in Chapter 5.2).

4. The search query is sent to Flickr (initially with a very small radius).

5. Flickr returns a set of images.

6. LoCaTagr adds images that are considered to be relevant for the

query image to the result set (discussed in Chapter 5).

7. As long as not enough required images are added to the result set,

LoCaTagr decreases the number of required images in the result set

and performs a new search (step 4) using a radius double as big as in

last search (discussed in Chapter 5.1 and Table 5.2)

8. LoCaTagr performs tag processing (discussed in Chapter 5.4) when

the result set has reached required amount of images.

9. The result (list of tags for the query image) is presented to the user

through the web interface (see next sub-chapter, Chapter 6.5).

6.5 Presenting the result

The tags found by LoCaTagr are presented in a table on the web interface.

The frequencies of the tags are also shown in the table. Below the list of

tags found by LoCaTagr is a comparison table showing the result of LoCa-

Tagr together with the result from two other comparison systems. The result

page for Image 4.1 is shown in Figure 6.3.

The two other comparison systems do not use category and date/time. The

first (LoTagr) is actually LoCaTagr without the usage of category and

date/time. The other system (SimpleTagr) is a very simple image tagging sy-

44

Figure 6.2 – A graphical overview of LoCaTagr

(blue box on right hand side) and the workflow be-

tween the system, web interface and Flickr.

stem using only location. Thus, the first system (LoTagr) use the optimiza-

tions discussed in Chapter 5 (restricting usage of images from same user, tag

filtering etc.) whereas the other (SimpleTagr) does not. Because these two

systems use only location, all images are handled the same way regardless

of categories and date/time of image capture. Comparison against these sys-

tems is useful for evaluating whether usage of image categories is useful.

The two comparison systems will be discussed in more detail in Chapter

8.1.

6.6 Assumptions

It is assumed that there exist a representative set of already geo-referenced

and tagged images on online image sharing databases such as Flickr. It is

not possible to find relevant tags for a query image if there are not enough a-

45

Figure 6.3 – The result page for Image 4.1 using

tower as the sub-category. The table at the middle of

the page is the result from LoCaTagr. The compari-

son table at the bottom shows the result from LoCa-

Tagr to the left, LoTagr in the middle and Simple-

Tagr to the right.

46

vailable images on Flickr that are relevant for the query image. However,

LoCaTagr should work for the most common and interesting type of images

because these images are likely to have a representative set of relevant im-

ages available. Furthermore, more and more images will be supported as the

number of geo-referenced images in online image sharing databases contin-

ues to grow at high speed.

It is assumed that the user specifies an image category along with the query

image that is to be tagged. We think that users will take the effort of provid-

ing image categories if that can provide useful and valuable information to

the images. As long as the user interface for the categorization process is ra-

ther structured and simple, the effort in choosing categories should be af-

fordable. It is also possible that this assumption could be avoided in future

work if a method for automatic categorization is possible to implement (dis-

cussed in Chapter 9). It is the users who will choose or create the sub-

categories, and that put some requirements on the user. Choosing wrong or

badly named categories could lead to finding tags that are not relevant, or

that the system does not find any tags (discussed in Chapter 8.4.9).

It is also assumed that the location where the image was captured is availa-

ble in the form of GPS coordinates (latitude and longitude) in the EXIF-

record of the query image. This assumption could be avoided if allowing the

user the possibility to manually geo-reference the image through a map in-

terface. Further, it is likely that many cameras and mobile devices in the fu-

ture will be equipped with GPS systems and thus store capture location in

the EXIF-header of the images.

Finally, it is assumed that the date and time the image was captured is avail-

able. This assumption is almost redundant because practically all digital im-

ages have time of image capture available. Further it is assumed that users

set the clock on their digital camera correct. However, small errors in

date/time (up to some hours for short-lasting events and up to some days for

long-lasting events) will not make any significant difference because the

time intervals used in the system are sufficiently large to cover for such

small errors. Time is only a requirement for event images.

47

Chapter 7

Implementation

In this chapter some implementation specific details are presented.

7.1 Hardware

LoCaTagr is implemented and tested on an Intel® Core™ 2 Duo CPU

P9700 2.80 GHz with 4 GB RAM running Microsoft® Windows XP Profes-

sional SP3.

The server hosting the web interface and LoCaTagr is an Intel® Core™ 2

CPU 6400 2.13 GHz with 2 GB RAM. The system is running Microsoft®

Windows Server 2008 R2 Standard v6.1.

7.2 LoCaTagr

LoCaTagr is written in Python (v2.6.5), and the code can be found in Ap-

pendix B. The performance of the system has not been prioritized as the

main objective is to investigate whether usage of categories together with

location and date/time is useful. For example, the list with tags is iterated

several times for different operations like tag filtering, white space handling

and similar operations when it would have been more efficient to iterate the

list once. Further, a high-level programming language (that generally has

slower performance than low-level programming languages) is used.

The runtime of LoCaTagr is around 22 seconds on average. This will be

more discussed in Chapter 8.4.11. LoCaTagr is fastest when many relevant

images from different users are found close to the query image. The run-

time varies for each image mainly because the number of relevant images

on Flickr varies for each query image. The run-time (and result) can also

vary for the same image because relevant images can be deleted, added or

48

be temporarily unavailable. Other reasons for run-time variations can be

bandwidth fluctuations, workload on Flickr and workload on LoCaTagr.

The process taking most time is sending image requests to Flickr and re-

trieving image sets from Flickr. As indicated in Table 5.2, a maximum of 16

different search radiuses is used. More than one search request for each

search radius can be needed if more than 250 images (which is the maxi-

mum number of images returned by Flickr for one request) are returned in

the result sets. This can occur if there are many images from the same users

in the result set (as LoCaTagr only use one image per user as discussed in

Chapter 5.3) or if many images do not have any tags (as these images are

not used by LoCaTagr as discussed in Chapter 5.4.1). However, most query

images require only between 1 to 7 search requests depending on how many

relevant images that are available.

7.3 Web interface

The simple web interface is written using Perl (v5.10.1) scripts, and is in-

tended as a test environment for the implementation. Error checking and re-

sponse messages are thus limited to a basic level. Further, the graphical de-

sign of the web interface has not been prioritized. The code for the web in-

terface can be found in Appendix C.

Apache HTTP server is used to host the web interface. The Apache HTTP

Server Project
23

 is an effort to develop and maintain an open-source HTTP

server for modern operating systems where the goal is to provide a secure,

efficient and extensible server that provides HTTP services in sync with the

current HTTP standards.

Mozilla Firefox 3.6.3 is used to test the web interface. The web interface is

also known to work with Google Chrome, Safari and Internet Explorer.

However, Opera is not supported.

7.4 Flickr API

Flickr offers a public API available for non-commercial use by outside de-

velopers that makes it possible to write applications that use Flickr some

way or another. LoCaTagr use Flickr to find a set of relevant images and re-

trieve tags from these relevant images. An API key and an API secret is re-

quired for usage of the Flickr API.

23

 http://httpd.apache.org/

49

A Python FlickrAPI
24

 (v1.4.2) is used for handling connection (with the API

key and API secret) and search requests to Flickr. The Python Flickr API

claims to be the easiest to use, most mature and feature-rich Python inter-

face to Flickr.

7.5 Synonyms

Synonyms are collected using the STANDS4 Web Services - Synonyms API

v1
25

. This system was preferred over WordNet, mainly because it was easier

to use as WordNet is rather advanced (but the advanced features are not

needed by LoCaTagr).

As discussed in Chapter 5.2, the sub-category of the image is used in the

search process (except for short-lasting events), such that only images where

the sub-category appears in the title, description or tags of the image are

used. This could be restrictive and lead to usage of few images. Therefore,

the synonyms of the sub-category are collected and used in the search

process so that only one of the synonyms of the sub-category must appear in

the metadata of the image for it to be used by LoCaTagr (discussed in Chap-

ter 5.2.7).

7.6 EXIF-header

LoCaTagr use a Python library (Gene Cash’s EXIF.py library 1.1.1
26

) to ex-

tract EXIF information from digital image files. GPS coordinates (latitude

and longitude) and date/time information is collected from a .jpg image. The

GPS coordinates are transformed to decimal degree form as it is the most

convenient way to represent GPS coordinates in a computer system.

Manual manipulation of EXIF-headers (adding GPS coordinates to image

files) was done with a tool called ExifTool (v8.19). ExifTool
27

 is a platform-

independent Perl library and command-line application for reading, writing

and editing metadata information in a wide variety of files (including .jpg

files). ExifTool supports many different metadata formats including EXIF

and GPS. Manually geo-coding images were more convenient than search-

ing for already geo-referenced images that were usable (metadata informa-

tion is lost when downloading images from Flickr).

24

 http://stuvel.eu/projects/flickrapi
25

 http://www.abbreviations.com/synonyms_api.asp
26

 http://sourceforge.net/projects/exif-py/
27

 http://www.sno.phy.queensu.ca/~phil/exiftool/

50

51

Chapter 8

Results and Evaluation

In this chapter the results from LoCaTagr and some comparison systems are

presented and evaluated.

8.1 Comparison systems

LoCaTagr will be compared and evaluated against the following systems

1. LoTagr

� LoCaTagr using only location (not category and date/time in-

formation). As this system does not use category, the “Ca”

part of the name is removed and this system will be referred

to as LoTagr in the comparison. Thus, LoTagr is the LoCa-

Tagr system using location and the tag and image processing

techniques discussed in Chapter 5 (e.g. restricting usage of

images from same users and tag filtering) except those re-

lated to category and date/time.

2. SimpleTagr

� A simple location-based image tagging system. It uses only

location (not category and date/time). It will simply use the

up to 250 images that are closest to the query image and re-

turn all tags that appear in at least 20 % of the images found.

Other than this dynamic approach for deciding how many

tags that are relevant, SimpleTagr do not use the image and

tag processing techniques (e.g. restricting usage of images

from same users and tag filtering) used by LoCaTagr and

LoTagr.

3. SpiritTagger v0.3
28

28

 http://cortina.ece.ucsb.edu/index.php

52

� SpiritTagger is presented in Chapter 3.1 and is an image tag-

ging suggestion tool based on location and content-based im-

age analysis. It does not use category and date/time. Spirit-

Tagger use Flickr to find relevant tags. An important thing to

notice is that the purpose of SpiritTagger is to suggest a set of

tags to the user, meaning that the user is supposed to manual-

ly select the relevant tags from a list of suggested tags.

Therefore, SpiritTagger will always suggest exactly 20 tags

for each query image.

SpiritTagger is chosen as a comparison system because it is interesting to

compare against SpiritTagger since it use Flickr and location (just as LoCa-

Tagr) in addition to content-based image analysis (whereas LoCaTagr use

category and date/time instead). This makes it possible to compare usage of

content-based image analysis with the category approach. Further, Spirit-

Tagger has a demo available online, whereas most of the other systems dis-

cussed in the related work in Chapter 3 do not have a demo available online.

8.2 Comparison method

The decision whether a tag is relevant or not is done manually by the author

of this thesis. It is not possible to ask an automated system for assistance as

the decisions are subjective. Further, it was not time or resources available

to do a user test with external users.

The following color codes are used in the comparison tables:

o Green tags are regarded as relevant for the query image.

o Purple tags are difficult to decide, and will be referred to as unsure

tags.

o Red tags are noisy tags (not relevant for the query image).

o Blue tags are place names.

Recall (number of relevant tags found / number of relevant tags that could

have been found) is not used in the evaluation as it near impossible to de-

cide how many tags that could be used to tag an image. It would possibly be

even more correct to use total number of relevant tags that are available on

Flickr for a certain image. But again, it is near impossible to find all relevant

tags that could and should be used for a certain image.

Precision (number of relevant tags divided by total number of tags found) is

interesting. A high precision score will prove that most of the tags found are

relevant. A perfect precision score (1.00) means that all tags found are rele-

vant.

However, a problem with precision scores is the place names. As previously

discussed (Chapter 4.4), place names (with accuracy ranging from continent

to street name) can be retrieved by sending the GPS coordinates to external

53

sources such as GeoNames. The problem is to decide the accuracy of the

place names and how many of the place names that should be used. There-

fore, all place names are disregarded in the calculation of precision.

Another issue is the so-called unsure tags. Often, some will regard them as

relevant whereas others will not. Typical tags of this type are tags relevant

for the exact position of the image (but not visible on the image). Another

example is whether the two tags big and ben are relevant on their own (not

combined) for an image of Big Ben. Therefore, two different precision

scores are calculated for each image, where the first (Precision1) is stricter

than the second (Precision2):

o Precision1 = relevant tags / (total tags – place names)

o Precision2 = (relevant tags + unsure tags) / (total tags – place names)

Thus, Precison1 will regard the unsure tags as noisy (not relevant), and Pre-

cision2 will regard unsure tags as relevant. Total tags are the total number of

tags found or suggested for an image.

SpiritTagger will always suggest exactly 20 tags whereas the other systems

have a more dynamic approach which results in selecting tags only when

they have a certain frequency, i.e. when they appear in at least 20 % of the

images in the result set. This is a big disadvantage for SpiritTagger with re-

gards to the precision scores. The idea in SpiritTagger is that the system

suggests a set of tags and that the user is supposed to pick the most relevant.

It is therefore semi-automatic whereas LoCaTagr is fully automatic (except

that an image category is required from the user in LoCaTagr).

Therefore, the number of relevant tags found by each of the systems is also

considered. Further, it could be regarded as better to find 10 relevant tags

with a quite good precision score (e.g. 0.80 – 0.90) than finding only 1 or 2

relevant tags with perfect precision score (1.00).

8.3 Images and results

The images used in the evaluation are collected from Flickr. The source

where the images are found is listed in Appendix A.

The results will be presented in the next 11 pages. The filename below the

image number is the filename of the image as it appears on the web inter-

face. These example images can be used directly as query images on the

web interface.

The main and sub-category is used by LoCaTagr but not the other three

comparison systems. The short description will point out important informa-

tion regarding the query image. The ordering of the tags is based on the fre-

quency, i.e. the higher the tag appears in the list, the more frequent the tag

54

was (note that this might not apply to the results from SpiritTagger).

The results will be evaluated and discussed in the next sub-chapter (Chapter

8.4). A table with number of tags found by each system for each image and a

table with the average number of tags found by each system can be found in

Table 8.7 and Table 8.8 respectively in the summary of the evaluation in

Chapter 8.4.13. Summaries of the results are also shown graphically in Fig-

ure 8.5, 8.6, 8.9, 8.10 and 8.11 towards the end of Chapter 8.

55

Image 1A
big_ben.jpg

Main category: object

Sub-category: tower

Big Ben in London.

Geo-referenced at ex-

act location of Big

Ben which is part of

Houses of Parliament.

LoCaTagr LoTagr SimpleTagr SpiritTagger

london london london London

bigben bigben uk England

tower england england United Kingdom

england uk bigben UK

clock big westminster parliament

westminster ben thames City

uk westminster big

clocktower ben

unitedkingdom clock

parliament europe

big tower

ben river

 night

 Great Britain

 clock tower

 underground

 tube

 Britain

 travel

 cycling

Statistics

Total 12 7 6 20

Relevant 5 1 1 5

Place N. 5 4 4 7

Unsure 2 2 1 3

Noisy 0 0 0 5

Precision1 0,71 0,33 0,50 0,38

Precision2 1,00 1,00 1,00 0,62

56

Image 1B
big_ben2.jpg

Main category: object

Sub-category: tower

Geo-referenced at

Westminster Bridge

on River Thames (lo-

cation of image cap-

ture).

LoCaTagr LoTagr SimpleTagr SpiritTagger

London london london London

England england uk England

bigben uk england United Kingdom

Westminster londoneye bigben UK

uk thames thames parliament

tower river westminster river

clock westminsterbridge londoneye City

parliament westminster river europe

clocktower bigben big

unitedkingdom unitedkingdom ben

westminsterbridge clock

thames Houses

housesofparliament tower

riverthames bridge

night night

 Britain

 Great Britain

 palace

 vacation

 architecture

Statistics

Total 15 10 8 20

Relevant 6 1 1 6

Place N. 5 5 4 7

Unsure 3 3 2 5

Noisy 1 1 1 2

Precision1 0,60 0,20 0,25 0,46

Precision2 0,90 0,80 0,75 0,85

57

Image 2
eiffel_tower.jpg

Main category: object

Sub-category: tower

Eiffel Tower in Paris.

Geo-referenced at ex-

act position of the

tower.

LoCaTagr LoTagr SimpleTagr SpiritTagger

paris paris paris France

france france france tower

eiffeltower eiffeltower eiffeltower Europe

tower eiffel eiffel tour

eiffel tower toureiffel night

 tower torre

 Europe blue

 tour Bleu

 night nuit

 CANON

 Lights

 holiday

 City

 architecture

 view

 steel

 monument

 travel

 eu

 sky

Statistics

Total 5 5 9 20

Relevant 3 3 3 6

Place N. 2 2 3 3

Unsure 0 0 0 3

Noisy 0 0 3 8

Precision1 1,00 1,00 0,50 0,35

Precision2 1,00 1,00 0,50 0,53

58

Image 3
london_eye.jpg

Main category: object

Sub-category: Ferris wheel

London Eye (a Ferris

wheel). The image is

taken from Westmin-

ster Bridge on River

Thames in London.

LoCaTagr LoTagr SimpleTagr SpiritTagger

london london london London

londoneye england uk England

ferriswheel uk england United Kingdom

thames londoneye bigben UK

river thames thames parliament

england river westminster river

uk westminsterbridge londoneye City

unitedkingdom westminster river big

wheel bigben ben

riverthames unitedkingdom clock

europe europe

britain Houses

greatbritain tower

southbank bridge

millenniumwheel night

eye britain

 Great Britain

 palace

 sky

 architecture

Statistics

Total 16 10 8 20

Relevant 7 3 3 4

Place N. 8 5 4 7

Unsure 1 1 0 1

Noisy 0 1 1 8

Precision1 0,88 0,60 0,75 0,31

Precision2 1,00 0,80 0,75 0,38

59

Image 4
ishavskatedralen.jpg

Main category: object

Sub-category: church

The church Ishavska-

tedralen (Arctic Ca-

thedral) in Tromsø,

Norway.

LoCaTagr LoTagr SimpleTagr SpiritTagger

Norway norway norway Troms Fylke

church troms troms Norway

troms tromso norwegen mountain

cathedral church geotagged Sweden

tromso norge Snow

architecture cathedral norge

window architecture sea

snow norwegen ice

norwegen eismeerkathedrale sunset

kirche travel

ishavskatedralen road

eismeerkathedrale arctic

arctic architecture

architektur northern

 lamflickr

 campint

 tent

 girlfriend

 Design

 cold

Statistics

Total 14 9 4 20

Relevant 8 4 0 2

Place N. 4 5 3 3

Unsure 1 0 0 3

Noisy 1 0 1 12

Precision1 0,80 1,00 0,00 0,12

Precision2 0,90 1,00 0,00 0,29

60

Image 5
cineaqua.jpg

Main category: object

Sub-category: aquarium

Image from an aqua-

rium named Cineaqua

close to the Eiffel

Tower in Paris.

LoCaTagr LoTagr SimpleTagr SpiritTagger

paris paris paris France

france france france night

aquarium eiffeltower eiffel europe

trocadero trocadero eiffeltower tour

cineaqua toureiffel toureiffel Bleu

parigi eiffel tower blue

francia europe tour nuit

fish europe City

Europe (whitespace) tower

blue trocadero Ciel

bleu night Nikon

 torre

 Lights

 monument

 vacation

 holiday

 capital

 light

 sky

 smoke

Statistics

Total 11 7 11 20

Relevant 5 0 0 2

Place N. 6 4 4 2

Unsure 0 0 0 3

Noisy 0 3 7 13

Precision1 1,00 0,00 0,00 0,11

Precision2 1,00 0,00 0,00 0,28

61

Image 6
paris_overview.jpg

Main category: place

Sub-category: overview

Overview image of

Paris taken from the

Sacre Cour church

which is located on a

hill (tertre) named

Montmartre.

LoCaTagr LoTagr SimpleTagr SpiritTagger

paris paris paris France

france montmartre montmartre church

overview france france HDR

city placedutertre sacrecouer Europe

view tertre sky

panorama holiday

Europe blue

notredame street

 view

 clouds

 Photomatix

 Eglise

 skyline

 red

 cathedral

 Corazon

 Iglesia

 white

 Pentax

 shop

Statistics

Total 8 5 4 20

Relevant 3 0 0 6

Place N. 3 4 3 2

Unsure 1 1 1 5

Noisy 1 0 0 7

Precision1 0,60 0,00 0,00 0,33

Precision2 0,80 1,00 1,00 0,61

62

Image 7
u2_camp_nou.jpg

Main category: short-lasting event

Sub-category: concert

U2 concert at Camp

Nou, Barcelona dur-

ing their 360 Tour

the summer of 2009.

LoCaTagr LoTagr SimpleTagr SpiritTagger

barcelona barcelona barcelona

Do not suggest

any tags for

this image.

The reason

is not known.

u2 barca campnou

campnou spain catalunya

360 campnou football

spain nou fcbarcelona

concert futbol spain

bono camp futbol

tour football catalonia

noucamp soccer barca

edge fcbarcelona espana

concierto soccer

theclaw spanien

catalonia europa

catalunya europe

 noucamp

 stadium

 cataluna

Statistics

Total 14 10 17 0

Relevant 10 1 3 0

Place N. 4 2 9 0

Unsure 0 2 0 0

Noisy 0 5 5 0

Precision1 1,00 0,13 0,38 n/a

Precision2 1,00 0,38 0,38 n/a

63

Image 8
independence_day.jpg

Main category: short-lasting event

Sub-category: Independence Day

Fireworks behind the

Washington Monu-

ment on July 4
th

(Independence Day).

LoCaTagr LoTagr SimpleTagr SpiritTagger

washingtondc washingtondc washingtondc Washington

dc washington (whitespace) United States

washington-

monument

washington-

monument

washington-

monument

District of Columbia

washington dc washington memorial

fireworks usa dcist monument

4thofjuly crowd dc WWII

 obama Lincoln

 monument war

 dcist world

 II

 water

 fountain

 use

 World War II

 night

 pool

 sky

 history

 Independence Day

 nikon

Statistics

Total 6 9 6 20

Relevant 3 2 1 3

Place N. 3 4 3 3

Unsure 0 0 0 3

Noisy 0 3 2 11

Precision1 1,00 0,40 0,33 0,18

Precision2 1,00 0,40 0,33 0,35

64

Image 9
roskilde_2009.jpg

Main category: long-lasting event

Sub-category: festival

Roskilde Festival in

Denmark the summer

of 2009. Orange is a

stage, but not the

stage on the image.

LoCaTagr LoTagr SimpleTagr SpiritTagger

festival roskildefestival festival Roskilde

roskildefestival roskilde roskilde Sjaelland

roskilde festival roskildefestival Denmark

rf09 denmark d(e/a)n(e)mark water

2009 orange lastfm:event=45113 architecture

denmark music rockphotography statue

orange concert photography church

crowd roskildefestival2006 musicphotography summer

roskildefestival2009 rf09 rockmusik Europe

night orangestage metal low boat

music light hard heavy City

 crowd festivals rock blue

 d100 music sky

 2006 live Scandinavia

 alternative nikon fountain

 progressive guitar LIBRARY

 light bass white

 tool lowlight Bike

 summer sjaelland iPhone

 drums available building

Statistics

Total 11 12 33 20

Relevant 8 7 7 1

Place N. 2 2 5 5

Unsure 0 0 6 3

Noisy 1 3 15 11

Precision1 0,89 0,70 0,25 0,07

Precision2 0,89 0,70 0,46 0,27

65

Image 10
olympics_2010.jpg

Main category: long-lasting event

Sub-category: Olympics

Winter Olympics

2010 in BC Place Sta-

dium in Vancouver,

Canada.

LoCaTagr LoTagr SimpleTagr SpiritTagger

vancouver vancouver vancouver Vancouver

olympics canada canada British Columbia

canada bcplace bc Canada

bcplace britishcolumbia britishcolumbia iPhone

vancouver2010 football downtown downtown

2010 bc WeatherBug

winterolympics 2010 wall

winter vancouver2010 food

bc olympics City

van2010 downtown Rain

olympic cfl Chinatown

britishcolumbia bclions building

games street

 window

 alley

 Mostly Sunny

 Chinese

 roof

 home

 cloud

Statistics

Total 13 12 5 20

Relevant 9 4 0 0

Place N. 4 4 4 4

Unsure 0 1 0 4

Noisy 0 3 1 12

Precision1 1,00 0,50 0,00 0,00

Precision2 1,00 0,63 1,00 0,25

66

8.4 Evaluation

LoCaTagr will now be evaluated and compared against the comparison sys-

tems. The evaluation will be divided into sub-chapters of the following type

of images:

1. Famous attractions (Image 1A and Image 2)

2. Attractions taken from distance (Image 1B and Image 3)

3. Not so famous attractions (Image 4)

4. Not so famous attractions near famous attraction (Image 5)

5. Overview images (Image 6)

6. Short-lasting events (Image 7 and Image 8)

7. Long-lasting events (Image 9 and Image 10)

The discussion of each of the scenarios will have the following general

structure: the first paragraph will describe the type of images, the second pa-

ragraph will look at the results from LoCaTagr, the third paragraph will

compare to LoTagr and SimpleTagr, and the last paragraph will compare

against SpiritTagger. Tags will be written in italics.

8.4.1 Famous attraction

Image 1A and Image 2 fall into this type of images that are taken of famous

and well known attractions where a lot relevant images can be found. Fur-

ther, these images are geo-referenced at the exact position of the attractions.

LoCaTagr finds a couple of relevant tags (5 and 3) whereas no noisy tags are

found. However, big and ben can be discussed and are therefore regarded as

unsure. The problem is that they do not give much meaning on their own

(without being combined) but it would be harsh to regard them as noisy. The

precision scores are perfect (1.00) or 0.71 if big and ben is regarded as noi-

sy.

LoTagr and SimpleTagr only found one relevant tag for Image 1A (whereas

LoCaTagr found 5). For Image 2, LoTagr returns the exact same set of tags

as LoCaTagr whereas SimpleTagr find the same set of relevant tags as Lo-

CaTagr, but also 3 noisy tags. The quite good performance by these two sys-

tems indicate that tagging these kinds of images are quite easy, but that us-

ing categories does assist and give both more relevant tags and fewer noisy

tags.

Interestingly, SpiritTagger suggest neither Big Ben nor Eiffel Tower, which

one would think should be easy to recognize visually. However, it does

seem to indicate that the attractions have been recognized by suggesting big

and ben for Image 1A and tower, steel, and monument for Image 2. Spirit-

Tagger is able to suggest a set of interesting tags for Image 2 (monument,

architecture, steel, City and sky) that are probably recognized by visual si-

milarity techniques as they are not found by LoCaTagr. It therefore finds

67

more relevant tags than LoCaTagr for Image 2, whereas the two systems

find almost the same set of relevant tags for Image 1A. However, quite

many noisy tags make the precision scores average for SpiritTagger (0.35 –

0.62).

8.4.2 Attractions taken from distance

This is images of attractions that are geo-referenced at the exact position of

image capture. Image 1B and Image 3 is of this type. These two images are

taken and geo-referenced at the exact same position on the Westminster

Bridge in London. However, they are captured in opposite directions and are

therefore of Big Ben and London Eye respectively.

LoCaTagr performs well, finding 6 relevant tags and only 1 noisy tag for

image 1B, and 8 relevant and no noisy tags for Image 3. The unsure tags in

Image 1B is based on judgments whether the bridge and river where the im-

age was taken is relevant for the image or not when not being visible on the

image. Further, the tag eye could and could not be regarded as relevant for

Image 3. The precision scores are high both when the unsure tags are re-

garded as not relevant (0.89 and 0.60) and when they are regarded as rele-

vant (1.00 and 0.90).

LoTagr and SimpleTagr find the exact same set of tags for Image 1B and

Image 3 as they are location-based and the location is the same. They get

good scores on Image 3 as the river is visible and definitively relevant for

the image, whereas it is not given that it is relevant for Image 1B. Although

they do get quite high precision scores when unsure tags are regarded as re-

levant (0.80 and 0.75), it is also important to consider that they only find

less than half as many relevant tags as LoCaTagr. Further, they find both Big

Ben and London Eye for both images (which ensure one noisy tag for each

image).

SpiritTagger also find the same set of tags for Image 1B and Image 3, except

that vacation is suggested for Image 1B whereas sky is suggested for Image

3 (the other 19 suggested tags are similar). This is somewhat surprising, and

seems to indicate that SpiritTagger rely more on location than on visual si-

milarity for these images. SpiritTagger performs comparable to LoCaTagr

for Image 1B. However, LoCaTagr returns much more relevant tags and

fewer noisy tags than SpiritTagger for Image 3. The distance from the

bridge to London Eye (Image 3) is bigger than the distance from the bridge

to Big Ben (Image 1B). This indicates that it is harder to use location-based

information on attractions that are not close to the image capture position

without using categories.

8.4.3 Not so famous attraction

Image 4 is an example of these types of attractions that have a limited num-

ber of relevant images available because not so many people visit the attrac-

68

tion or take and upload images from it. Image 5 is another example although

it will be discussed in the next sub-chapter.

LoCaTagr finds many relevant tags for Image 4, although some tags are de-

scribing the same thing only in different languages. This occurs when users

have tagged images on Flickr with a tag in two or more different languages

(discussed more in Chapter 9). Only one noisy tag is found resulting in high

precision scores (0.80 and 0.90).

SimpleTagr does not find any relevant tags, whereas LoTagr performs

around the same level as LoCaTagr. This seems to indicate that more ad-

vanced methods than using just a simple system is needed to handle not so

famous attractions. However, the usage of category does not seem to be that

helpful since LoTagr performs comparable to LoCaTagr. This is probably

because there are few other attractions nearby the church in Image 5.

SpiritTagger suggest only 2 relevant tags and as much as 12 noisy tags lead-

ing to low precision scores (0.12 and 0.29). This could indicate that the cat-

egory approach works better than content-based image analysis when there

are few relevant images available on Flickr. This does make sense in that

more images are needed from different angles, views, weather and light

conditions etc. to support detection with visual similarity with regard to a

specific query image (with its specific angle, view, weather condition, light

etc.) whereas the category approach can use all of the available images.

8.4.4 Not so famous attraction near famous attraction

These types of attractions are small attractions that are not so famous, and

that have a more famous attraction located nearby. Image 5 is taken at an

aquarium in Paris named Cineaqua that is located close to the Eiffel Tower.

LoCaTagr finds 5 relevant tags and no noisy tags resulting in maximum pre-

cision score (1.00).

LoTagr and SimpleTagr perform very badly on Image 5, finding no relevant

tags and many noisy tags. These systems therefore gets minimum precision

score (0.00). The problem is that there is so many images from the bigger at-

traction that tags from the smaller attraction are not selected. This problem

is described in Figure 5.1. Thus, location is not sufficient to find relevant

tags for these types of images, whereas combining location with the catego-

ry approach gives good results.

SpiritTagger is able to recognize the color blue, but suggest many tags that

are relevant for the nearby Eiffel Tower resulting in many noisy tags. Thus,

the precision scores are low (0.11 and 0.28). Although SpiritTagger per-

forms slightly better than the systems using only location, it is not compara-

ble to LoCaTagr. This indicates that the category approach is better than us-

ing content-based image analysis for not so famous attractions located near-

by famous attractions.

69

8.4.5 Overview images

This type of images is for example overview images of places or landscapes.

Image 6 which is an overview image of Paris is an example.

LoCaTagr finds 3 relevant tags and 1 noisy tag. It could be discussed

whether panorama is a relevant tag. Image 6 is a panorama image but the

image could just as well not have been a panorama image (although most

overview images are panorama images). Such tags should probably be han-

dled as contextual information as it should be possible to detect panorama

images by looking at the dimensions of the image. It is possible that pano-

rama therefore should be added to the tag filtering discussed in Chapter

5.4.2.

LoTagr and SimpleTagr use only location and these systems therefore only

find information relevant for the location where the image was captured. As

previously discussed, information about the image capture location could

and could not be regarded as relevant for the image.

SpiritTagger recognizes many visually relevant tags (sky, blue, clouds, sky-

line and white) that LoCaTagr is not able to find. SpiritTagger is therefore

the system with the best result for this image even though it suggests a few

noisy tags. This indicates that using content-based image analysis on these

types of images is beneficial. The three relevant tags (overview, city and

view) found by LoCaTagr are directly linked to the category. Therefore, it

would be very interesting to combine content-based image analysis with the

category approach for these types of images.

8.4.6 Short-lasting events

Short-lasting events are events lasting up to one day. Image 7 is from a U2

concert lasting some hours. Note that The Claw is the name of the stage U2

brought along on their tour, and that Edge and Bono are two of the group

members. The concert was held on Camp Nou which is a football stadium

where FC Barcelona (often referred to as Barca) play their home matches.

Image 8 is from the national day in USA, also known as the Independence

Day or simply July 4 / Fourth of July.

LoCaTagr performs well on these short-lasting events. First of all no noisy

tags are found. Secondly, 10 and 3 relevant tags are found for Image 7 and 8

respectively. The precision scores are therefore perfect (except if nou and

camp are regarded as noisy for the image from camp nou).

LoTagr and SimpleTagr finds a few relevant tags (1 to 3) but always finds at

least as many noisy tags resulting in low precision scores. Further, the rele-

vant tags found by these location-based systems are directly related to the

location only and not the event itself. Therefore, many tags related to foot-

ball are found for Image 7 because football is the main activity performed at

the stadium.

70

SpiritTagger do not suggest any tags for Image 7 for unknown reasons. It

suggests 3 relevant tags for Image 8. It is the only system suggesting Inde-

pendence Day. It also recognizes that the image is taken at night. Further,

monument is suggested. However, it seems to relate the image to war and

more specifically World War 2. These and other noisy tags make the preci-

sion scores low (0.18 and 0.35). It is possible that combining the category

approach with content-based image analysis could make it possible to dis-

card the war tags as noisy.

8.4.7 Long-lasting events

Long-lasting events are events lasting for several days and up to around a

month. Image 9 is from the yearly Roskilde Festival in Denmark. Image 10

is from the 2010 Winter Olympics in Vancouver.

LoCaTagr finds 8 relevant tags for both these images. No noisy tag is found

for Image 10 whereas 1 noisy tag is found for Image 9. The precision scores

are therefore high (1.00 and 0.89).

LoTagr performs quite well on these images. However, it finds the tag

roskildefestival2006 for Image 9 (which is from the Roskilde Festival 2009).

Further, it finds tags not related to the Olympics in Image 10 (football, cfl

and bclions). BC Lions is a football team playing in the Canadian Football

Leage (CFL). They play their home matches at BC Place Stadium, which

hosted the closing ceremony of the Olympic Games. This indicates once

again that the category approach limits the number of noisy tags.

SimpleTagr finds 33 and 5 tags for Image 9 and Image 10 respectively. For

Image 9, many relevant tags are found but more than double as many noisy

tags are also found. For Image 10 only one noisy tag is found but no rele-

vant tags are found. The big differences in number of tags found indicate

that more advanced methods are preferable. This is backed up by the results

from LoCaTagr and LoTagr which is much more stable (finds around the

same amount of tags for both images).

SpiritTagger only find one relevant tag (summer) for the festival image and

no relevant tags for the image from the Olympics. It should however be

noted that it probably is difficult to find any relevant tags by looking at the

content of these images as they are rather dark and with no obvious parts of

the image standing out visually.

8.4.8 More on events

The information found by the image tagging systems for some of the events

is limited. For example, Lily Allen is the artist performing on the image

from the Roskilde Festival. Further, the closing ceremony is not listed as a

tag for the image from the closing ceremony of the Olympics. This is not

71

surprising because these images are categorized as long-lasting events.

However, categorizing them as short-lasting events do not lead to finding

tags related to Lily Allen or the closing ceremony. The problem is that there

are not enough images available from these short-lasting events that are part

of the bigger long-lasting events.

It should be noted that finding or suggesting tags for events are generally

much harder than for objects. The problem is basically that there are limited

numbers of images available from events. The process of tagging events

should not be harder than tagging objects as long as there are enough images

available for the events. In fact, it should be easier to restrict the occurrence

of noisy tags as the time intervals used are short. Therefore, images inside

the time interval are very likely to be relevant for the query image.

Events must be quite big before there are enough geo-referenced and tagged

images on Flickr available from the event to get decent results. LoCaTagr

require at least around 10 usable images from different users to produce a

good set of relevant tags. The given examples discussed in 8.4.6 and 8.4.7

illustrates that LoCaTagr is able to tag images from events successfully as

long as enough images are available. However, many other events will not

give as good results because there are not enough images available.

It seems that LoCaTagr is able to deal with images from events better than

SpiritTagger. One of the reasons could be that images from events vary a lot

in content, i.e. the images could visually be very different but still relevant

as long as they are from the same event. Therefore, content-based image

analysis requires more similar images to be able produce relevant tags than

the category approach requires since it can use all images regardless of vis-

ual similarity.

8.4.9 Importance of correct sub-category

It is interesting to investigate the importance of the name of the sub-

categories for areas with many images available. Using different sub-

categories will lead to different results as different sets of images are found

in the result set. This is because the sub-category is used as one of the search

parameters. This can be seen in Table 8.1. The table displays the tags found

by using different sub-categories for Image 1B. All of the sub-categories be-

long to the main category object. Place names are not shown in the table.

Note that usage of categories such as double-decker and bus (or cab and

taxi) will lead to the same results because they are synonyms and LoCaTagr

use all synonyms of the sub-category in the image search process as de-

scribed in Chapter 5.2.7.

The three categories tower, clock and clock tower all find the same set of 6

very relevant tags (bigben, tower, clock, clocktower, parliament, housesof-

parliament). By using the category clock tower, the tag architecture is found

72

Table 8.1 – Tags found by LoCaTagr for Image 1B

with different sub-categories. All the sub-categories

belong to the main category object. Place names are

not shown in the table.

in addition. By using the category tower, the noisy tag night is found along

with tags relevant for the position of image capture (the bridge and river). It

can be discussed which category that is best to use because all the three cat-

egories returns good results. Using more general categories such as tower is

preferable as it allows re-usage of categories (e.g. same category can be

used for Eiffel Tower).

The category Big Ben is not desirable to use because the actual names of the

attractions, places and events are too detailed, and therefore the categories

will seldom be re-used. Further, the results with Big Ben as category is not

good compared to the three categories discussed in the last paragraph.

When using the sub-category parliament, only three tags are found. Howev-

er, the tags found are very relevant for the sub-category and therefore this

might be a good choice of sub-category if the image were more centered

towards the middle of the parliament building (i.e. if the Houses of Parlia-

ment was the main subject of the image rather than Big Ben).

Category

Tag

Tower Clock Clock

Tower

Big

Ben

Parlia-

lia-

ment

Palace Bus Cab Bridge Hotel

bigben X X X X X X X X X

tower X X X

clock X X X

clocktower X X X

big X X

ben X X

parliament X X X X X X X

housesofparliament X X X X X X

palaceofwestminster X

westminsterpalace X

bridge X X

westminsterbridge X X X

river X X

thames X X X X X

riverthames X X

taxi X

bus X

red X

architecture X

night X X

londoneye X X

countyhall X

hotel X

73

The Houses of Parliament is also referred to as both Palace of Westminster

and Westminster Palace. The category palace can therefore also be a natural

choice of image category (but again, more suitable if the image was cen-

tered more towards the palace / parliament building). The other two names

of the parliament building are found by using this category. Further, infor-

mation about the bridge and river is found. It can therefore be discussed

which of the two categories parliament or palace that would be the best op-

tion if the image was more centered towards the castle / parliament building.

As can be seen from Table 8.1, bus and taxi are only found if the sub-

category is bus or cab (taxi) respectively. Red is returned when using the

sub-category bus, which is a relevant tag since the bus on the image is red

(as most buses in London). These findings indicate that using several cate-

gories might be beneficial. However, this is probably only reasonable if au-

tomatic categorization is implemented as it perhaps would require too much

from users to select multiple categories. Another possibility is to make it op-

tional to specify more categories. This has not been explored in this work.

When using the sub-category bridge, almost only tags relevant for the

bridge and river are returned. Thus, the sub-category bridge would be a

good choice if the main subject of the image was the Westminster Bridge.

The tags bigben and londoneye had low frequencies and were almost filtered

out. It is likely that either Big Ben or London Eye is visible on images of the

bridge (as they are located on either side of the bridge). Thus, one of these

two tags is probably relevant for most images of the bridge (while the other

is noisy).

Finally, it is worth mentioning that using wrong categories will result in that

no relevant tags are found. The last sub-category in the table, hotel, is an ex-

ample. Further, typing errors in the sub-categories (e.g. towre or cluck) will

lead to not finding any tags.

8.4.10 Images with same location

Image 1A and 1B is the same image but geo-referenced differently. Image

1A is geo-referenced at the exact position of Big Ben whereas Image 1B is

geo-referenced at the exact position of image capture (Westminster Bridge).

Image 1B and Image 3 are geo-referenced at the exact same position on the

Westminster Bridge but are taken in opposite directions and are thus images

where Big Ben and London Eye is the main subject respectively.

The results from LoCaTagr for this set of images (1A, 1B and 3) are sum-

marized in the Table 8.2. Place names are not included.

As can be seen from Table 8.2, LoCaTagr is able to find many relevant tags

for all the three images with only one noisy tag for one of the images. The

systems using only location (LoTagr and SimpleTagr) returned few relevant

tags (1-3) for these images.

74

These results are very encouraging and indicate that using categories is very

useful for automatic image tagging systems, both to support geo-referencing

at the exact position of image capture and to differentiate between attrac-

tions located at the same place.

Image 1A Image 1B Image 3

bigben bigben londoneye

tower tower ferriswheel

clock clock wheel

clocktower clocktower millenniumwheel

parliament parliament river

big housesofparliament thames

ben westminsterbridge riverthames

 thames eye

 riverthames

 night

Table 8.2 – Comparison of tags found by LoCaTagr

for Image 1A, 1B and 3. Place names are not shown

in the table. Image 1A and 1B is the same image but

geo-referenced differently. Image 1B and 3 is geo-

referenced at the same location but is not the same

image.

8.4.11 Runtime comparison

The runtime of LoCaTagr and LoTagr will vary depending on workload on

server, workload on Flickr, workload on Synonyms.net (only for LoCaTagr),

number of useable images found and finally number of non-usable images

found. The runtimes (and list of tags) can therefore also vary when

processing the same image twice.

Because of the dynamic approach for deciding how many images to use

(Chapter 5.1), the runtimes will vary depending on how many useable and

non-usable images that are in the result set. Non-usable images are images

from users that already have images in the result set (Chapter 5.3) and im-

ages with one or zero tags (Chapter 5.4.1). Many non-usable images will

make the runtimes longer. The runtimes will also be longer for query images

that have few relevant images available because more search requests are

needed to find relevant images (by increasing radius as shown in Table 5.2).

This can be seen in Figure 8.3 for LoCaTagr.

Figure 8.3 shows that the runtimes for LoCaTagr are shorter than average

for Image 1, 2, 3 and 6 that are from areas with many images compared to

the other images that have fewer relevant images available nearby. The run-

time of Image 9 and 10 for LoCaTagr is much longer than average. The rea-

son is that many images from the same set of a few users are available on

Flickr for these images, but overall few images from unique users are avail-

able. For example, for Image 10, a total of 789 images are processed, but

75

only 24 of these are used by LoCaTagr.

SimpleTagr is by far the fastest system. The runtimes of this system is also

very stable (4 to 7 seconds). This is because the system only performs one

search request to Flickr, and tag processing is very limited.

The runtimes of SpiritTagger are only approximates since they are measured

manually using its web interface. However, the results indicate that Spirit-

Tagger is a few seconds faster than LoCaTagr on average. This can be seen

in Figure 8.4 with the average run-time of LoCaTagr to the left and the av-

erage run-time of SpiritTagger to the right.

Figure 8.3 – Runtime in seconds for LoCaTagr and

the three comparison systems for the images dis-

cussed in the evaluation (Image 1A – Image 10). The

runtimes can vary with several seconds for each time

the systems are run. Further, the measurements of

SpiritTagger are only approximates.

0

5

10

15

20

25

30

35

40

45

1A 1B 2 3 4 5 6 7 8 9 10

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

76

Figure 8.4 – Average runtime in seconds for LoCa-

Tagr and the three comparison systems for Image

1A - 10. The measurements of SpiritTagger are only

approximates.

8.4.12 Place names

As discussed in Chapter 4.4, place names can vary in accuracy from conti-

nent to neighborhood or street name. Place names are therefore not dis-

cussed and evaluated in detail in this work. The results indicate that all the

four systems are able to tag the images with mostly correct place names.

The systems also finds around the same amount of place names averagely.

This can be seen in Figure 8.5 which is an overview of the different types of

tags found by LoCaTagr and the three comparison systems (the blue parts of

the bars representing place names are roughly equally big). Figure 8.6 dis-

plays the results of Figure 8.5 in percentage with regards to the total number

of tags found by each system.

8.4.13 Summary

The number of tags found by each of the four systems is summarized in Ta-

ble 8.7, and the average is listed in Table 8.8. The results are also shown

graphically in Figure 8.5, 8.6, 8.9, 8.10 and 8.11.

LoCaTagr finds around 6 relevant tags for each image on average. Further, a

noisy tag is found averagely in every 0.36 image (or around 1 noisy tag in

each image if the unsure tags are regarded as noisy). From Table 8.7 it is al-

so noticeable that at least 3 relevant tags are found for each image and that

no more than one noisy tag is found for the same image. Five of the eleven

images have neither noisy nor unsure tags resulting in perfect precision

scores.

0

5

10

15

20

25

LoCaTagr LoTagr SimpleTagr SpiritTagger

77

Figure 8.5 – Overview of different types of tags

found by LoCaTagr and the three comparison sys-

tems for Image 1 – 10.

Figure 8.6 – Percentage of different types of tags

found by LoCaTagr and the three comparison sys-

tems for Image 1 – 10.

0

50

100

150

200

250

LoCaTagr LoTagr SimpleTagr SpiritTagger

Place names

Noisy

Unsure

Relevant

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

LoCaTagr LoTagr SimpleTagr SpiritTagger

Place names

Noisy

Unsure

Relevant

78

LoTagr generally finds fewer tags per image than LoCaTagr (8.73 compared

to 11.36). However, it finds 1.82 noisy tags per image compared to 0.36 in

LoCaTagr. Further, only 2.36 relevant tags per image are found by LoTagr

compared to 6.09 in LoCaTagr. This remarkably better performance by Lo-

CaTagr compared to a similar system not using categories is a strong indica-

tion that usage of categories is beneficial for automatic image tagging sys-

tems.

SimpleTagr performs worse than LoTagr. This is not surprising as LoTagr

use more advanced methods (e.g. tag filtering, restrict usage from same us-

ers). Another thing to take notice of concerning SimpleTagr is that the num-

ber of tags found varies a lot between each image (from 4 to 33) as can be

seen in Table 8.7 and Figure 8.9.

LoTagr and SimpleTagr have precision scores at 0.00 for some images,

which mean that they do not find any relevant tags for these images. This

can be seen in Figure 8.10 and 8.11, which are graphical overviews of the

two precision scores.

It must be mentioned that some of the tags found by LoCaTagr (and LoTagr

and SimpleTagr) are representing the same thing only in different languages.

However, this only applies to Image 4, 5 and 7 which are taken in countries

where English is not the native language. Further, this also applies similarly

to SpiritTagger in Image 5.

SpiritTagger gets the lowest precision scores of all systems as shown in Fig-

ure 8.10 and 8.11. However, as previously discussed, the calculation of pre-

cision scores are not fair to SpiritTagger as it always suggests exactly 20

tags for each image and is a system suggesting tags rather than assigning

tags automatically.

Therefore, it can be more interesting to look at number of relevant tags

found or suggested averagely per image (Table 8.8). SpiritTagger suggests

more than double as many relevant tags as SimpleTagr for each image ave-

ragely, and around 48 percent more than LoTagr. However, even though

SpiritTagger on average nearly suggest double as many tags as LoCaTagr

finds, it is only able to suggest 3.50 relevant tags averagely per image com-

pared to the 6.09 relevant tags found with LoCaTagr. This is also shown

graphically in Figure 8.5 and 8.6.

However, SpiritTagger were able to suggest some interesting tags for some

of the images that the other systems did not find (e.g. architecture, sky and

City). These tags are probably found from visually similar images and

shows that the use of content-based image analysis is useful. It would there-

fore be very interesting to combine the two approaches. It is possible that

the category approach could lower the high noise rate in SpiritTagger, and

assist in selecting relevant tags.

Finally it should be mentioned that only a small set of images is tested and

evaluated in this thesis. The images used in the evaluation are only exam-

79

ples. However, results from other images have shown to give similar results.

Type

 Image

System
1A 1B 2 3 4 5 6 7 8 9 10

Total LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

12

7

6

20

15

10

8

20

5

5

9

20

16

10

8

20

14

9

4

20

11

7

11

20

8

5

4

20

14

10

17

-

6

9

6

20

11

12

33

20

13

12

5

20

Place

names

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

5

4

4

7

5

5

4

7

2

2

3

3

8

5

4

7

4

5

3

3

6

4

4

2

3

4

3

2

4

2

9

-

3

4

3

3

2

2

5

5

4

4

4

4

Rele-

vant

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

5

1

1

5

6

1

1

6

3

3

3

6

7

3

3

4

8

4

0

2

5

0

0

2

3

0

0

6

10

1

3

-

3

2

1

3

8

7

7

1

9

4

0

0

Unsure

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

2

2

1

3

3

3

2

5

0

0

0

3

1

1

0

1

1

0

0

3

0

0

0

3

1

1

1

5

0

2

0

-

0

0

0

3

0

0

6

3

0

0

0

3

Noisy

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

0

0

0

5

1

1

1

2

0

0

3

8

0

1

1

8

1

0

1

12

0

3

7

13

1

0

0

7

0

5

5

-

0

3

2

11

1

3

15

11

0

4

1

13

Preci-

sion1

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

0.71

0.33

0.50

0.38

0.60

0.20

0.25

0.46

1.00

1.00

0.50

0.35

0.88

0.60

0.75

0.31

0.80

1.00

0.00

0.12

1.00

0.00

0.00

0.11

0.60

0.00

0.00

0.33

1.00

0.13

0.38

-

1.00

0.40

0.33

0.18

0.89

0.70

0.25

0.07

1.00

0.50

0.00

0.00

Preci-

sion2

LoCaTagr

LoTagr

SimpleTagr

SpiritTagger

1.00

1.00

1.00

0.62

0.90

0.80

0.75

0.85

1.00

1.00

0.50

0.53

1.00

0.80

0.75

0.38

0.90

1.00

0.00

0.29

1.00

0.00

0.00

0.28

0.80

1.00

1.00

0.61

1.00

0.38

0.38

-

1.00

0.40

0.33

0.35

0.89

0.70

0.46

0.27

1.00

0.50

0.00

0.19

Table 8.7 – The number of different types of tags

and precision scores for each system and image.

These results are shown graphically in Figure 8.9,

8.10 and 8.11.

Type

System
Total

tags

Place

names

Rele-

vant

Unsure Noisy Preci-

sion1

Preci-

sion2

LoCaTagr 11.36 4.18 6.09 0.73 0.36 0.86 0.95

LoTagr 8.73 3.73 2.36 0.82 1.82 0.44 0.69

SimpleTagr 10.09 4.18 1.73 0.91 3.27 0.27 0.47

SpiritTagger 20 4.30 3.50 3.20 9.00 0.23 0.44

Table 8.8 – The average (arithmetic mean) of the dif-

ferent types of tags for each system. SpiritTagger did

not suggest any tags for Image 7. Therefore the av-

erage is based on 10 images for SpiritTagger and on

11 images for the other systems.

80

Figure 8.9 – Graphical overview of number of tags

for LoCaTagr and the three comparison systems for

Image 1A - 10. The numbers to the left are number

of tags.

0

20

40

60

80

100

120

140

160

180

200

Lo
C

a
T

a
g

r

Lo
T

a
g

r

S
im

p
le

T
a

g
r

S
p

ir
it

T
a

g
g

e
r

Lo
C

a
T

a
g

r

Lo
T

a
g

r

S
im

p
le

T
a

g
r

S
p

ir
it

T
a

g
g

e
r

Lo
C

a
T

a
g

r

Lo
T

a
g

r

S
im

p
le

T
a

g
r

S
p

ir
it

T
a

g
g

e
r

Lo
C

a
T

a
g

r

Lo
T

a
g

r

S
im

p
le

T
a

g
r

S
p

ir
it

T
a

g
g

e
r

Lo
C

a
T

a
g

r

Lo
T

a
g

r

S
im

p
le

T
a

g
r

S
p

ir
it

T
a

g
g

e
r

Total Place names Relevant Unsure Noisy

10

9

8

7

6

5

4

3

2

1B

1A

81

Figure 8.10 – Graphical overview of Precision1 for

LoCaTagr and the three comparison systems. The

unsure tags are regarded as noisy.

Figure 8.11 – Graphical overview of Precision2 for

LoCaTagr and the three comparison systems. The

unsure tags are regarded as relevant.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

LoCaTagr LoTagr SimpleTagr SpiritTagger

Precision1

1A

1B

2

3

4

5

6

7

8

9

10

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

LoCaTagr LoTagr SimpleTagr SpiritTagger

Precision2

1A

1B

2

3

4

5

6

7

8

9

10

82

83

Chapter 9

Future Work

In this chapter, some possible future work will be discussed.

Content-based image analysis could as already discussed be interesting for

detecting tags that can be seen visually on the image. SpiritTagger is able to

suggest some interesting tags (night in Image 8, blue in Image 5 and some

tags such as architecture, sky and city in Image 1B, 2, 3 and 6) that most

likely are found by using visual similarity techniques. LoCaTagr is only able

to tag things that are already tagged on relevant images nearby, i.e. it is not

able to tag special things occurring on images such as the taxi in Image 1A

and 1B. It would therefore be interesting to extend the category approach

using location and date/time to also take use of content-based image analy-

sis. It could be possible that content-based image analysis is more usable for

some categories than other categories, and therefore the system can put

more weight on content-based image analysis for these kinds of images. The

evaluation indicated that the system using content-based image analysis per-

formed better than LoCaTagr for overview images (Image 6).

Another interesting approach to investigate would be to use several catego-

ries for the same image. This would be especially interesting for Image 1

(both 1A and 1B) as use of all the categories tower, bus and taxi for this im-

age could lead to many relevant tags as shown in Table 8.1. However, ask-

ing the users to provide several categories might not be the best option as it

would require much from users of the system (although it could be option-

al). Therefore, automatic categorization (discussed in next paragraph) seems

like a requirement for using several categories.

Automatic categorization would prevent the need for users to specify cate-

gories. It could be based on content-based image analysis and/or on the

work in [16] which is able to categorize tags. A possibility would then be to

categorize an image based on the categories of its most frequent tags. Place

names could have to be discarded by using external sources such as Geo-

Names as they are probably not convenient to categorize. Further, geo-

referenced articles or other external sources could possibly be used to find

out that for example Big Ben is a tower (as Big Ben is likely to be the most

84

frequent tag for images nearby the tower). It is interesting to see that LoTagr

(which do not use categories) could have been able to categorize some of

the images discussed in the evaluation by taking the most frequent tag that is

not a place name (Image 1A, 2, 3, 4 and 9). However, problems arise when

the image is geo-referenced at distance from the attraction (Image 1B and

6), when there are many attractions at the same place (Image 5), and for

events happening at places where other type of events also occurs (Image 7,

8 and 10). Therefore, more advanced methods would be needed and overall

this might be very difficult to solve.

LoCaTagr does not take use of external information sources regarding

weather information and place names. It is possible that categories can be

helpful when using this kind of information. For example, weather informa-

tion can be more relevant for certain categories than for other categories.

Further, the accuracy of location names could possibly be handled different-

ly based on categories (e.g. natural for one category to use street name whe-

reas another category should rather use country name instead or in addition

to street name).

Another possible extension of LoCaTagr is to use tag ranking instead of us-

ing just the most frequently used tags. Taking the most frequent tags could

just give the most commonly used tags, which are not necessarily the best or

most relevant tags for an image. Therefore, use of some sort of ranking me-

thod or algorithm to favor relevant tags and/or prevent unrelated tags from

being used could be interesting. Systems using visual similarity techniques

usually give some kind of score of how similar the images are to the query

image. Images with low similarity score are likely to not be relevant and the

tags from these images can be discarded. In this work, the three metadata

sources available to work with are category, date/time and location. Catego-

ry is impossible or hard to rank because it makes little sense to rank based

on category as it is difficult to decide whether one category is better or more

relevant than another. However, a ranking system favoring the images that

are closest to the query image both in location and time could be interesting.

Information about altitude and compass/direction could be used to favor im-

ages taken around the same altitude and in the same direction as the query

image higher than images with different altitude and direction. This could

for example make it possible to distinguish images taken at the top of Eiffel

Tower or a cliff from images taken at the bottom of Eiffel Tower or a cliff.

Further, images taken at the exact same position in the same direction can be

regarded as more relevant than images taken in the opposite direction. This

would be very useful for Image 1B and Image 3. It would require a magnet-

ic compass, and that the cardinal point and altitude gets stored in the EXIF-

header together with the GPS coordinates (latitude and longitude).

Language can be a problem for images taken in countries where English is

not the native language. This can occur if users have tagged images on

Flickr with a tag in two (or more) different languages as the results for Im-

age 4 and 5 demonstrate. The question is then if both tags should be used, or

which language to use. Some way to translate tags would be needed to solve

85

this problem, and some way to remove duplicate tags (e.g. blue and bleu).

But it should also be possible for French users to search for bleu. This is a

complicated problem.

Other implementation specific things that could be improved:

• Better user interface for categorizing images. For example it should

be possible to categorize several images in one operation.

• Saving the tags found with LoCaTagr to the EXIF-header of the im-

age instead of just displaying them in a table on the web interface.

Displaying the tags in a table on the web interface is chosen for now

as the system is only a prototype for testing purposes.

• Allow the possibility to manually geo-reference images on a map

like in Flickr and Panoramio.

• Use more sources such as Panoramio in addition to Flickr (for find-

ing relevant images and tags).

• Allow the possibility of manually specifying the event categories

more detailed. For example specify exactly how long the event is

and when it is, and whether the event is repeated or not. This would

also require that LoCaTagr takes use of the provided information.

• Optimize the implementation with regards to performance (run-

time). The runtime can probably be lowered significantly as the per-

formance have not been prioritized.

86

87

Chapter 10

Conclusion

In this master thesis, LoCaTagr, a location, category and time-based auto-

matic image tagging system using Flickr, have been designed and imple-

mented. LoCaTagr is able to find relevant tags for a query image as long as

there are a sufficient number of geo-referenced and already tagged images

available on Flickr that is relevant for the query image. The query image

must be geo-referenced, have date/time of image capture available, and the

user must provide an image category.

LoCaTagr handles images based on which category the images belongs to,

i.e. it is handled the best way to handle images in that specific category. This

means that images of objects or places are handled differently than images

from events.

The evaluation demonstrates that LoCaTagr finds very few noisy tags (0.36

per image) despite using a noisy image database. The noise level is kept low

because the category approach restricts the usage of images that are not re-

levant. Further, usage of tags from same users is restricted and the system

utilizes a dynamic approach for using many images when possible, and few-

er images when not many relevant images are found.

The evaluation further indicates that LoCaTagr is able to find around 3 to 10

relevant tags for each image. LoCaTagr generally performs very good com-

pared to baseline image tagging systems using only location. It performs es-

pecially good compared to systems using only location for events, for im-

ages geo-referenced at distance from the attraction, and when there are other

attractions located nearby the attraction on the image.

It also performs very good compared to SpiritTagger, which use both loca-

tion and content-based image analysis. However, content-based image anal-

ysis proved to be useful for detecting certain tags such as architecture, sky

and city. This shows that visual similarity techniques can be used to detect

tags which are not necessarily linked directly to the image category or loca-

tion. It would therefore be very interesting to combine the category ap-

proach with content-based image analysis to make even better automatic

88

image tagging systems.

The hypothesis was that “using categories together with location and

date/time will result in more relevant and less non-relevant tags than by us-

ing other approaches”. This work has shown that using image categories is

beneficial when tagging images compared to baseline systems using only

location. The category approach also works good compared to a system us-

ing content-based image analysis. This thesis is therefore an indication that

the hypothesis can be verified, although there might exist other approaches

that work at a similar or better level.

89

References

1. Datta, R., Dhiraj, J., Li, J., Wang, J. Z., Image retrieval: Ideas, influences,

and trends of the new age. ACM Computing Surveys, 2008. Vol. 40(No. 2): p.

Article 5.

2. Karlsen, R. and B. Jakobsen, Image centric information collection. To be

published, 2010.

3. Jakobsen, B., Collecting relevant images context information. Master's Thesis

in Computer Science at Faculty of Science and Technology, Department of

Computer Science, University of Tromsø, 2010.

4. Ames, M. and M. Naaman, Why we tag: Motivations for annotation in mobile

and online media. In proceedings of the SIGCHI conference on Human

Factors in computing systems (CHI 2007), 2007.

5. Dey, A.K., Understanding and Using Context. Personal Ubiquitous Comput.

5, 1, 2001: p. 4-7.

6. Arnold, W.M.S., Content-Based Image Retrieval at the End of the Early

Years. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2000. 22: p. 1349-1380.

7. Moxley, E., J. Kleban, and B.S. Manjunath, Spirittagger: a geo-aware tag

suggestion tool mined from flickr, in Proceeding of the 1st ACM international

conference on Multimedia information retrieval. 2008, ACM: Vancouver,

British Columbia, Canada. p. 24-30.

8. Wang, X.-J., et al., AnnoSearch: Image Auto-Annotation by Search, in

Proceedings of the 2006 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition - Volume 2. 2006, IEEE Computer Society. p.

1483-1490.

9. Naaman, M., et al., Context data in geo-referenced digital photo collections,

in Proceedings of the 12th annual ACM international conference on

Multimedia. 2004, ACM: New York, NY, USA. p. 196-203.

10. Ahern, S., et al., ZoneTag: Designing Context-Aware Mobile Media Capture

to Increase Participation. Proceedings of the Pervasive Image Capture and

Sharing: New Social Practises and Implications for Technology Workshop at

the Eight International Conference on Ubiquitous Computing (UbiComp

2006), 2006.

11. Larsen, J.E. and M. Luniewski, Using mobile phone contextual information to

facilitate managing image collections. {PIM} 2009 : Personal information

intersections: What happens when {PIM} spaces overlap?, 2009: p. 73 - 75.

90

12. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., and Jain, R., Content-

based image Retrieval at the End of the Early Years. IEEE Trans. Pattern

Anal. Mach. Intell. 22, 12, 2000: p. 1349-1380.

13. Rosch, E., et al., Basic objects in natural categories. Cognitive Psychology,

1976. 8(3): p. 382-439.

14. Miller, G.A., WordNet: A Lexical Database for English. Communications of

the ACM, 1995. Vol. 38(No. 11): p. 39-41.

15. Popescu, A., et al., MonuAnno: automatic annotation of georeferenced

landmarks images, in Proceeding of the ACM International Conference on

Image and Video Retrieval. 2009, ACM: Santorini, Fira, Greece. p. 1-8.

16. Rattenbury, T., N. Good, and M. Naaman, Towards automatic extraction of

event and place semantics from flickr tags, in Proceedings of the 30th annual

international ACM SIGIR conference on Research and development in

information retrieval. 2007, ACM: Amsterdam, The Netherlands. p. 103-110.

17. Wang, C., D. Blei, and L. Fei-Fei, Simultaneous image classification and

annotation. IEEE Conference on Computer Vision and Pattern Recognition

2009: p. 1903-1910.

18. Sigurbjornsson, B. and R.v. Zwol, Flickr tag recommendation based on

collective knowledge, in Proceeding of the 17th international conference on

World Wide Web. 2008, ACM: Beijing, China. p. 327-336.

19. Graham, A., et al., Time as essence for photo browsing through personal

digital libraries, in Proceedings of the 2nd ACM/IEEE-CS joint conference

on Digital libraries. 2002, ACM: Portland, Oregon, USA. p. 326-335.

20. Quack, T., B. Leibe, and L.V. Gool, World-scale mining of objects and events

from community photo collections, in Proceedings of the 2008 international

conference on Content-based image and video retrieval. 2008, ACM: Niagara

Falls, Canada. p. 47-56.

21. Kennedy, L.S., S.-F. Chang, and I.V. Kozintsev, To search or to label?:

predicting the performance of search-based automatic image classifiers, in

Proceedings of the 8th ACM international workshop on Multimedia

information retrieval. 2006, ACM: Santa Barbara, California, USA. p. 249-

258.

22. Pros, B., J. Schoning, and A. Kruger, iPiccer: automatically retrieving and

inferring tagged location information from web repositories, in Proceedings

of the 11th International Conference on Human-Computer Interaction with

Mobile Devices and Services. 2009, ACM: Bonn, Germany. p. 1-2.

91

Appendix A – List of images

Images used to test and evaluate LoCaTagr:

• Image 1: http://www.flickr.com/photos/mariosp/3641861357/

• Image 2: http://www.flickr.com/photos/97964364@N00/335307270/

• Image 3: http://www.flickr.com/photos/maong/1962604968/

• Image 4: http://www.flickr.com/photos/aikijuanma/163201333/

• Image 5: http://www.flickr.com/photos/baro/4288426933/

• Image 6: http://www.flickr.com/photos/ijansch/3094101740/

• Image 7: http://www.flickr.com/photos/adriagarcia/3697657996/

• Image 8: http://www.flickr.com/photos/metalchris/3689265502/

• Image 9: http://www.flickr.com/photos/auravox/3701612535/

• Image 10: http://www.flickr.com/photos/thelastminute/4398615662/

All the images used are under a Creative Commons license
29

 allowing

usage, editing and distribution as long as the source is listed.

Note that GPS coordinates and date/time have been added to the EXIF-

header of these images. Therefore, the manually inserted values might not

correlate with the actual location and time of image capture.

The images listed above (with added GPS coordinates and date/time) can be

used as example images on the web interface. The images are named as fol-

lowing:

• Image 1A: big_ben.jpg

• Image 1B: big_ben2.jpg

• Image 2: eiffel_tower.jpg

• Image 3: london_eye.jpg

• Image 4: ishavskatedralen.jpg

• Image 5: cineaqua.jpg

• Image 6: paris_overview.jpg

• Image 7: u2_camp_nou.jpg

• Image 8: independence_day.jpg

• Image 9: roskilde_2009.jpg

• Image 10: olympics_2010.jpg

Note that the image names are only for convenience. LoCaTagr does not

take advantage of the information provided in the image names.

29

 http://creativecommons.org/licenses

92

Appendix B – LoCaTagr code

The LoCaTagr code follows. API keys and secrets are removed and replaced

with (removed) in the code.

import EXIF

import datetime

import sys

import unicodedata

import flickrapi

import urllib

import time

INITIAL_REQ_IMAGES ==== 50 # The initial number of required images in result set

LIMIT_FACTOR ==== 10 # The limit factor of required images

START_RADIUS ==== 0.001 # The radius to start the image search with

RADIUS_MULTIPLIER ==== 2.0 # The multiplier used to increase radius

MAX_FLICKR_RADIUS ==== 32 # The maximum allowed radius in Flickr

FREQUENCY_LIMIT ==== 0.20 # The limit on how big the frequency must

 # be for a tag to be considered relevant

TAG_FILTER ==== (((("geotagged",,,, "",,,, "metadata",,,, "flickr'd",,,, "flickr",,,, "latitude",,,,

 "longitude",,,, "nikon"))))

Read GPS coordinates and date from EXIF-record of a .jpg file

Gene Cash's EXIF.py library 1.1.1 is used

def getEXIFgetEXIFgetEXIFgetEXIF((((filename):):):):

 lat ==== 1

 lon ==== 1

 date ==== 1

 file ==== open((((filename))))

 exif ==== EXIF....process_file((((file,,,, details ==== False))))

 for e in exif....keys():():():():

 # Retrieve GPS coordinates

 if e ======== "GPS GPSLatitude"::::

 l ==== str((((exif[[[[e].].].].values[[[[2]).]).]).]).split(((("/"))))

 # Support cases where coordinates are not fractions

 if len((((l)))) ======== 2::::

 l ==== ((((float((((l[[[[0])])])]) //// float((((l[[[[1]))/]))/]))/]))/60.0

 else::::

 l ==== float((((l[[[[0])/])/])/])/60.0

 l ==== ((((l ++++ float((((str((((exif[[[[e].].].].values[[[[1])))])))])))]))) //// 60.0

 lat ==== lat **** ((((int((((str((((exif[[[[e].].].].values[[[[0]))]))]))])) ++++ l))))

 elif e ======== "GPS GPSLongitude"::::

93

 l ==== str((((exif[[[[e].].].].values[[[[2]).]).]).]).split(((("/"))))

 # Support cases where coordinates are not fractions

 if len((((l)))) ======== 2::::

 l ==== ((((float((((l[[[[0])])])]) //// float((((l[[[[1]))/]))/]))/]))/60.0

 else::::

 l ==== float((((l[[[[0])/])/])/])/60.0

 l ==== ((((l ++++ float((((str((((exif[[[[e].].].].values[[[[1])))])))])))]))) //// 60.0

 lon ==== lon **** ((((int((((str((((exif[[[[e].].].].values[[[[0]))]))]))])) ++++ l))))

 # Change to negative numbers (if south or west)

 elif e ======== "GPS GPSLatitudeRef"::::

 if str((((exif[[[[e].].].].values[[[[0])])])]) ======== "S"::::

 lat ==== lat **** ((((----1))))

 elif e ======== "GPS GPSLongitudeRef"::::

 if str((((exif[[[[e].].].].values[[[[0])])])]) ======== "W"::::

 lon ==== lon **** ((((----1))))

 # Retrieve date

 elif e ======== "EXIF DateTimeOriginal"::::

 date ==== str((((exif[[[[e].].].].values))))

 return lat,,,, lon,,,, date

Returns a list of synonyms of "word" (including word itself)

STANDS4 Web Services - Synonyms API v1 is used

def get_synonymsget_synonymsget_synonymsget_synonyms((((word):):):):

 url ==== "http://www.abbreviations.com/services/v1/syno.aspx?tokenid=(removed)&word="

 ++++ word....replace((((" ",,,, "%20"))))

 response ==== urllib....urlopen((((url).).).).read()()()()

 lindex ==== response....find(((("<synonyms>"))))

 rindex ==== response....find(((("</synonyms>"))))

 list_of_synonyms ==== response[[[[lindex++++10::::rindex].].].].replace((((",",,,, " OR "))))

 if list_of_synonyms and ((((list_of_synonyms !=!=!=!= word):):):):

 # Add the word itself also to the list of synonyms

list_of_synonyms ==== word ++++ " OR " ++++ list_of_synonyms

 else::::

 # Did not find any synonyms (use only “word”)

 list_of_synonyms ==== word

 return list_of_synonyms

Return search parameters to use based on main category (cat)

def category_handlercategory_handlercategory_handlercategory_handler((((cat,,,, sub_cat,,,, date):):):):

 # The text to use when searching Flickr

 query_text ==== ""

 if ((((cat ======== "object")))) or ((((cat ======== "place"):):):):

 # Use images from all dates

94

 min_taken_date ==== "1900-01-01 00:00:00";;;;

 max_taken_date ==== "2020-06-30 23:59:59";;;;

 # Use sub-category as search parameter

 # ... and use all synonyms of the sub-category

 query_text ==== get_synonyms((((sub_cat))))

 elif cat....split(((("_")[)[)[)[0]]]] ======== "event"::::

 # Initialize date and time variables

 d ==== date....split((((" ")[)[)[)[0].].].].split((((":"))))

 d ==== datetime....date((((int((((d[[[[0]),]),]),]), int((((d[[[[1]),]),]),]), int((((d[[[[2]))]))]))]))

 t ==== date....split((((" ")[)[)[)[1].].].].split((((":"))))

 t ==== datetime....time((((int((((t[[[[0]),]),]),]), int((((t[[[[1]),]),]),]), int((((t[[[[2]))]))]))]))

 date ==== datetime....datetime....combine((((d,,,, t))))

 # Differentiate between short and long events

 if cat....split(((("_")[)[)[)[1]]]] ======== "short"::::

 days ==== 1 # The number of days to change the date with

 #query_text = "" # Do not use sub-category as search parameter

 elif cat....split(((("_")[)[)[)[1]]]] ======== "long"::::

 days ==== 30 # The number of days to change the date with

 # Use sub-category as search parameter

 # ... and use all synonyms of the sub-category

 query_text ==== get_synonyms((((sub_cat))))

 else::::

 raise "Fatal error, unknown category"

 # Make a time interval using "days" variable

 delta ==== datetime....timedelta((((days))))

 # Set dates based on time interval

 min_taken_date ==== str((((date ---- delta))))

 max_taken_date ==== str((((date ++++ delta))))

 # Used for LoTagr

 elif cat ======== "simple"::::

 min_taken_date ==== "1900-01-01 00:00:00";;;;

 max_taken_date ==== "2020-06-30 23:59:59";;;;

 query_text ==== ""

 else::::

 raise "Fatal error, unknown category"

 return query_text,,,, min_taken_date,,,, max_taken_date

Search Flickr for images and store their tags

Returns a list of tags and amount of images used

def searchsearchsearchsearch((((flickr,,,, lat,,,, lon,,,, query_text,,,, min_taken_date,,,, max_taken_date):):):):

95

 tags ==== [][][][] # The output (tags and their frequency)

 id_list ==== [][][][] # List of image id's (used to ensure that each image is processed only once)

 user_list ==== [][][][] # List of user id's that have at least one image in result set

 users_tag_list ==== [][][][] # List of users and their tags

(used to prevent usage of same tag more than once per user)

 images_used ==== 0 # Number of used images = size of result set

 total_images_used ==== 0 # Total number of images (including several per user and those with no tags)

 page_nr ==== 1 # The page number of the result page to start the search with

 radius ==== START_RADIUS # The radius to use in the search

 # The search process will continue until this number is reached

required_images ==== INITIAL_REQ_IMAGES

Search while not enough images in result set

 while images_used <<<< required_images::::

 # Search for images on flickr

 try::::

new_set ==== flickr....photos_search((((extras===="tags",,,, page====page_nr,,,, per_page====250,,,,

text====query_text,,,, min_taken_date====min_taken_date,,,,

max_taken_date====max_taken_date,,,, lat====lat,,,, lon====lon,,,, radius====radius))))

 except::::

 # Operation timed out, try again (happens occasionally...)

 try::::

new_set ==== flickr....photos_search((((extras===="tags",,,, page====page_nr,,,, per_page====250,,,,

text====query_text,,,, min_taken_date====min_taken_date,,,,

max_taken_date====max_taken_date,,,, lat====lat,,,, lon====lon,,,, radius====radius))))

 except::::

 raise "Problem with Flickr, please try again..."

 # Locate image set

 new_set ==== new_set....getchildren()[()[()[()[0].].].].getchildren()()()()

 # For each image

 for image in new_set::::

 # Ensure that same image is not used more than once

 image_id ==== image....get(((("id"))))

 if image_id not in id_list::::

 id_list....append((((image_id))))

 # Collect list of tags of this image

 list_of_tags ==== image....get(((("tags"))))

 # Encode all characters to ascii

 list_of_tags ==== unicodedata....normalize(((('NFKD',,,, unicode((((list_of_tags))))))))

....encode(((('ascii',,,,'ignore'))))

 # Add user to user list

 user ==== ((((image....get(((("owner"))))))))

 if user not in user_list::::

96

 user_list....append((((user))))

 users_tag_list....append((((((((user,,,, []))[]))[]))[]))

 # Increase images used

 # (but only if more than 1 tag is available)

 if len((((list_of_tags....split((((" ")))))))) >>>> 1::::

 images_used +=+=+=+= 1

 # Process each tag in list of tags

 for tag in list_of_tags....split((((" "):):):):

 # Check if the tag already exists in result set

 tag_exist ==== False # Assume it does not exist initially

 for k in tags::::

 if k[[[[1]]]] ======== tag::::

 # The tag does exist in result set

 tag_exist ==== True

 # Only use tag if it is not added before from same user

 for i in users_tag_list::::

 # Locate users tag list

 if i[[[[0]]]] ======== user::::

 if tag not in i[[[[1]:]:]:]:

 # Add tag (increase frequency)

 tags....remove((((((((k[[[[0],],],], tag))))))))

 tags....append((((((((k[[[[0]+]+]+]+1,,,, tag))))))))

 # Add tag to users tag list

 i[[[[1].].].].append((((tag))))

 # End user search

 break

 # End processing of current tag

 break

 # Add tag with frequency 1 if it does not already exist in result set

 if not tag_exist::::

 tags....append((((((((1,,,, tag))))))))

 # Increse total images used (only for statistics)

 total_images_used +=+=+=+= 1

 # End image search process if enough images are processed

 if images_used >=>=>=>= required_images::::

 break

 # Go to next result page (if possible)

 if len((((new_set)))) ======== 250::::

 page_nr +=+=+=+= 1

 # Else do a new search with increased radius

 else::::

97

 # Increase radius

 radius ==== radius **** RADIUS_MULTIPLIER

 # Lower required images

 required_images ==== required_images ---- ((((required_images////LIMIT_FACTOR))))

 # New search will be performed, so begin at first result page

 page_nr ==== 1

 # Change radius to whole number for convenience

 if radius ======== 1.024::::

 radius ==== 1

 # Ensure that maximum radius is not exceeded

 if radius >>>> MAX_FLICKR_RADIUS::::

 required_images ==== 0

 print "Used " ++++ str((((images_used)))) ++++ " (" ++++ str((((total_images_used)+)+)+)+ ") images with radius at "

++++ str((((radius////RADIUS_MULTIPLIER)))) ++++ " km"

 # Return list of tags and number of images used

 return tags,,,, images_used

Filter out tags from the tag filter and tags with low frequency

def tag_filteringtag_filteringtag_filteringtag_filtering((((tags,,,, nr_of_images):):):):

 # Tags with lower frequency than min_freq will be filtered

 min_freq ==== nr_of_images **** FREQUENCY_LIMIT

 # Filter tags

 for i in list((((tags):):):):

 if i[[[[1]]]] in TAG_FILTER::::

 tags....remove((((i))))

 elif i[[[[0]]]] <=<=<=<= min_freq::::

 tags....remove((((i))))

 return tags

Handle whitespaces

def handle_whitespaceshandle_whitespaceshandle_whitespaceshandle_whitespaces((((tags):):):):

 # Search for duplicates like "Big Ben" and "BigBen"

 for i in tags::::

 for j in tags::::

 if j[[[[1]]]] !=!=!=!= i[[[[1]:]:]:]:

 if ((((j[[[[1].].].].replace((((" ",,,, "")))) ======== i[[[[1])])])]) |||| ((((i[[[[1].].].].replace((((" ",,,, "")))) ======== j[[[[1]):]):]):]):

 # Remove the two duplicate tags from the list

 tags....remove((((i))))

 tags....remove((((j))))

98

 # Add highest frequent tag with updated frequency

 if i[[[[0]]]] >=>=>=>= j[[[[0]:]:]:]:

 tags....append((((((((i[[[[0]+]+]+]+j[[[[0],],],], i[[[[1]))]))]))]))

 else::::

 tags....append((((((((i[[[[0]+]+]+]+j[[[[0],],],], j[[[[1]))]))]))]))

 # Break inner for loop (go to next tag)

 break

 return tag

Handle upper and lower cases

def handle_upper_and_lower_caseshandle_upper_and_lower_caseshandle_upper_and_lower_caseshandle_upper_and_lower_cases((((tags):):):):

 # Search for duplicates like "Big Ben" and "big ben"

 for i in tags::::

 for j in tags::::

 if j[[[[1]]]] !=!=!=!= i[[[[1]:]:]:]:

 if j[[[[1].].].].lower()()()() ======== i[[[[1].].].].lower():():():():

 # Remove the two duplicate tags from the list

 tags....remove((((i))))

 tags....remove((((j))))

 # Add highest frequent tag with updated frequency

 if i[[[[0]]]] >=>=>=>= j[[[[0]:]:]:]:

 tags....append((((((((i[[[[0]+]+]+]+j[[[[0],],],], i[[[[1]))]))]))]))

 else::::

 tags....append((((((((i[[[[0]+]+]+]+j[[[[0],],],], j[[[[1]))]))]))]))

 # Break inner for loop

 break

 return tags

Connect to FlickrAPI using my api_key and api_secret

def connect2flickraconnect2flickraconnect2flickraconnect2flickrapipipipi():():():():

 api_key ==== "(removed)"

 api_secret ==== "(removed)"

 return flickrapi....FlickrAPI((((api_key,,,, api_secret))))

Save the tags to disk

def storestorestorestore((((tags,,,, main,,,, sub,,,, id):):):):

 file ==== open(((("output/" ++++ main ++++ "__" ++++ id ++++ "__" ++++ sub ++++ ".txt",,,, "w"))))

 for i in tags::::

 file....write((((str((((i[[[[0])])])]) ++++ ":::" ++++ str((((i[[[[1])])])]) ++++ "\n"))))

 if len((((tags)))) ======== 0::::

 file....write(((("no tags found:::0\n"))))

 file....close()()()()

SimpleTagr

99

(One of the comparison systems)

def simple_tagrsimple_tagrsimple_tagrsimple_tagr((((lat,,,, lon):):):):

 flickr ==== connect2flickrapi()()()()

 tags ==== [][][][]

 new_set ==== flickr....photos_search((((extras===="tags",,,, radius ==== 10,,,, lat====lat,,,, lon====lon,,,, min_taken_date ====

"1900-01-01 00:00:00",,,, max_taken_date ==== "2020-06-30 23:59:59"))))

 new_set ==== new_set....getchildren()[()[()[()[0].].].].getchildren()()()()

 for image in new_set::::

 list_of_tags ==== image....get(((("tags").).).).lower()()()()

 for tag in list_of_tags....split((((" "):):):):

 tag ==== unicodedata....normalize(((('NFKD',,,, unicode((((tag)).)).)).)).encode(((('ascii',,,,'ignore'))))

 tag_exist ==== False # Does the tag already exist in the list?

 for k in tags::::

 # Check if tag already is in the list

 if k[[[[1]]]] ======== tag::::

 tag_exist ==== True # Mark that the tag exists in the list

 # Increase frequency of tag

 tags....remove((((((((k[[[[0],],],], tag))))))))

 tags....append((((((((k[[[[0]+]+]+]+1,,,, tag))))))))

 break # End processing of current tag (go to next tag)

 # Add the tag with frequency 1 if it does not exist from before

 if not tag_exist::::

 tags....append((((((((1,,,, tag))))))))

 # Sort and filter out tags with low frequencies

 tags....sort((((reverse====True))))

 for i in list((((tags):):):):

 if i[[[[0]]]] <=<=<=<= ((((len((((new_set)))) * FREQUENCY LIMIT):):):):

 tags....remove((((i))))

 # Save results to file

 file ==== open(((("output/simpletagr.txt",,,, "w"))))

 for i in tags::::

 file....write((((str((((i[[[[0])])])]) ++++ ":::" ++++ str((((i[[[[1])])])]) ++++ "\n"))))

 file....close()()()()

The main function

if __name__ ======== "__main__"::::

 # Store start time

 time_taken ==== time....time()()()()

 # Retrieve GPS coordinates and date

 if sys....argv[[[[1]]]] ======== "noimage"::::

 # Date, lat and lon passed directly as parameters

 lat ==== sys....argv[[[[4]]]]

 lon ==== sys....argv[[[[5]]]]

 date ==== sys....argv[[[[6]]]] ++++ " 12:00:00"

100

 elif sys....argv[[[[1]]]] ======== "image"::::

 # Add upload folder to specified image

 query_image ==== "upload/" ++++ sys....argv[[[[4].].].].lower()()()()

 # Read EXIF-record of query image

 lat,,,, lon,,,, date ==== getEXIF((((query_image))))

 if 1 in ((((lat,,,, lon,,,, date):):):):

 print "Error reading EXIF-record..."

 print "Are you sure GPS coordinates and date is available in EXIF-header?"

 sys....exit()()()()

 # Perform the simple comparison system (SimpleTagr)

 elif sys....argv[[[[1]]]] ======== "simpletagr"::::

 if sys....argv[[[[2].].].].split((((".")[)[)[)[1].].].].isdigit():():():():

 lat ==== sys....argv[[[[2]]]]

 lon ==== sys....argv[[[[3]]]]

 else::::

 lat,,,, lon,,,, date ==== getEXIF(((("upload/" ++++ sys....argv[[[[2].].].].lower())())())())

 simple_tagr((((lat,,,, lon))))

 print "SimpleTagr used " ++++ str((((round((((((((time....time()()()() ---- time_taken),),),), 1)))))))) ++++ " seconds."

 sys....exit()()()() # No need to do more

 else::::

 print "Fatal error, wrong parameters"

 sys....exit()()()()

 # Read category parameters

 main_cat ==== sys....argv[[[[2].].].].lower()()()()

 sub_cat ==== sys....argv[[[[3].].].].lower()()()()

 # Connect to flickrapi

 flickr ==== connect2flickrapi()()()()

 # Start the category handler

 query_text,,,, min_taken_date,,,, max_taken_date ==== category_handler((((main_cat,,,, sub_cat,,,, date))))

 # Start the search process

 tags,,,, images_used ==== search((((flickr,,,, lat,,,, lon,,,, query_text,,,, min_taken_date,,,, max_taken_date))))

 # Tag processing

 tags ==== handle_whitespaces((((tags)))) # Handle whitespaces

 tags ==== handle_upper_and_lower_cases((((tags)))) # Handle upper/lower cases

 tags ==== tag_filtering((((tags,,,, images_used)))) # Tag filtering

 tags....sort((((reverse====True)))) # Sort tags

 # Store list of tags to disk

 store((((tags,,,, main_cat,,,, sub_cat,,,, sys....argv[[[[4])])])])

 # Calculate and output time taken

 time_taken ==== round((((((((time....time()()()() ---- time_taken),),),), 1))))

 print " and it took " ++++ str((((time_taken)))) ++++ " seconds."

101

Appendix C – Web interface code

The web interface code consists of 10 files:

1. index.html

2. menu.html

3. useexample.pl

4. usequery.pl

5. upload.pl

6. manually.pl

7. runscript.pl

8. example_images.pl

9. newcat.pl

10. makecat.pl

C.1 index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head> <meta http-equiv="Content-Type" content="text/html; charset=utf-

8"></meta><title>LoCaTagr</title> </head>

<body bgcolor="#2786C4">

<center> <h1>LoCaTagr</h1> </center>

<div style="background:transparent; border-top:5px solid #000000; width:1000px;"></div>

<div style="position: absolute; width: 164px; height: 538px; z-index: 1; left: 12px; top:

130px" id="layer1">

<table style="border-collapse: collapse" width="200" border="3" bordercolor=black cellpad-

ding="7" cellspacing="0">

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Home</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

example image</center></td>

102

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

with query image</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

without image</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Download example images</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Make a

new category</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Help</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">About</center></td>

 </tr>

</table>

</div>

<div style="position: absolute; width: 896px; height: 538px; z-index: 2; left: 250px; top:

130px" id="layer2">

<p>

LoCaTagr is an automatic image tagging system using location, category

and date to find a set of (hopefully) relevant tags for your image.

</p>

<p>

You need to provide a geo-referenced image and an image category.

New image categories can be made if the image does not fit into one

of the existing categories.

</p>

<p>

You can either

 - use one of the provided example images

 - use one of your own images (must have have GPS and date in its EXIF header)

 - plot GPS coordinates and dates manually without using any image

103

 - download the provided example images and use them as query images (i.e. the

 same as using one of the provided example images)

</p>

<p>

LoCaTagr use images on Flickr as basis for tagging the query image.

Therefore, there must be enough images available on Flickr that is relevant

for your image before LoCaTagr is able to tag your image with relevant tags.

</p>

<p>

Regarding the performance, it is important to remember that this website is

currently a prototype running LoCaTagr and the two comparison systems LoTagr

and SimpleTagr. The runtime can therefore seem long as it can take around a

minute to compute results for all the three systems. Further, as mentioned

in the implementation, LoCaTagr is not optimized with regards to performance.

</p>

<p>

This site works best with Firefox.

It is also known to work with Google Chrome, Safari and Internet Explorer.

(Opera is currently not supported).

</p>

<p>

The project is made as part of a master thesis in Computer Science.

Master thesis: Automatic Image Tagging

based on Context Information.

The work is part of the CAIM project.

Made by Martin HÃ¦tta Evertsen

Contact: mhe023@post.uit.no

</p>

</div>

</body>

</html>

104

C.2 menu.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head> <meta http-equiv="Content-Type" content="text/html; charset=utf-

8"></meta><title>LoCaTagr</title> </head>

<body bgcolor="#2786C4">

<center> <h1>LoCaTagr</h1> </center>

<div style="background:transparent; border-top:5px solid #000000; width:1000px;"></div>

<div style="position: absolute; width: 164px; height: 538px; z-index: 1; left: 12px; top:

130px" id="layer1">

<table style="border-collapse: collapse" width="200" border="3" bordercolor=black cellpad-

ding="7" cellspacing="0">

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Home</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

example image</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

with query image</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Use

without image</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Download example images</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center>Make a

new category</center></td>

 </tr>

105

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">Help</center></td>

 </tr>

 <tr>

 <td bgcolor="#2377AF">

 <center><font col-

or="#000000">About</center></td>

 </tr>

</table>

</div>

<div style="position: absolute; width: 896px; height: 538px; z-index: 2; left: 250px; top:

130px" id="layer2">

106

C.3 useexample.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Make form displaying example images

$html = "

 <p>Please choose one of the provided example images</p>

 <form action='upload.pl' method='post'

 enctype='multipart/form-data'>

 <p> <select name = 'photo'>

";

print $html;

@files = <verified_examples/*.jpg>;

foreach $file (@files) {

 @names = split("/", $file);

 $name = @names[1];

 print "<option value = $name>$name</option>";

}

 print '<p><input type="hidden" name="do_upload" value="no"/></p>';

 print "<input type='submit' name='Submit' value='Select' />";

 print "</form>";

print "</div>";

print "</body>";

print "</html>";

107

C.4 usequery.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Make form for specifying query image

$html = '

Please specify your query image...

<form action="upload.pl" method="post"

enctype="multipart/form-data">

 <p><input type="file" name="photo" /></p>

 <p><input type="submit" name="Submit" value="Upload" /></p>

</form>

</div>

</body>

</html>

';

print $html;

108

C.5 upload.pl

#!c:/perl/bin/perl.exe

use CGI;

use File::Basename;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Set and retrieve variables

$CGI::POST_MAX = 1024 * 5000;

$safe_filename_characters = "a-zA-Z0-9_.-";

$upload_dir = "upload";

$query = new CGI;

$filename = $query->param("photo");

$do_upload = $query->param("do_upload");

Special case when using example images

if ($do_upload eq "no") {

 $folder = "verified_examples";

}

Regular file upload

else {

 if (!$filename) {

 print "There was a problem uploading your image (try a smaller file).";

 exit;

 }

 $folder = "upload";

 ($name, $path, $extension) = fileparse ($filename, '\..*');

 $filename = $name . $extension;

 $filename =~ tr/ /_/; # Change whitespace to underline

 $filename =~ s/[^$safe_filename_characters]//g;

 if ($filename =~ /^([$safe_filename_characters]+)$/) {

 $filename = $1;

 } else {

 die "Filename contains invalid characters";

 }

 $upload_filehandle = $query->upload("photo");

 open (UPLOADFILE, ">$upload_dir/$filename") or die "$!";

 binmode UPLOADFILE;

109

 while (<$upload_filehandle>) {

 print UPLOADFILE;

 }

 close UPLOADFILE;

 print "<p>Image successfully uploaded to server!</p> ";

}

Make form for choosing category

$html = "

 <p></p>

 <form action='runscript.pl' method='post'

 enctype='multipart/form-data'>

 <p>Please specify the image category</p>

 <p> <select name = 'sub'>

";

print $html;

Read categories

open FILE, "categories.txt";

@lines = <FILE>;

close FILE;

@lines = sort @lines; # Sort categories

Display categories

for $item (@lines) {

 @tuple = split(":::", $item);

 print "<option value = \"$tuple[0]\">$tuple[0]</option>";

}

$html =

"

 <input type='hidden' name='file' value=$filename>

 <input type='hidden' name='date' value='nodate'>

 <input type='submit' name='Submit' value='Find Tags!' />

 </form>

</div>

</body>

</html>

";

print $html;

110

C.6 runscript.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Collect input parameters

$query = new CGI;

$image = $query->param("file");

$sub = $query->param("sub");

$lat = $query->param("lat");

$lon = $query->param("lon");

$date = $query->param("date");

Retrieve main category using sub-category

open FILE, "categories.txt";

@lines = <FILE>;

close FILE;

for $item (@lines) {

 @tuple = split(":::", $item);

 if ($tuple[0] eq $sub) {

 $main = $tuple[1];

 chop($main);

 }

}

Print debug info

print "Processing the image...
";

print "(This can take several seconds, please wait...)";

print "

";

print "Main category: $main";

print "
";

print "Sub category: $sub";

print "
";

print "Image: $image";

print "

";

Start script on server ...

... either using query image

if ($date eq "nodate") {

 unlink("output/" . $main . "__" . $image . "__" . $sub .".txt");

 @ar = ('"LoCaTagr.py"', '"image"', '"' . $main . '"', '"' . $sub . '"', '"' . $image .

'"');

111

 $identifier = $image;

}

... or manually plotted GPS and date

else {

 unlink("output/" . $main . "__" . $lat . "__" . $sub .".txt");

 @ar = ('"LoCaTagr.py"', '"noimage"', '"' . $main . '"', '"' . $sub . '"', '"' . $lat .

'"', '"' . $lon . '"', '"' . $date . '"');

 $identifier = $lat;

}

system(@ar);

Read results from disk

open FILE, "output/" . $main . "__" . $identifier . "__" . $sub . ".txt";

@lines = <FILE>;

close FILE;

Dirty test to check if able to read from EXIF-header

if ($lines[0] eq "") {

 print "
Error, please try again!";

 print "
Make sure you have provided correct information";

} else {

 # Display table with list of tags

 print "
";

 print "
";

 print "Result:";

 print '<table style="border-collapse: collapse" width="200" bordercolor="#000000" bor-

der="3" cellpadding="5" cellspacing="0">';

 print "<tr>";

 print "<td><center>Tag</center></td>";

 print "<td><center>Frequency</center></td>";

 print "</tr>";

 for $item (@lines) {

 @tuple = split(":::", $item);

 print "<tr>";

 print "<td><center>$tuple[1]</center></td>";

 print "<td><center>$tuple[0]</center></td>";

 print "</tr>";

 }

 print "</table>";

 # Make comparison table

 print "

Comparison table will appear below shortly, please be pa-

tient...
";

112

 # Collect comparison results (LoTagr)

... either using query image ...

 if ($date eq "nodate") {

 @ar = ('"LoCaTagr.py"', '"image"', '"simple"', '"simple"', '"' . $image . '"');

 $identifier = $image;

 }

 # ... or manually plotted GPS and date

 else {

 @ar = ('"LoCaTagr.py"', '"noimage"', '"simple"', '"simple"', '"' . $lat . '"',

'"' . $lon . '"', '"' . $date . '"');

 $identifier = $lat;

 }

 system(@ar);

 # Collect comparison results (SimpleTagr)

... either using query image ...

 if ($date eq "nodate") {

 @ar = ('"LoCaTagr.py"', '"simpletagr"', '"' . $image . '"');

 }

 # ... or manually plotted GPS and date

 else {

 @ar = ('"LoCaTagr.py"', '"simpletagr"', '"' . $lat . '"', '"' . $lon . '"');

 }

 system(@ar);

 print "

";

 print "Comparison table";

 print '<table style="border-collapse: collapse" width="200" bordercolor="#000000" bor-

der="3" cellpadding="5" cellspacing="0">';

 print '<tr valign="top">';

 print "<td>";

 # Print results for LoCaTagr

 print '<table style="border-collapse: collapse" width="200" bordercolor="#000000" bor-

der="3" cellpadding="5" cellspacing="0">';

 print "<caption>LoCaTagr</caption>";

 print "<tr>";

 print "<td><center>Tag</center></td>";

 print "<td><center>Frequency</center></td>";

 print "</tr>";

 for $item (@lines) {

 @tuple = split(":::", $item);

 print "<tr>";

 print "<td><center>$tuple[1]</center></td>";

 print "<td><center>$tuple[0]</center></td>";

 print "</tr>";

 }

113

 print "</table>";

 print "</td>";

 print "<td>";

 # Print result for LoTagr

 open FILE, "output/simple__" . $identifier . "__simple.txt";

 @lines = <FILE>;

 close FILE;

 print '<table style="border-collapse: collapse" width="200" bordercolor="#000000" bor-

der="3" cellpadding="5" cellspacing="0">';

 print "<caption>LoTagr</caption>";

 print "<tr>";

 print "<td><center>Tag</center></td>";

 print "<td><center>Frequency</center></td>";

 print "</tr>";

 for $item (@lines) {

 @tuple = split(":::", $item);

 print "<tr>";

 print "<td><center>$tuple[1]</center></td>";

 print "<td><center>$tuple[0]</center></td>";

 print "</tr>";

 }

 print "</table>";

 print "</td>";

 print "<td>";

 # Print results for SimpleTagr

 open FILE, "output/simpletagr.txt";

 @lines = <FILE>;

 close FILE;

 print '<table style="border-collapse: collapse" width="200" bordercolor="#000000" bor-

der="3" cellpadding="5" cellspacing="0">';

 print "<caption>SimpleTagr</caption>";

 print "<tr>";

 print "<td><center>Tag</center></td>";

 print "<td><center>Frequency</center></td>";

 print "</tr>";

 for $item (@lines) {

 @tuple = split(":::", $item);

 print "<tr>";

 print "<td><center>$tuple[1]</center></td>";

 print "<td><center>$tuple[0]</center></td>";

114

 print "</tr>";

 }

 print "</table>";

 print "</td>";

 print "</tr>";

 print "</table>";

} # end of else from return value

print "
</div></body></html>\n";

115

C.7 manually.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Make form allowing the user to plot GPS and date manually

my $html =

'

Plot GPS coordinates and date manually

<form action="runscript.pl" method="post"

enctype="multipart/form-data">

 <p>Latitude (DDD.DDDD): <input type="text" name="lat" /></p>

 <p>Longitude (DDD.DDDD): <input type="text" name="lon" /></p>

 <p>Date (YYYY:MM:DD): <input type="text" name="date" /></p>

 <p>Category: <select name = "sub"> /></p>

';

print $html;

Read and display categories

open FILE, "categories.txt";

@lines = <FILE>;

close FILE;

@lines = sort @lines; # Sort categories

for $item (@lines) {

 @tuple = split(":::", $item);

 print "<option value = \"$tuple[0]\">$tuple[0] </option>";

}

$html = '

 <p><input type="hidden" name="file" value="not using any image"/></p>

 <p><input type="submit" name="Submit" value="Find Tags!" /></p>

</form>

 GPS coordinates must be in decimal degree form.

 Click

 here

 to find GPS coordinates.

116

 </div>

 </body>

 </html>

';

print $html;

117

C.8 example_images.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Print example images

print "<p>Example images:
</p> ";

@files = <verified_examples/*.jpg>;

foreach $file (@files) {

 print "<p></p>";

 @tuple = split("/", $file);

 print "<p>$tuple[1]</p>";

 print "
</br>";

 print "
</br>";

}

print "</div></body></html>\n";

118

C.9 newcat.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Make form for making new category

$html =

'

Create new category

<form action="makecat.pl" method="post"

enctype="multipart/form-data">

 <p>Category name: <input type="text" name="sub" /></p>

 <p>Main Category: <select name = "main">

 <option value = "object">Object</option>

 <option value = "place">Place</option>

 <option value = "event_short">Event (short-lasting, e.g. concert)</option>

 <option value = "event_long">Event (long-lasting, e.g. festival)</option>

 </select></p>

 <input type="submit" name="Submit" value="Make new category" />

</form>

';

print $html;

Make form for deleting categories

Read categories

open FILE, "categories.txt";

@lines = <FILE>;

close FILE;

@lines = sort @lines; # Sort categories

print "

";

print '<form action="makecat.pl" method="post"';

print 'enctype="multipart/form-data">';

print 'Delete existing category';

print "<p> <select name = 'sub'>";

Display categories

for $item (@lines) {

 @tuple = split(":::", $item);

119

 print "<option value = \"$tuple[0]\">$tuple[0]</option>";

}

 print "<input type='hidden' name='main' value='delete'>";

 print '<input type="submit" name="Submit" value="Delete category" />';

print '</form>';

print "</div></body></html>\n";

120

C.10 makecat.pl

#!c:/perl/bin/perl.exe

use CGI;

print "Content-Type: text/html\n\n";

Make menu

open FILE, "menu.html";

@lines = <FILE>;

close FILE;

for $line (@lines) {

 print $line;

}

Collect input

$query = new CGI;

$main = $query->param("main");

$sub = $query->param("sub");

$sub =~ s/^\s+//; # Remove leading spaces

$sub =~ s/\s+$//; # Remove trailing spaces

$sub =~ y/A-Z/a-z/; # Make all letters lowercase

$sub =~ s/\b(\w)/\U$1/g; # Capitalize

Read existing categories

open FILE, "categories.txt";

@lines = <FILE>;

close FILE;

Delete or create mode

if ($main eq "delete") {

 open FILE, ">categories.txt";

 for $item (@lines) {

 @tuple = split(":::", $item);

 if ($tuple[0] eq $sub) {

 # Do not insert it again

 }

 else {

 print FILE "$tuple[0]" . ":::" . "$tuple[1]";

 }

 }

 close FILE;

 print "Category deleted!";

}

else { # Create mode

 # Check if category already exist

 $already_exist = "False";

 for $item (@lines) {

 @tuple = split(":::", $item);

 if ($tuple[0] eq $sub) {

 $already_exist = "True";

121

 }

 }

 # Do not allow whitespace only

 if ($sub eq "") {

 print "Category cannot consist of just whitespace!";

 }

 # Add category if it does not exist from before

 elsif ($already_exist eq "False") {

 open (MYFILE, '>>categories.txt');

 print MYFILE "$sub" . ":::" . "$main\n";

 close (MYFILE);

 print "Category made successfully!";

 print "
";

 print "You can not select your category from the list of categories.";

 }

 else {

 print "Category already exist!";

 }

}

print "</div></body></html>\n";

