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Evolutionarily Stable Seasonal Timing for Insects

with Competition for Renewable Resource
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資源獲得競争による昆虫の鰐化および蝋化の ES $S$ タイミング

九州大学理学部生物学科 江副日出夫

I study the evolutionarily stable seasonal patterns of hatching and pupation for

herbivorous insects that engage in exploitative competition for a renewable resource.

Longer larval feeding period enhances female fecundity, but also causes a higher

mortality by predation and parasitism. Previously, it was shown that the

evolutionarily stable population includes asynchronous starting and ending of larval

feeding period in a model in which larvaJ growth rate decreases with the total larval

biomass in the population due presumably to interference competition. Here I

study the case in which resource availability changes not only with environmental

seasonality but also with the depletion by the feeding of larvae. If the environment

for host plants changes fast, the ESS insect population may include synchronous

timing of hatching and pupation. If the impact of the herbivory is strong compared

with the speed of seasonal change of the environment, both hatching and pupation

should occur asynchronously in the ESS. In addition, if the environmental variable

changes as a symmetric function of time, the length of period in which hatching

occurs tends to be much shorter than the period in which pupation occurs.
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Introduction

Insects living in temperate regions have widely diverse life histories

adapted to seasonality of the environment. Closely related species or even

populations of the same species may sometimes show greatly different life history

patterns, especially over latitudinal gradient (Danks 1987; Kidokoro&Masaki 1978;

Masaki 1980; Furunishi&Masaki 1982; Sota 1987, 1998, 1994; Tauber et al. 1986).

Diversity in phenology, or seasonality in life cycle, may partially attribute to the

escape from the coldness during winter which may often require winter diapause.

Phenology is also related with seasonally changing resource availability, as well

as coldness in winter, possibly modified by seasonalily changing risk of predation

and parasitism. Shapiro (1975) for example studied the phenology of eight

univoltine oak-feeding lepidopterans in the New Jersey pine barrens and observed

that all the eight species have their feeding larval stages in spring in spite of great

differences among them in the adult season or in the overwintering stage.

In this paper, I study the evolutionarily stable insect life cycle under

exploitative competition, in which the dynamics of resource availability are

included explicitly. The resource (or host plant) availability increases by growth

and decreases by herbivory. By mathematical and numerical analysis I show that

whether hatching and pupation occur synchronously depends both on the

intensity of herbivory and on the rate of seasonal change of the environment.

Specifically both pupation and hatching occur synchronously in the ESS

population if the feeding larval density is small and if the environnent changes

quickly, but they occur asynchronously if the impact of herbivory is strong

compared with seasonal change of the environment. In addition, if $bo$th hatching

and pupation occur asynchronously, the interval during which some pupation

occur every day is likely to be much longer than a similar interval for hatching.
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Model

Consider a population of herbivorous insects, the larvae of which feed on

host plants with seasonal availability. Suppose that each larva in the population is

indexed by $i$ . The growth rate in the body weight $W_{i}$ of a feeding larva $i$ on day $t$ is,

$\frac{dW_{i}}{dt}=aR(t)W_{i}$ (1)

where $a$ is a constant for growth efficiency. Function $R(t)$ is the abundance of host

plants or resource availability. The initial size of larvae is assumed a constant $w_{0}$

which is given by the egg size.

Host plants expand their leaves and shoots for photosynthesis, which may

be damaged by feeding larvae. Abundance of host plants $R(t)$ changes with time

as follows:

$\frac{dR}{dt}=\{r(1-\frac{R}{K(t)})-bB\}R$ (2)

where $B(t)$ denotes total biomass of feeding larvae in the population. Equation 2

implies that, when there is no herbivory, resource level $R(t)$ follows a logistic

equation with intrinsic reproductive rate $r$ and carrying capacity $K(t)$ .

In the model, a life history schedule of a larva is specified by its hatching

date and pupation date, i.e. the start and the end of active feeding. To indicate the

life cycle timing of an individual, I here introduce a feeding activity schedule

instead of those two dates. The strategy of individual $i$ is represented by function
$\sigma_{i}=\sigma_{i}(t)$ such as $\sigma_{i}$ is equal to unity when it is fully active in feeding on day $t$ ,

zero when it is inactive, and takes a value between zero and unity for an

intermediate level of feeding activity. A similar formulation was used for activity

schedule ofmale frogs in the study on the seasonal pattern of sex ratio (Iwasa&
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Odendaal, 1984), for mate searching activity for male butterflies within a day

(Iwasa&Obara, 1989), for sex expression in discussing sex change evolution

(Iwasa, $1991b$), as well as for feeding activity of butterfly larvae (Iwasa, $1991a$).

By using $\sigma_{i}$ , Equation 1 can be rewritten as the following equation, which

holds over the whole season $[0, T]$ :

$\frac{dW_{i}}{dt}=aR(t)W_{i}\sigma_{i}$ (3a)

together with the initial condition:

$W_{i}(0)=w_{0}$ (3b)

Since $W_{i}$ does not change before hatching, $W_{i}$ on the hatching day is the same as

$w_{0}$ from Equation $3b$ .

Total biomass of feeding larvae $B(t)$ in the population is the sum of weight of

all larvae multiplied by the survivorship to day $t$ and the activity on that day $\sigma_{i}(t)$ ;

$B(t)= \sum_{i}W_{i}(t)\sigma_{i}(t)\exp(-m\int_{0^{t}}\sigma_{i}(t)dt)$ (4)

Constant $m$ is the daily mortality of an actively feeding larva. Note that the sun in

Equation 4 needs to be calculated for all the individuals included in the initial

population with population size $N_{0}$ . I here assume that mortality in inactive

stages is negligibly small relative to $m$ .

I assume that fecundity, or the expected number of eggs which an adult

female can lay, is proportional to its pupation size, the final body weight of larvae

(forjustification of this assumption, see Iwasa, $1991a$; Iwasa et al., 1992, 1994). In

particular it is equal to $W_{i}(T)$ of the solution of Equation $3a$ , because $W$ does not
change with time after pupation date (i.e. during $\sigma_{i}(t)=0$ ). The fecundity is equal

to $QW_{i}(T)/w_{0}$ , where $w_{0}$ is weight of an egg and $Q$ is a proportionality constant.
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This multiplied by the larval survivorship is the fitness of an individual adopting

strategy $\sigma_{i}$ :

$\phi(\sigma_{i})=Q\frac{W_{i}(T)}{w_{0}}\exp(-m\int_{0^{T}}\sigma_{i}(t)dt)$ (5)

where $\phi$ is the functional of function $\sigma_{i}$ ( $\bullet$ ). In the evolutionarily stable

population, each individual chooses its own schedule of feeding activity $\sigma_{i}$ so as to

maximize its fitness $\phi(\sigma_{i})$ .

Calculating derivative of Equation 5 and using Equation $3a$, I can derive

$\phi(\sigma_{i})=Q\exp[\int_{0^{T}}(aR(t)-m)\sigma_{i}(t)dt]$ (6b)

When $R(t)$ is given, Equation $6b$ is maximized by choosing $\sigma_{i}(t)$ as follows:

$aR(t)-m>0\Leftrightarrow\sigma_{i}=1$ (7a)

$aR(t)-m<0\Leftrightarrow\sigma_{i}=0$ (7化)

$aR(t)-m=0\Leftrightarrow$ $\sigma_{i}$ may have any value

between zero and one. (7c)

In the ESS population, each individual must have the fitness that is no

smaller than the fitness for any mutants that invade in small abundance in the

population. Hence I can conclude that all of the members in the population must

satisfy Equations $7a,$ $7b$ , and $7c$ , which indicate that all the individuals must

engage in active feeding when the resource availability $R(t)$ exceeds $m/a$ , all

should stay inactive when $R(t)$ is less than $m/a$ , and actively feeding and inactive

individuals can coexist simultaneously only when $R(t)$ equals to $m/a$ . Then $f_{i}$ is

the same between individuals for all $t$ , and I remove the suffix $i$ of $f_{i}(t)$ in the

following. It is followed that Equation 4 and Equation $6a$ are rewritten as

B(t)=N0f=\mbox{\boldmath $\sigma$}テ (8)

and
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(10)

$\phi(\sigma_{i})=Q\exp[j_{0^{T}}(aR(t)-m)\overline{\sigma}(t)dt]$ (9)

respectively. In Equation 8, $N_{0}$ denotes the initial population of eggs at the start of

the season and $\overline{\sigma}=\overline{\sigma}(t)$ is the population average of $\sigma_{i}$ , and I call it “average

activity“ on day $t$ . Then Equation 2 can be rewritten as:

$\frac{dR}{dt}=\{r(1-\frac{R}{K(t)})-bN_{0}\ulcorner\sigma\}R$

Specifically I assume that a season favourable for growth of host plant lasts

from the beginning $(t=0)$ to date $T_{f}(T_{f}<T)$ , during which carrying capacity $K(t)$

$hasasinglepeakK_{1}>m/a$ . $AfterT_{f},$ $K(t)isasmallvaluesatisfyingK_{0}<m/a$ .

Specifically I choose

$K(t)= \{K_{0}+\frac{K_{1}^{K_{0}}-K_{0}}{2}(1-\cos\frac{2\pi tt<}{T})0,$
$or_{0<t<T_{f}}t>T_{f}$ (11)

The evolutionarily stable patterns for typical cases are shown in Fig. 1 and

Fig. 2. Figure la illustrates the case in which the impact of herbivory by the larvae

on host plants is large. The season is composed of five phases. In the beginning of

the season, both carrying capacity $K(t)$ and the resource availability $R(t)$ are low.

Then $K(t)$ starts increasing and resource level $R(t)$ increases following $K(t)$ with

some time delay. When $R(t)$ reaches a critical level $m/a$ , on day $t_{1}$ , some fraction

of eggs hatches on that day. However in this particular example, some fraction of

eggs remains unhatched and they hatch asynchronously over a period from $t_{1}$ to $t_{2}$

, WhichI call’hatching interval’. This is the second phase. $Ont_{2},$ $alltheeggs$

finish hatching and then engage in active feeding as larvae. This third phase of

full growth ends on day $t_{3}$ , on which some fraction of surviving larvae enters

pupation. However the others remain feeding larvae and they turn to pupae

asynchronously over some period from $t_{3}$ to $t_{4}$ , which I call ’pupation interval“.
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During this fourth phase, resource availability $R(t)$ remain constant $m/a$ . On $t_{4}$ ,

all the larvae finish pupation and thereafter they experience non-feeding stages

(pupa, adult, and egg), the timing of which is out of concern of our present model.

In addition, this asynchronisation also occurs if the rate of change in carrying

capacity $K(t)$ is fast compared with intrinsic growth rate $r$ and growth efficiency of

larva $a$ .
In Fig. la hatching and pupation occur asynchronously. During hatching

and pupation intervals, the resource availability remains constant $(R(t)=m/a)$

and the biomass of actively feeding larvae $B(t)$ is equal to

$B^{*}(t)= \frac{r}{b}(1-\frac{m}{aK(t)})$ (12)

which can be determined only by carrying capacity function $K(t)$ . This curve is

illustrated in Fig. la by a broken line. On the first date of hatching interval $t_{1},$ $K(t)$

is greater than $R(t)=m/a$ , then $B(t)$ discontinuously changes from zero to $B^{*}(t_{1})>0$ .

The last date of hatching interval $t_{2}$ is derived from $B^{*}(t_{2})=N_{0}w_{0}$. Note that those

individuals hatching early do not change its expected biomass during hatching

intervals, because gain by growth and loss by mortality cancel with each other

exactly. Similarly if the day for beginning of pupation $t_{3},$ $B(t)$ is greater than $B^{*}(t)$ ,

$B(t)$ discontinuously goes down to $B^{r}(t_{3})$ . The last date of pupation interval $t_{4}$ is

obtained from $B(t_{4})=0$ .
If the impact of herbivory by the larvae to host plants is not very strong,

either hatching or pupation or both occur synchronously. Figure lb is the

phenology of the ESS population in which hatching occurs synchronously but

pupation occurs asynchronously. When $R(t)$ reaches a critical level $m/a$ on day

$t_{1}$ , the total biomass of the insect population may be smaller than the value given

by Equation 12 on that day:



71

$N_{0}w_{0} \leq\frac{r}{b}(1-\frac{m}{aK(t_{1})})$ (13)

Then all the eggs hatch synchronously and hatching interval does not exist.

Inequality 13 can be satisfied if the egg biomass of the insect $N_{0}w_{0}$ is sufficiently

small. This is likely to be the case if the rate of change in seasonal carrying

capacity $K(t)$ is fast (Fig. $2b$), because $K(t)$ becomes quite large on the day at which

resource availability reaches the prescribed level $m/a$ .

Figure lc illustrates the case in which not only hatching but also pupation

occurs synchronously. Whether or not the pupation occurs asynchronously in the

ESS population should also depend on the impact of the herbivory on host plants.

During the period in which all the individuals should engage in active feeding, the

resource availability should be larger than $m/a$ . After the peak season, the

resource availability starts to decline with time. The date $t_{3}$ on which fully active

feeding ends is determined as a date on which $R(t)$ becomes equal to $m/a$ . If the

impact of the insect feeding on the resource is very $smaU,$ $R(t)$ is larger than $K(t)$ ,

as the resource availability decreases following the decline of carrying capacity

$K(t)$ with some time delay. Hence, we have

$K(t_{3}) \leq\frac{m}{a}$

(14)

then $B^{*}(t_{3})$ is negative. Consequently $t_{3}$ is later than the date $t_{4}$ on which Equation

14 becomes zero. This implies that all the larvae should pupate on the same day

synchronously (Fig. lc). If instead the impact of feeding larvae on the food plant is

strong, resource availability is smaller than the carrying capacity on day $t_{3}$ , and

then there is a pupation interval, as is the case for Fig. la and lb. Whether or not

pupation occurs asynchronously is determined by the relative magnitude of $R(t_{3})$

and $K(t_{3})$ , which in turn reflects the impact of herbivory relative to the rate of

change in seasonal environment.
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Discussion

In this paper I studied the evolutionarily stable pattern of hatching and

pupation within a population of insects which engage in intraspecific exploitative

competition for seasonally changing resource. I found that the hatching and

pupation timing are synchronous in the evolutionarily stable population if

seasonal environment changes rapidly and if the impact of herbivory by the

insects on host plants is small.

Previously, Iwasa (1991a) and Iwasa et al. (1994) studied the evolutionarily

stable seasonal timing of hatching and pupation by theoretical models in which

the larval growth rate is simply assumed as a decreasing function of the biomass

of feeding larvae at that time. They concluded that the phenological timing of

insects is always asynchronous. In contrast the analysis in the present paper in

which the resource dynamics are traced explicitly shows that both pupation and

hatching can be synchronous if the impact of herbivory to the host plant

population is small or if the environmental change very rapidly. It also supports

the conclusion of the previous works that the pupation is more likely to occur

asynchronously than hatching.

A similar idea of evolutionarily stable timing under competition for

resource has been developed for modelling seasonality in leaf expanding activity

for terrestrial plants. Harada&Takada (1988) studied optimal timing of leaf

expansion and shedding of deciduous trees with competition by shading in a

model with two layers of leaves, and found that the optimal schedule is different

between the two layers, which engage in asymmetric competition. Sakai (1992)

studied the evolutionarily stable timing of leaf expansion for equivalent

competitors, and found that the schedule of leaf expansion and shedding is

synchronous when their competition is not very strong, but both leaf expansion
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and shedding can be asynchronous under strong competition for light. This

conclusion is qualitatively similar to the one in this paper, although Sakai dealt

with the case in which no reproduction or growth of consumers (i.e. tree leaves) is

considered.
In this paper, I adopted several simplifying assunptions, some of which

may be removed in the future theoretical works. First, I assumed that daily

growth rate is proportional to the larval body weight in Equation 1 and that the

number of eggs female can lay is also proportional to its pupation weight in

Equation 4. However it is more plausible that female fecundity increases with her

body weight but saturates for a very large body weight. Second, the growth rate is

assumed to be proportional to the resource availability in Equation 1. In reality it

is more likely that the growth rate would saturate for very large resource

availability, and also that the saturation level would increase with the larval body

weight because larger larva is more mobile and is able to sequester more resource.

This effect was considered in Iwasa et al. $(1992, 1994)$ in a model without resource

dynamics. Third, the competitors may be sibs or half-sibs from the same clutch

laid by a single mother. Then we need the analysis including kin selection. These

modifications would be important future theoretical study of insect life cycle from

the view point of evolutionary ecology.
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Figure 1 ESS growth schedule for
different initial population size $N_{0}$ .
(a) $N_{0}=10x10^{6},$ $(b)N_{0}=10000$ , and
(c) $N_{0}=100$ . Other parameters are:
$T\ulcorner-100,$ $r=0.5,$ $a=0.2,$ $m=0.2,$ $b=1$ ,

$w_{0}=5.0x10- 7,$ $K_{1}=2.2,$ $K_{0}=0.2$ .

(b) Figure 2 ESS growth schedule
for shorter lengths of favorable
season for the host plant $T_{f}$.
Parameters are the same as in
Fig. la except (a) $T_{\overline{\ulcorner}}50$, and (b)

$T\ulcorner-20$ .


