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Abstract:

We consider a mathematical model which incorporates two factors affecting long-tern fluctuation

of planktotrophic pelagic fish: environmental fluctuation and interspecific competition. Long-

term catch data of pelagic fishes in Japan suggest that the chub mackerel (labeled A) was

replaced by the sardine (B), $B$ was replaced by the anchovy, Pacific saury and horse mackerel,

and these species (labeled group C) were replaced by A. If species A defeats $B,$ $B$ defeats $C$ and

$C$ defeats A in interspecific competitive ability, the mathematical model predicts that the

abundance of these three groups fluctuate forever and dominate in the cyclic order. We call this

cyclic advantage hypothesis for species replacement. In this model, environmental fluctuation

greatly affects when the next replacemtnt occurs, whereas cyclic relashionship in competitive

ability determines what is the next dominant.
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It is known that the catch abundance fluctuation of planktotrophic pelagic fishes is enormously

large (fig. 1). This fluctuation qualitatively reflects the stock abundance fluctuation from year to

year. The sardine (Sardinops melanostictus) was abundant in $1930s$ and in $1980s$ . The

anchovy(Engraulisjaponica), Pacific saury (Calorabis saira) and horse mackerels (Trachuns

japonica and Decapterus muroadsi) were abundant in ca. 1960 and they are becoming dominant

in 1990. The chub mackerel (Scomberjaponicus) was dominant in $1970s$ and is at a very low

stock level.

The purpose of this paper is to elucidate what is a major factor on such fluctuations.

Some considered that the fluctuation of environmental condition is important. When the sardine

increased rapidly in early $1930s$ and ca. 1980, the water temperature at the spawning area was

significantly high (Sugimoto pers.comm.). Other peOple considered that interspecific

relationships between these pelagic fishes are important. When the sardine stock declined in

$1940s$ and now, the anchovy, Pacific saury and horse mackerel increased. When these 3 species

decreased, in ca. 1970, the chub mackerel increased. When the chub mackerel decreased in

1980, the sardine became the dominant. It is called the species replacement of the pelagic fishes.

Some other people considered that both environmental fluctuation and species interaction

are important for the stock fluctuation. I agree to this argument. I will show that the species

interaction is a major factor on which species is the next dominant, and that the short-term

fluctuation of environment determines when the next replacement occurs. Our hypothesis is

called “the cyclic advantage hypothesis“ for the species replacement of the planktorrophic pelagic

fishes.

We have three questions: (1) Can we predict which fish will be the next dominant? Our

answer from the cyclic advantage hypothesis is “Yes.“ After the sardine began to decline, the

anchovy and other two species become to be the dominant. After the anchovy, the chub mackerel

is the dominant. Finally, the sardine comes back to be the dominant after the chub mackerel.
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Figure 1. The long-term fluctuation of catch amount of pelagic fishes in

Japan (Kawai&Takahashi 1983; Chikuni 1985, see also Matsuda et al.

$1992b)$

The second question is: (2) can we predict when the next species replacement occurs?

Our answer is said to be “No“ if the environmental fluctuation is not predictable. This decidedly

depends on the short-term fluctuation of environmental conditions. Our final question is: (3) can

we make an optimal harvesting policy for each fish independent of other fishes? Our answer is

$|No$ .“ The optimal harvesting policy for each fish depends on which fish is currently dominant.

When the sardine was dominant about several years ago, the future of chub mackerel was very

pessimistic. However, when the anchovy was dominant as recently, the future of chub mackerel

is a little bit optimistic.

There are at least four characteristic features of the long-term stock fluctuation of the

sardine: (1) This has a long $period|\dagger$ of fluctuation. About 50 years passed from the last peak

(ca. 1930) in the sardine stock to th$e$ last peak (ca. 1980), in spite of the fact that th$e$ generation

time of the sardine is two or three years. (2) The fluctuation has a long history, at least for about
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300 years. This suggests the stock fluctuation of the sardine is not induced by overexploitation.

(3) There is a huge variation of the peak to the bottom in the stock abundance. According to the

catch amount data, the ratio of the peak (1988: 4,490 kt) to the bottom (1967: 10 kt) is about450

fold. This, however, seems to be underestimation. According to the estimated annual egg

production, the peak (1986: 8985 billion $eggs/year$) is about 9,000 times larger than the bottom

(1970: 1 billion $eggs/year$) as shown in fig. 2. The forth characteristic feature is that (4) both

high-density phase and low-density phase are long. These continue for several generation time.

year (1950-89)

Figure 2. The long-term fluctuations of estimated annual egg

production of the sardine and chub mackerel in the Pacific $oc$ean off

Japan (compiled by the Fisheries Agency of Japan, see also Matsuda et

al. $1992a$)

From the viewpoint of population ecology, there are several dynamic models whic$h$ can

exhibit a permanent oscillation of stock abundance. The simplest model is the single population

dynamic model. It is known as Ricker’s equation in fisheries science:

$N_{t+1}=N_{t}\exp[r\langle 1-N_{t}/K)]$ , (1)

where $N_{t}$ and $N_{t+1}$ are respectively the stock abundances at the present and the next generations,

$r$ and $K$ respectively denotes the intrinsic rate of increase and the carrying capacity. If $r$ is

sufficiently large, this system exhibit a chaotic behavior with a permanent oscillation. The low
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density phase continues for several generations, increases rapidly and collapsed drasticaUy (fig.

$3a)$ . Figure $3b$ illustrates the reproduction curve of this system with the same parameter value as

in fig. $3a$. Note that, in this system, a high density phase can not continue for more than one

generation. Although we know a typical example of this dynamics in nature: Lemming dynamics

(Pitelka 1972), this does not explain the sardine‘s fluctuation.

(a) (b)

Figure 3. $(a)A$ simulated fluctuation and (b) the re-production curve

of the $Ricker^{I}s$ eqn (1). $r=4.5,$ $K=10$ .

Although somebody consider the two species model for the sardine‘s dynamics. The

Lotka-Volterra competition model is written as:

$dN_{1}/dt=(r_{1}-a_{11}N_{1}-a_{12}N_{2})N_{1}$ (2a)

$dN_{2}/dt=(r_{2}-a_{21}N_{1^{-}\% 2}N_{2})N_{2}$ (2b)

where $N_{i}$ denotes the stock abundance of species $i,$
$r_{i}$ is the intrinsic rate of increase of species $i$ ,

$a_{ij}$ is the competition coefficient of species $j$ from $i$ . This system, however, does not produce a

pemlanent oscillation: the two species coexist at an equilibrium state (fig. $4a$) or either species

wins (figs. $4b$ and $4c$).
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Figure 4. Phase diagrams of competition model (2): (a) two species
coexist at an equilibrium, (b) either species goes to extinction, and $(c)$

species 2 always wins. Closed and open circles are respectively stable and
unstable equilibria.

Lotka-Volterra prey-predator dynamics is written by

$dN/dt=(r-aN-bP)N$ (3a)

$dP/dt=(-\delta+bN)P$, (3b)

where $N$ and $P$ respectively denote the prey and predator abundances, $r,$ $a,$ $b$ and $\delta$ are positive

constants. It is well known that prey-predator dynamics produces permanent oscillations of

both, not either, prey and predator populations. However, we have no data of long-term

fluctuation of the prey or enemy of the sardine.Thus this does not explain the sardine’s

fluctuation either.

A system with two prey and one predator is written by

$dN_{1}/dt=(r_{1}-a_{11}N_{1}-a_{12}N_{2}-b_{1}P)N_{1}$ (4a)

$dN_{2}/dr=(r_{1}-a_{11}N_{1}-a_{12}N_{2}-b_{2}P)N_{2}$ (4b)

dI)/dt=(-\delta 十 $b_{1}N_{1}+b_{2}N_{2}$)$P$ (4c)

where $N_{1},$ $N_{2}$ and $P$ respectively denote the prey abundance of species 1, 2 and the predator

abundance. It is known that this system $c$an produce permanent oscillations of two prey, but the

predator density does not fluctuate very much (Fujii 1977). The parameter region which exhibits

such a pernanent fluctuation is very small.
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We propose the cyclic advantage model which consists of 3 competing species written as:

$N_{1}’=c_{1}+N_{1}\exp[r_{1}-a_{11}N_{1}-a_{12}N_{2}-a_{13}N_{3}]$ (5a)

$N_{2^{=c_{2}+N_{1}\exp[r_{2}-\% 1^{N_{1}-\% 2^{N_{2}-a_{23}N_{3}]}}}}’$ (5b)

$N_{3}’=c_{3}+N_{1}\exp[r_{3}-a_{31}N_{1}-a_{32}N_{2}-a_{33}N_{3}]$ (5c)

where $N_{i}$ and $N_{j}’$ respectively denote the stock abundance of species $i$ at the present and the next

generations, $c_{i}$ is a positive constant representing a constant immigration from outside, $r_{l}$ is the

intrinsic rate of increase of species $i$ and $a_{ij}$ is the competition coefficients of species $j$ from $i.$ . If

species 1 defeats 2, 2 defeats 3 and 3 defeats 1, these 3 species can fluctuate permanently (Gilpin

1975). In mathemati$c$al terms, these cyclic advantage conditions in competitive ability $wh$en $c_{i}$ is

sufficiently small are written $by;the$ following 6 inequalities:

$a_{12}r_{2}>a_{11}r_{1}>a_{13}r_{3}$ ($N_{2}\Uparrow,N_{3^{\Downarrow}}$ at $N_{1}=r_{1}/a_{11}$ ) (6a)

$\% 3^{r_{3^{>}\% 2^{r}2^{>}\% 1^{r_{1}(N_{3}\Uparrow,N_{1^{\Downarrow}}}}}$ at $N_{2}=r_{2^{/}\% 2)}$ (6b)

$a_{31^{\gamma}1^{>}\% 3^{\Gamma}3^{>a_{32}r_{2}(N_{1}\Uparrow,N_{2^{\Downarrow}}}}atN_{3}=r_{3\% 3}/$) (&)

The first two inequalities shown in the first line implies that species 2 increases and 3 does not

increases when species 1 is dominant and nearly reaches its carrying capacity, $r_{1}/a_{11}.Th\overline{e}$ second

line implies that species 1 does not increase but 3 increases when 2 is dominant. The last line

implies that species 2 does not increase but 1 increases when 3 is dominant.

We consider such a cyclic advantage relationship actually exists in pelagic fishes. The

three species are the sardine, anchovy and chub mackerel. In fig. 1, we summarized the

anchovy, Pacific saury and horse mackerel into a single group, because the $c$orrelation

coefficient in annual catch fluctuation of any pair of these three species are high (Table 1).
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In the previous models, we implicitly ignored the environmental fluctuation. However,

there is a large fluctuation of environmental conditions in nature. The environmental fluctuation

affects on the survival rate of pelagic fishes at an early life stage. For simplicity, we consider that

the rate of increase fluctuates due to environmental fluctuation from time to time, whereas the

competitive coefficients are assumed to be constant. Random fluctuation of environment is

expressed by

$r_{i}=r_{i^{*}}+f_{i}Z_{i}(t)$ , (7)

where $r_{i^{*}}$ is the average value of $r_{i},$ $f_{i}$ ig the amplitude of variation of $r_{i}$ , and $Z_{i}(t)$ is the time-

dependent random variable with no auto-correlation, which is called white noise. In computer

simulations, we choose $Z_{j}(t)$ as the unifolm random variable between-0.5 and 0.5.

Figure 5 illustrates resultant stock fluctuations from simulations with the same parameter

values of $r_{i^{*}}$ and $a_{\dot{\tau}j}$. Under a constant environment which corresponds a case where $f_{i}=0$ and $r_{i}$

$=r_{i^{*}}$ , the dynamic$a1$ behavior would be recognize$d$ as a limit cycle. The period of this cycle is

about 51 time units. The species replacement occurs in cyclic order, ABCABC... Under a

randomly fluctuating environment, the stock abundance unpredictably varied with time. Even a
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Figure 5. Simulations of the cyclic advantage model under (a) constant

environment and (b) randomly fluctuating environment. Parameter values are:

$(r_{1}, r_{2}, r_{3})=(0.9,0.8,0.7),$ $(a_{11},$ $a_{12},$ $a_{13},$ %1’ %2’ %3’ $a_{31},$ %2’ %3 $)$ =

$(0.2, 0.4, 0.1, 0.1, 0.2, 0.4, ().4,0.1,0.2),$ $c_{j}=0.02,$ $f_{i}=0$ for (a) and $f_{i}=1$

for (b).
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case when the survival rate at an early life stage (corresponding the value of $r_{i}$ ) fluctuates 10

times from year to ye$ar$ , the species replacement is infrequently and occurs in still cyclic order.

Th$e$ “period” of stock fluctuation is not constant; often falls in 6$()$ to 90 time units. That is why

we can not predict when the next replacement occurs but we can predict which is the next

dominant as mentioned above.

We have three major conclusions: (1) Th$e$ cyclic advantage hypothesis predicts which is

the next dominant. The sardine increases after the chub mackerel is dominant. The anchovy

increases after the sardine. The chub mackerel increases after the anchovy. This is testable. If the

sardine increases just after the anchovy is dominant, this hypothesis falls into error. This is

testable in the future in spite of the fact that long years must be required. (2) Cyclic advantage

$h$ypothesis $d$oes not predicts when the next replacement occurs, which depends on the short-

tern fluctuation of the environment. The environmental factor affects on the species replacement

as a tngger.

Furthermore, (3) species replacement of pelagic fishes is inevitable. We should not

expect a constant catch amount of each species every year. We should make a fish market which

demands the currently dominant fish species. Canadian and American people can consume the

Pacific saury when this is abundant. The mortality from exploitation is not significant when the

fish is dominant, but is critical when it is rare. Fishermen should focus their catch effort on the

currently dominant fishes.
$Y$

We would like to express sincere thanks to Dr T. Kishida and Ms T.Takahashi for

valuable comments an$d$ kindly helping throughout the study.
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