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Abstract

We find necessary and sufficient conditions for the foliation defined by
level sets of a function f(x1, ..., xn) to be totally geodesic in a torsion-free
connection and apply them to find the conditions for d-webs of hyper-
surfaces to be geodesic, and in the case of flat connections, for d-webs
(d ≥ n + 1) of hypersurfaces to be hyperplanar webs. These conditions
are systems of generalized Euler equations, and for flat connections we
give an explicit construction of their solutions.

1 Introduction

In this paper we study necessary and sufficient conditions for the foliation de-
fined by level sets of a function to be totally geodesic in a torsion-free connection
on a manifold and find necessary and sufficient conditions for webs of hyper-
surfaces to be geodesic. These conditions has the form of a second-order PDE
system for web functions. The system has an infinite pseudogroup of symme-
tries and the factorization of the system with respect to the pseudogroup leads
us to a first-order PDE system. In the planar case (cf. [1]), the system coincides
with the classical Euler equation and therefore can be solved in a constructive
way. We provide a method to solve the system in arbitrary dimension and flat
connection.

2 Geodesic Foliations and Flex Equations

Let Mn be a smooth manifold of dimension n. Let vector fields ∂1, ..., ∂n form
a basis in the tangent bundle, and let ω1, .., ωn be the dual basis. Then

[∂i, ∂j ] =
∑

k

ck
ij∂k
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for some functions ck
ij ∈ C∞ (M) , and

dωk +
∑

i<j

ck
ijω

i ∧ ωj = 0.

Let ∇ be a linear connection in the tangent bundle, and let Γk
ij be the Christoffel

symbols of second type. Then

∇i (∂j) =
∑

k

Γk
ij∂k,

where ∇i
def
= ∇∂i

, and

∇i

(

ωk
)

= −
∑

j

Γk
ijω

j .

In [1] we proved the following result.

Theorem 1 The foliation defined by the level sets of a function f(x1, ..., xn)
is totally geodesic in a torsion-free connection ∇ if and only if the function f

satisfies the following system of PDEs:

∂i (fi)

fifi

−
∂i (fj) + ∂j (fi)

fifj

+
∂j (fj)

fjfj

=
∑

k

(

Γk
ii

fk

fifi

+ Γk
jj

fk

fjfj

− (Γk
ij + Γk

ji)
fk

fifj

)

(1)

for all i < j, i, j = 1, ..., n; here fi =
∂f

∂xi

.

We call such a system a flex system.

Note that conditions (1) can be used to obtain necessary and sufficient con-
ditions for a d-web formed by the level sets of the functions fα(x1, . . . , xn), α =
1, . . . , d, to be a geodesic d-web, i.e., to have the leaves of all its foliations to
be totally geodesic: one should apply conditions (1) to the all web functions
fα, α = 1, . . . , d,

2.1 Geodesic Webs on Manifolds of Constant Curvature

In what follows, we shall use the following definition.

Definition 2 We call by (Flex f)ij the following function:

(Flex f)ij = f2
j fii − 2fifjfij + f2

i fjj ,

where i, j = 1, ..., n, fi =
∂f

∂xi

and fij =
∂2f

∂xi∂xj

.

It is easy to see that (Flex f)ij = (Flex f)ji, and (Flex f)ii = 0.
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Proposition 3 Let (Rn, g) be a manifold of constant curvature with the metric

tensor

g =
dx2

1 + ... + dx2
n

(1 + κ (x2
1 + ... + x2

n))
2 ,

where κ is a constant. Then the level sets of a function f(x1, ..., xn) are geodesics

of the metric g if and only if the function f satisfies the following PDE system:

(Flex f)ij =
2κ
(

f2
i + f2

j

)

1 + κ (x2
1 + ... + x2

n)

∑

k

xkfk (2)

for all i, j.

Proof. To prove formula (2), first note that the components of the metric
tensor g are

gii = b2, gij = 0, i 6= j,

where

b =
1

1 + κ (x2
1 + ... + x2

n)
.

It follows that
gii = g−1

ii , gij = 0, i 6= j.

We compute Γi
jk using the classical formula

Γk
ij =

1

2
gkl

(

∂gli

∂xj
+

∂glj

∂xi
−

∂gij

∂xl

)

(3)

and get

Γk
ii = 2κxkb, k 6= i; Γi

ii = −2κxib; Γk
ij = 0, i, j 6= k, i 6= j;

Γi
ij = −2κxjb, i 6= j; Γj

ij = −2κxib, i 6= j.

Substituting these values of Γi
jk into the right-hand side of formula (1), we

get formula (2).
Note that if n = 2, then PDE system (2) reduces to the single equation

Flex f =
2κ (x1f1 + x2f2)

(

f2
1 + f2

2

)

1 + κ (x2
1 + x2

2)
,

where Flex f = (Flex f)12.
This formula coincides with the corresponding formula in [1].
We rewrite formula (2) as follows:

(Flex f)ij

f2
i + f2

j

= 2κb
∑

k

xkfk. (4)

The left-hand side of equation (4) does not depend on i and j. Thus we have
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(Flex f)ij

f2
i + f2

j

=
(Flex f)kl

f2
k + f2

l

for any i, j, k, and l.

It follows that if

(Flex f)ij = 0 (5)

for some fixed i and j, then (5) holds for any i and j.

In other words, one has the following result.

Theorem 4 Let W be a geodesic d-web on the manifold (Rn, g) given by web-

functions
{

f1, ...., fd
}

such that (fa
k )

2
+ (fa

l )
2
6= 0 for all a = 1, ..., d and k, l =

1, 2..., n. Assume that the intersections of W with the planes (xi0 , xj0) , for given

i0 and j0, are linear planar d-webs. Then the intersection of W with arbitrary

planes (xi, xj) are linear webs too.

2.2 Geodesic Webs on Hypersurfaces in R
n

Proposition 5 Let (M, g) ⊂ R
n be a hypersurface defined by an equation xn =

u (x1, ..., xn−1) with the induced metric g and the Levi-Civita connection ∇.

Then the foliation defined by the level sets of a function f (x1, ..., xn−1) is totally

geodesic in the connection ∇ if and only if the function f satisfies the following

system of PDEs:

(Flex f)ij =
u1f1 + ... + un−1fn−1

1 + u2
1 + ... + u2

n−1

(f2
j uii − 2fifjuij + f2

i ujj). (6)

Proof. To prove formula (6), note that the metric induced by a surface
xn = u(x1, . . . , xn−1) is

g = ds2 =
n−1
∑

k=1

(1 + u2
k)dx2

k + 2
n−1
∑

i,j=1(i6=j)

uiujdxidxj .

Thus the metric tensor g has the following matrix:

(gij) =

















1 + u2
1 u1u2 . . . u1un−1

u2u1 1 + u2
2 . . . u2un−1

...
...

. . .
...

u1 un−1u2 . . . 1 + u2
n−1,
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and the inverse tensor g−1 has the matrix

(gij) =
1

1 +

n−1
∑

k=1

(1 + u2
k)































n−1
∑

k=2

(1 + u2
k) −u1u2 . . . −u1un−1

−u2u1

n−1
∑

k=1(k 6=2)

(1 + u2
k) . . . −u2un−1

...
...

. . .
...

−un−1u1 −un−1u2 . . .

n−2
∑

k=1

(1 + u2
k)































.

Computing Γi
jk by formula (3), we find that

Γk
ij =

ukuij

1 +
n−1
∑

k=1

(1 + u2
k)

.

Applying these formulas to the right-hand side of (1), we get formula (6).
We rewrite equation (6) in the form

(Flex f)ij

f2
j uii − 2fifjuij + f2

i ujj

=
u1f1 + ... + unfn

1 + u2
1 + ... + u2

n

. (7)

It follows that the left-hand side of (7) does not depend on i and j, i.e., we
have

(Flex f)ij

f2
j uii − 2fifjuij + f2

i ujj

=
(Flex f)kl

f2
l ukk − 2fkflukl + f2

kull

for any i, j, k and l. This means that if

(Flex f)ij = 0

for some fixed i and j, then

(Flex f)kl = 0

for any k and l.
In other words, we have a result similar to the result in Theorem 4.

Theorem 6 Let W be a geodesic d-web on the hypersurface (M, g) given by

web functions
{

f1, ...., fd
}

such that
(

fa
j

)

uii − 2fa
i fa

j uij + (fa
i )

2
ujj 6= 0, for

all a = 1, ..., d and k, l = 1, 2..., n. Assume that the intersections of W with

the planes (xi0 , xj0 ) , for given i0 and j0, are linear planar d-webs. Then the

intersection of W with arbitrary planes (xi, xj) are linear webs too.
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3 Hyperplanar Webs

In this section we consider hyperplanar geodesic webs in R
n endowed with a

flat linear connection ∇.
In what follows, we shall use coordinates x1, . . . , xn in which the Christoffel

symbols Γi
jk of ∇ vanish.

The following theorem gives us a criterion for a web of hypersurfaces to be
hyperplanar.

Theorem 7 Suppose that a d-web of hypersurfaces, d ≥ n + 1, is given locally

by web functions fα(x1, . . . , xn), α = 1, ..., d. Then the web is hyperplanar if and

only if the web functions satisfy the following PDE system:

(Flex f)st = 0, (8)

for all s < t = 1, ..., n.

Proof. For the proof, one should apply Theorem 1 to all foliations of the
web.

In order to integrate the above PDEs system, we introduce the functions

As =
fs

fs+1
, s = 1, ..., n − 1,

and the vector fields

Xs =
∂

∂xs

− As

∂

∂xs+1
, s = 1, ..., n − 1.

Then the system can be written as

Xs (At) = 0,

where s, t = 1, .., n − 1.

Note that
[Xs, Xt] = 0

if the function f is a solution of (8).
Hence, the vector fields X1, ..., Xn−1 generate a completely integrable (n − 1)-

dimensional distribution, and the functions A1, ..., An−1 are the first integrals
of this distribution.

Moreover, the definition of the functions As shows that

Xs(f) = 0, s = 1, ..., n − 1,

also.
As a result, we get that

As = Φs (f) , s = 1, ..., n − 1,
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for some functions Φs.

In these terms, we get the following system of equations for f :

∂f

∂xs

= Φs (f)
∂f

∂xs+1
, s = 1, ..., n − 1,

or
∂f

∂xs

= Ψs (f)
∂f

∂xn

, s = 1, ..., n − 1, (9)

where Ψn−1 = Φn−1, and
Ψs = Φn−1 · · ·Φs

for s = 1, ...., n − 2.

This system is a sequence of the Euler-type equations and therefore can be
integrated. Keeping in mind that a solution of the single Euler-type equation

∂f

∂xs

= Ψs (f)
∂f

∂xn

is given by the implicit equation

f = u0 (xn + Ψs (f)xs) ,

where u0(xn) is an initial condition, when xs = 0, and Ψs is an arbitrary
nonvanishing function, we get solutions f of system (8) in the form:

f = u0 (xn + Ψn−1 (f)xn−1 + · · · + Ψ1 (f)x1) ,

where u0(xn) is an initial condition, when x1 = · · · = xn−1 = 0, and Ψs are
arbitrary nonvanishing functions.

Thus, we have proved the following result.

Theorem 8 Web functions of hyperplanar webs have the form

f = u0 (xn + Ψn−1 (f)xn−1 + · · · + Ψ1 (f)x1) , (10)

where u0(xn) are initial conditions, when x1 = · · · = xn−1 = 0, and Ψs are

arbitrary nonvanishing functions.

Example 9 Assume that n = 3, f1(x1, x2, x3) = x1, f2(x1, x2, x3) = x2,

f3(x1, x2, x3) = x3, and take u0 = x3, Ψ1(f4) = f2
4 , Ψ2(f4) = f4 in (10).

Then we get the hyperplanar 4-web with the remaining web function

f4 =
x2 − 1 ±

√

(x2 − 1)2 − 4x1x3

2x1
.

It follows that the level surfaces f4 = C of this function are defined by the

equation

x1(C
2x1 − Cx2 + x3 + C) = 0,

7



i.e., they form a one-parameter family of 2-planes

C2x1 − Cx2 + x3 + C = 0.

Differentiating the last equation with respect to C and excluding C, we find that

the envelope of this family is defined by the equation

(x2)
2 − 4x1x3 − 2x2 + 1 = 0.

Therefore, the envelope is the second-degree cone.

Example 10 Assume that n = 3, f1(x1, x2, x3) = x1, f2(x1, x2, x3) = x2,

f3(x1, x2, x3) = x3, and take u0 = x3, Ψ1(f4) = 1, Ψ2(f4) = f2
4 in (10). Then

we get the linear 4-web with the remaining web function

f4 =

(

1 ±
√

1 − 4x2(x1 + x3)

2x2

)2

.

The level surfaces f4 = C2 of this function are defined by the equation

x2(x1 + C2x2 + x3 − C) = 0,

i.e., they form a one-parameter family of 2-planes

x1 + C2x2 + x3 − C = 0.

Differentiating the last equation with respect to C and excluding C, we find that

the envelope of this family is defined by the equation

4x1x2 + 4x2x3 − 1 = 0.

Therefore, the envelope is the hyperbolic cylinder.

In the next example no one foliation of a web W3 coincides with a foliation
of coordinate lines, i.e., all three web functions are unknown.

Example 11 Assume that n = 3 and take

(i) u01 = x3, Ψ1(f1) = f2
1 , Ψ2(f1) = f1;

(ii) u02 = x3, Ψ1(f2) = 1, Ψ2(f2) = f2
2 ;

(iii) u03 = x2
3, Ψ1(f3) = f3, Ψ2(f3) = 1;

(iv) u04 = x3, Ψ1(f4) = Ψ2(f4) = f4

in (10). Then we get the linear 4-web with the web functions

f1 =
x2 − 1 ±

√

(x2 − 1)2 − 4x1x3

2x1
,

f2 =

(

1 ±
√

1 − 4x2(x1 + x3)

2x2

)2

8



(see Examples 9 and 10) and

f3 = (
1 ±

√

1 − 4x1(x2 + x3)

2x1
)2,

f4 =
x3

1 − x1 − x2
.

It follows that the leaves of the foliation X1 are tangent 2-planes to the

second-degree cone

(x2)
2 − 4x1x3 − 2x2 + 1 = 0

(cf. Example 9 and 10), the leaves of the foliation X2 and X3 are tangent

2-planes to the hyperbolic cylinders

4x1x2 + 4x2x3 − 1 = 0 and 4x1x2 + 4x1x3 − 1 = 0

(cf. Example 10), and the leaves of the foliation X4 are 2-planes of the one-

parameter family of parallel 2-planes

Cx1 + Cx2 + x3 = 1,

where C is an arbitrary constant.
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