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Summary. We present some old and recent results on rank problems and lineariz-
ability of geodesic planar webs.

1 Introduction

In this paper we continue our studies of geodesic planar webs [13].
We give a modification of the Abel’s elimination method. This method

allows one to find all abelian relations admitted by a planar web and therefore
to determine the rank of the web. It requires to solve step-by-step a series of
ordinary differential equations. In [25] (see also [24]) the same modification is
given by a little bit different approach.

On the other hand, we present the method of finding the web rank by
means of differential invariants of the web, i.e., the determination of the web
rank without solving the differential equations. Pantazi [22] found some nec-
essary and sufficient conditions for a planar web to be of maximum rank. The
paper [22] was followed by the papers [23] and [20]. Pirio in [24] presented a
more detailed exposition of results of Pantazi in [22] and [23] and Mihăileanu
in [20]. The characterization of webs of maximal rank in [22] and [20] is not
given in terms of the web invariants.

We give also an alternative construction (the previous one was given in
[13]) of the unique projective structure associated with a planar 4-web. Note
that Theorem 7 was first proved in [6] (see §29, p. 246) and that the result
in [6] was recently generalized in [26] for any dimension. Our method exploits
differential forms and gives an explicit formula for the projective connection.
Remark that this method, as well as one in ([13]), can be used in any dimen-
sion. Presence of the projective structure allows us to connect a differential
invariant (which we call the Liouville tensor) with any planar 4-web. This
tensor gives a criterion for linearizability of geodesic planar webs (cf. [4]).
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2 Planar Webs

All constructions in the paper are local, and we do not specify domains in
which they are valid. Functions, differential forms, etc. are real and of class
C∞.

A planar d-web is given by d one-dimensional foliations in the plane which
are in general position, i.e., the directions corresponding to different foliations
are distinct. The local diffeomorphisms of the plane act in the natural way on
d-webs, and they say that two d-webs are (locally) equivalent if there exists a
local diffeomorphism which sends one d-web to another.

Because all 2-webs are locally equivalent, we begin with 3-webs.
A 3-web can be defined either by three differential 1-forms, say, ω1, ω2, ω3,

where
ω1 ∧ ω2 6= 0, ω2 ∧ ω3 6= 0, ω1 ∧ ω3 6= 0,

or by the first integrals of the foliations, say, f1, f2, f3, where

df1 ∧ df2 6= 0, df2 ∧ df3 6= 0, df1 ∧ df3 6= 0.

The above functions f1, f2, f3 are called web functions.
Remark that the web functions are defined up to gauge transformations

fi 7→ Φi(fi),

where i = 1, 2, 3, and Φi : R→ R are local diffeomorphisms of the line.
The implicit function theorem states that there is a relation

W (f1, f2, f3) = 0

for these functions.
The above relation is called (see, for example, [5]) the web equation.
Any pair of functions in this equation is locally indistinguishable and can

be viewed as local coordinates on the plane.
Keeping in mind this observation, we consider a space R

3 with coordinates
u1, u2, u3 and two-dimensional surface

Σ ⊂ R
3

given by the equation
W (u1, u2, u3) = 0.

We say that Σ ⊂ R
3 is a web surface if any two functions ui, uj are local

coordinates on Σ.
In the case of d-webs one can choose d local first integrals of the corre-

sponding foliations, say, f1, f2, f3..., fd, which are also called web functions.
They define a map

σ : R
2 → R

d,
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where
σ : (x, y) ∈ R

2 7→ (u1 = f1(x, y), ...., ud = fd(x, y)) ∈ R
d.

The image Σ of this map is a two-dimensional surface in R
d. Remark that

any pair of functions ui, uj are local coordinates on Σ.
From this point of view, the local theory of planar d-webs is just a geometry

of web surfaces in R
d considered with respect to the gauge transformations.

3 Basic Constructions

Let us begin with 3-webs, and let differential 1-forms ω1, ω2, ω3 define such a
web. These forms are determined up to multipliers ωi ↔ λiωi, where λi are
smooth nonvanishing functions. Hence, these forms can be normalized in such
a way that

ω1 + ω2 + ω3 = 0 (1)

with only possible scaling ωi ↔ λωi.
One can prove that in this case there is a unique differential 1-form γ such

that the so-called structure equations

dωi = ωi ∧ γ (2)

hold for all i = 1, 2, 3 (see [4]).
The form γ determines the Chern connection Γ in the cotangent bundle

T ∗M with the following covariant differential:

dΓ : ωi 7−→ −ωi ⊗ γ.

The curvature of this connection is equal to

RΓ : ωi 7−→ −ωi ⊗ dγ.

If we write
dγ = Kω1 ∧ ω2,

then the function K is called the curvature function of the 3-web.
Note that the curvature form dγ is an invariant of the 3-web while the

curvature function K is a relative invariant of the web of weight two.
Let 〈∂1, ∂2〉 be the basis dual to 〈ω1, ω2〉 . We put ∂3 = ∂2−∂1. Then leaves

of the 3-web are trajectories of the vector fields ∂2, ∂1, and ∂3.
The form γ can be decomposed as follows:

γ = g1ω1 + g2ω2,

where g1 and g2 are smooth functions.
Moreover, in this case one has (see [11])

[∂1, ∂2] = −g2∂1 + g1∂2 (3)
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and
K = ∂1 (g2)− ∂2 (g1) . (4)

Remark also that the covariant derivatives with respect to the Chern connec-
tion have the form

∇X(ωi) = −γ(X)ωi

and
∇X(∂i) = −γ(X)∂i.

It shows that the leaves of all three foliations are geodesic with respect to the
Chern connection.

Let d∇ : Ω1(M) → Ω1 (M) ⊗ Ω1 (M) be the covariant differential with
respect to the Chern connection.

The induced connection in the tangent bundle gives the differential

d∗∇ : D (M)→ D (M)⊗Ω1 (M) ,

where
d∇ : ∂i → ∂i ⊗ γ.

In a similar way the Chern connection induces the covariant differential in
the tensor bundles.

Let us denote by Θp,q (M) = (D (M))
⊗p
⊗
(

Ω1 (M)
)⊗q

the module of
tensors of type (p, q) .

Then the covariant differential

d∇ : Θp,q (M)→ Θp+1,q (M)

acts as follows:

d∇ : u∂j1⊗· · ·⊗∂jp
⊗ωi1⊗· · ·⊗ωiq

7−→ ∂j1⊗· · ·⊗∂jp
⊗ωi1⊗· · ·⊗ωiq

⊗(du + (p− q) γu)

where u ∈ C∞ (M) .
We say that u is of weight k = q − p and call the form

δ(k) (u)
def
= du− kuγ (5)

the covariant differential of u.
Decomposing the form δ(k) (u) in the basis {ω1, ω2}, we obtain

δ(k) (u) = δ
(k)
1 (u) ω1 + δ

(k)
2 (u) ω2,

where
δ
(k)
i (u) = ∂i (u)− (k) giu

are the covariant derivatives of u with respect to the Chern connection, i =
1, 2.

Note that δ
(k)
1 (u) and δ

(k)
2 (u) are of weight k + 1.



On Rank Problems for Planar Webs and Projective Structures 5

One can check that the covariant derivatives satisfy the classical Leibnitz
rule

δ
(k+l)
i (uv) = δ

(k)
i (u) v + u δ

(l)
i (v)

if u is of weight k and v is of weight l, and the following commutation relation:

δ
(s+1)
2 ◦ δ

(s)
1 − δ

(s+1)
1 ◦ δ

(s)
2 = sK. (6)

Note that the curvature K is of weight two.
In what follows, we shall omit the superscript indicating the weight in the

cases when the weight is known.
For the general d-web defined by differential 1-forms ω1, ω2, ω3, . . . , ωd we

normalize ω1, ω2, ω3 as above and choose ωi for i ≥ 4 in such a way that the
normalizations

aiω1 + ω2 + ωi+2 = 0 (7)

hold for i = 1, ..., d− 2, with a1 = 1.
Note that ai 6= 0, 1 for i ≥ 2.
Moreover, for any fixed i, the value ai (x) , of the function ai at the point x

is the cross-ratio of the four straight lines in the cotangent space T ∗
x generated

by the covectors ω1,x, ω2,x, ω3,x, and ωi+2,x, and therefore it is a web invariant.
The functions ai are called the basic invariants (cf. [10] or [9], pp. 302–303)
of the web.

Because of locality of our consideration, one can choose a function f in
such a way that ω3 = df and find coordinates x, y such that ω1 ∧ dx = 0 and
ω2 ∧ dy = 0.

Let also ωi+3 ∧ dgi = 0, for some functions gi(x, y), i = 1, ..., d− 3.
Then ω1 = −fxdx and ω2 = −fydy.
The dual basis {∂1, ∂2} has the form

∂1 = −f−1
x ∂x, ∂2 = −f−1

y ∂y,

and the connection form is
γ = −Hω3,

where

H =
fxy

fx fy

(see [11]).
The curvature function has the following explicit expression:

K = −
1

fxfy

(

log
fx

fy

)

xy

, (8)

and the basic invariants have the form
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ai =
fygi,x

fxgi,y

for i = 1, ..., d− 3.
Note that if a three-web W3 is given by a web equation W (u1, u2, u3) = 0,

then the curvature K is expressed as follows (see [5], §9):

K = A12 + A23 + A31, (9)

where

Ars =
1

WrWs

∂2

∂ur∂us

log
Wr

Ws

,

and subscripts r and s mean the partial derivatives of the function with respect
to the variables ur and us, where r, s = 1, 2, 3.

Recall that a planar d-web is said to be (locally) parallelizable if it is
(locally) equivalent to a d-web of parallel straight lines in the affine plane.

It is known (see, for example, [5], §8) that a planar 3-web is locally paral-

lelizable if and only if K = 0.
For planar d-webs, d ≥ 4, the following statement holds (cf. [10] or [9],

Section 7.2.1 for d = 4): a planar d-web 〈ω1, ω2, ω3, ω4, ..., ωd〉 is locally par-

allelizable if and only if its 3-subweb 〈ω1, ω2, ω3〉 is locally parallelizable (i.e.,
K = 0), and all basic invariants ai are constants.

4 Rank

We begin with an interpretation of the classical Abel addition theorem ([2])
in terms of planar webs (cf. [5]).

Let us consider linear webs on the affine plane, i.e., such planar webs
leaves of which are straight lines. There is an elegant method to construct
such webs. Take a straight line rx + sy = 1 on the affine plane and assume
that the coefficients (r, s) ∈ R

2 satisfy an algebraic equation Pd(r, s) = 0 of
degree d.

Given (x, y), then the system







rx + sy = 1,

Pd(r, s) = 0

has at most d roots.
Assume that in a domain on the plane (x, y) the above system has exactly

d roots. Then in this domain we have a linear d-web.
Take now a cubic polynomial

P3(s, t) = s2 − 4r3 − g2r − g3,

where g2 and g3 are constants.
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Then the system






rx + sy = 1,

s2 − 4r3 − g2r − g3 = 0

in the domain
x4 − 24xy2 − 12g2y

4 > 0, y 6= 0,

has three distinct real roots and consequently three pairwise distinct straight
lines (ri(x, y), si(x, y)), passing through the point (x, y). In other words, we
have a linear 3-web.

Assume that
g3
2 − 27g2

3 6= 0.

Then the solutions of the equation s2 − 4r3 − g2r − g3 = 0 can be pa-
rameterized by the Weierstrass’ elliptic function with the invariants g2 and
g3:

r = ℘(t), s = ℘′(t).

Hence, the roots (ri(x, y), si(x, y)) correspond to three solutions (ti(x, y)) of
the equation

℘(t)x + ℘′(t)y − 1 = 0.

Let us put
f(t) = ℘(t)x + ℘′(t)y − 1

and compute the integral
∫

t
f ′(t)

f(t)
dt

along the boundary of the period parallelogram of the Weierstrass function.
We get

t1(x, y) + t2(x, y) + t3(x, y) = const .

This is the abelian relation.
This relation can be understood geometrically if we note that, by the

construction, the functions t1 (x, y) , t2 (x, y) , and t3 (x, y) are first integrals
of the corresponding 3-web.

In more general case, let us consider an arbitrary planar d-web defined by
d web functions

f1, . . . , fd.

Then by abelian relation we mean a relation

F1 (f1) + · · ·+ Fd (fd) = const .

given by d functions (F1, . . . , Fd) of one variable.
We say that two abelian relations (F1, . . . , Fd) and (G1, . . . , Gd) are equiv-

alent if
Fi = Gi + const

i
,
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for all i = 1, . . . , d.
The set of equivalence classes of abelian relations admits the natural vector

space structure with respect to addition

(F1, . . . , Fd) + (G1, . . . , Gd) = (F1 + G1, . . . , Fd + Gd)

and multiplication by numbers

α (F1, . . . , Fd) = (αF1, . . . , αFd) .

The dimension of this vector space is called the rank of the web.
In the case when d-web is defined by differential 1-forms

ω1, . . . , ωd,

the differentiation of the abelian relation leads us to the abelian equation

λ1ω1 + · · ·+ λdωd = 0,

for functions λ1, . . . , λd under the condition that all differential 1-forms λiωi

are closed:
d(λiωi) = 0.

The abelian equation is a system of the first-order linear PDEs for the
functions (λ1, ..., λd) , and the rank of the web is the dimension of the solution
space.

Example 1. The following example illustrates the above constructions for 3-
webs.

Consider the 3-web W3 given by web functions:

x, y, f(x, y).

Then
ω1 = −fxdx, ω2 = −fydy, ω3 = df,

and the condition
λ1ω1 + λ2ω2 + λ3ω3 = 0

implies
λ1 = λ2 = λ3 = λ.

The abelian relations take now the form














(λfx)y = 0,

(λfy)x = 0,

λxfy − λyfx = 0,

or
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{

(ln λ)x = −(ln fx)y,

(ln λ)y = −(ln fy)x.

The compatibility condition for this system has the form

(ln fx)xy = (ln fy)xy

or
K = 0.

So, we can conclude this consideration by the following statement: rank of a

3-web does not exceed one, and the rank equals to one if and only if the 3-web

is parallelizable.

5 Abel’s Method

In this section we discuss the rank problem in the classical setting. A method
of finding the rank, or in other terms, a method of solving abelian relations was
proposed by Abel himself (see [1]). This method is just a consistent elimination
of the functions from the abelian relation by using only differentiation.

Let us consider a planar d-web defined by web functions f1, . . . , fd and the
corresponding abelian relation

F1 (f1) + · · ·+ Fd (fd) = const . (10)

Modifying Abel’s method and adjusting it to equation (10), we can explain
it as follows:

a) Taking the differential of equation (10), we get

F ′
1 df1 + F ′

2 df2 + · · ·+ F ′
d dfd = 0. (11)

b) Taking the wedge product of (11) with df1, we eliminate F1 and get the
following equation:

F ′
2 + J31

21 F ′
3 + · · ·+ Jd1

21 F ′
d = 0, (12)

where

J ij
kl =

∂(fi, fj)

∂(fk, fl)

is the Jacobian of the functions fi, fj with respect to functions fk, fl.
c) Taking the wedge product of the differential of (12) with df2, we eliminate

F2 and get the following equation:

J31
21F ′′

3 + a3F
′
3 + · · · = 0, (13)

where a3 is a certain function.
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d) Divide equation (13) by the first coefficient and take the differential of
the obtained equation; if F ′′

3 appears in differentiation, take its value from
equation (13). This gives the following equation:

F ′′′
3 df3 + b3F

′
3(f3) + · · · = 0, (14)

where b3 is a certain function.
e) Taking the exterior product of (14) with df3, we eliminate F ′′′

3 and get the
following equation:

c3F
′
3(f3) + · · · = 0, (15)

where c3 is a certain function.
f) Dividing equation (15) by c3 and taking the wedge product of the differ-

ential of the obtained equation and df3, we eliminate the function F3.
g) Use the procedure outlined above to eliminate the functions F4, . . . , Fd−1.

Finally, we obtain a linear differential equation with respect to the function
Fd(fd). This equation can be viewed as family of homogeneous ordinary
linear differential equations.

h) Substitute the solution Fd(fd) into (10) and apply the outlined procedure
to find another function, say, Fd−1(fd−1).

On Abel’s elimination method as well as on less general method of mon-
odromy see [25].

Below we give few examples of application of the Abel method.

5.1 3-Webs

Here we apply the Abel elimination method for 3-webs to show once more
that a planar 3-web admits a nontrivial abelian relation if and only if the
3-web is parallelizable.

Suppose that a 3-web is given by the web functions f(x, y), x, y and let

F (f) + G(x) + H(y) = 0. (16)

be an abelian relation.
Take the differential of (16):

F ′(f) df + G′(x) dx + H ′(y) dy = 0, (17)

and the wedge product of (17) with df :

−fy G′(x) + fx H ′(y) = 0. (18)

Then

G′(x)−
fx

fy

H ′(y) = 0. (19)

Taking the wedge product of the differential of (19) with dx, we get
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H ′′(y) +

(

log
fx

fy

)

y

H ′(y) = 0. (20)

In order equation (20) has a nontrivial solution, it is necessary and sufficient

that the function

(

log
fx

fy

)

y

does not depend on x, i.e.,

(

log
fx

fy

)

xy

= 0. (21)

This means that K = 0, i.e., the 3-web is parallelizable.

5.2 4-Webs of Rank Three

Assume that a 4-web is given by the following web functions:

f = x + y, g = xy, x, y.

We will apply the Abel elimination method to find all abelian relations ad-
mitted by this web.

Let
F (f) + G(g) + H(x) + K(y) = 0 (22)

be an abelian relation.
Taking the differential of (22):

F ′(f) df + G′(g) dg + H ′(x)dx + K ′(y) dy = 0, (23)

and the wedge product of (23) with dy, we eliminate K ′(y):

F ′(f) + y G′(g) + H ′(x) = 0. (24)

Once more, taking the differential of (24):

F ′′(f) df + y G′′(g) dg + G′(g) dy + H ′′(x) dx = 0, (25)

and the wedge product of (25) with dg, we eliminate G′′(g):

(x− y)F ′′(f)− y G′(g) + x/, H ′′(x) = 0. (26)

Using equation (24), we eliminate G′(g) in (26):

(x− y)F ′′(f) + F ′(f) + H ′(x) + xH ′′(x) = 0. (27)

Dividing equation (27) by x, taking the differential of the result and taking
the wedge product of the differential with dx, we eliminate H(x) and arrive
at the equation
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F ′′′(f) = 0. (28)

Up to an arbitrary constant, the solution of equation (28) is

F (f) = a f2 + b f, (29)

where a and b are arbitrary constants. By (29), equation (27) gives

xH ′′(x) + H ′(x) + 2ax = 0. (30)

Up to an arbitrary constant, the solution of equation (30) is

H(x) = −a x2 − b x + k log x, (31)

where k is an arbitrary constant.
By (29) and (31), equation (26) gives

G′(g) = −a−
k

g
. (32)

Up to an arbitrary constant, the solution of equation (32) is

G(g) = −2a g − k log g, (33)

Now by (29), (31) and (33), we find from equation (22) that

K(y) = −a y2 − b y + k log y. (34)

Thus, the rank is equal to three, and we have the following three indepen-
dent abelian relations:

(a = 0, b = 0, k = −1)
x + y − f = 0;

(a = −1, b = 0, k = 0)

x2 + y2 + (−f2) + (2g) = 0;

(a = 0, b = −1, k = 0)

log x + log y + (− log g) = 0.

The fact that the rank of this web is three was also proved in [12] by use
of differential invariants of webs.
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5.3 4-Webs of Rank Two

Consider a 4-web given by the following web functions:

f = x2 + y2, g = x + y, x, y.

We will apply the Abel elimination method and find all abelian relations
admitted by this web.

Let
F (f) + G(g) + H(x) + K(y) = 0 (35)

be an abelian relation.
Taking the differential:

F ′(f) df + G′(g) dg + H ′(x) dx + K ′(y) dy = 0, (36)

and the wedge product of (36) with dy, we eliminate K(y):

2xF ′(f) + G′(g) + H ′(x) = 0. (37)

Once more, taking the differential of (37):

2xF ′′(f) df + 2F ′(f) dx + G′′(g) dg + H ′′(x) dx = 0, (38)

and the wedge product of (38) with dx, we eliminate H(x):

2(g2 − f)F ′′(f) + G′′(g) = 0. (39)

Taking the wedge product of the differential of (39) with dg, we eliminate
G(g):

2(g2 − f)F ′′′(f)− 2F ′′(f) = 0. (40)

Equation (40) is equivalent to the system

{

−2f F ′′′(f)− 2F ′′(f) = 0,

F ′′′(f) = 0.
(41)

Therefore, up to an additive constant,

F (f) = kf,

where k is a constant.
Now it follows from (39) that, up to an additive constant,

G(g) = bg,

where b is a constant.
Equation (37) implies that, up to an additive constant,
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H(x) = −kx2 − bx,

and equation (35) gives that

K(y) = −ky2 − by.

.
Thus, the rank of the web is equal to two, and we have the following two

basic abelian relations:

(k = 0, b = 1)
(x + y) + (−x) + (−y) = 0,

(k = 1, b = 0)
(x2 + y2) + (−x2) + (−y2) = 0.

In [12] by use of differential invariants of webs, it was shown that this 4-web
is of rank two.

5.4 4-Webs of Rank One

Assume that a 4-web is given by the following web functions:

f =
(x− y)2

x
, g =

(x − y)2

y
, x, y.

We will apply the Abel elimination method to find all abelian relations ad-
mitted by this web.

Let
F (f) + G(g) + H(x) + K(y) = 0 (42)

be an abelian relation.
Taking the differential of (42):

F ′(f) df + G′(g) dg + H ′(x)dx + K ′(y) dy = 0, (43)

and the wedge product of (43) with df , we eliminate F (f):

G′(g)−
2xy2

(x− y)3
H ′(x)−

(x + y)y2

(x− y)3
K ′(y) = 0. (44)

Once more, taking the differential of (44):

G′′(g) dg −
2xy2

(x− y)3
H ′′(x) −

2y(2x + y)(−ydx + xdy)

(x− y)3
H ′(x)

−
(x + y)y2

(x− y)3
K ′′(y)−

2y(x + 2y)(−ydx + xdy)

(x − y)3
K ′(y) = 0,

(45)

and the wedge product of (45) with dg, we eliminate G(g):
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H ′′(x) +
2x + y

x(x + y)
H ′(x) +

y

x
K ′′(y) +

x + 2y

x(x + y)
K ′(y) = 0. (46)

Taking the wedge product of the differential of (46) with dx, we eliminate
H ′′(x):

H ′(x) −
(x + y)2y

x
K ′′′(y)−

(2x + 3y)(x + y)

x
K ′′(y)−K ′(y) = 0. (47)

Taking the wedge product of the differential of (47) with dx, we eliminate
H ′(x):

(x + y)yKiv(y) + 3(x + 2y)K ′′′(y) + 6K ′′(y) = 0. (48)

Equation (48) is equivalent to the system
{

y Kiv(y) + 3xK ′′′(x) = 0,

y2 Kiv(y) + 6y K ′′′(y) + 6K ′′(y) = 0.
(49)

It follows from (49) that

y K ′′′(y) + 2K ′′(y) = 0. (50)

Up to an additive constant, the solution of (50) is

K(y) = −k log y + by, (51)

where k and b are arbitrary constants.
It follows from (47) and (51) that

H ′(x) =
k

x
+ b. (52)

Up to an additive constant, the solution of (52) is

H(x) = k log x + bx. (53)

It follows from (44), (51) and (53) that

G′(g) = −
k

g
+

by(3x + y)

g(x− y)
. (54)

Equation (54) implies that
b = 0 (55)

and that, up to an additive constant,

G(g) = −k log g, H(x) = k log x, K(y) = −k log y. (56)

Finally, equations (42) and (56) give

F (f) = k log f, (57)

and the 4-web admits only one independent abelian relation

log f − log g + log x− log y = 0. (58)

By use of differential invariants of webs introduced in [12], one can show
that this 4-web is of rank one.
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5.5 4-Webs of Rank Zero

Assume that a 3-web is given by the following web functions:

f = (x + y)ex, g = xy, x, y.

We will apply the Abel elimination method to show that this web admits no
abelian relations.

Let
F (f) + G(g) + H(x) + K(y) = 0 (59)

be an abelian relation.
Taking the differential of (59):

F ′(f) df + G′(g) dg + H ′(x) dx + K ′(y) dy = 0, (60)

and the wedge product of (60) with df , we eliminate F (f):

[(x + y)x + x− y] G′(g)−H ′(x) + (1 + x + y)K ′(y) = 0. (61)

Once more, taking the differential of (61):

[(x + y)x + x− y] G′′(g) dg −H ′′(x) dx + (1 + x + y)K ′′(y) dy

+ [(2x + y + 1) dx + (x− 1) dy] G′(g) + (dx + dy)K ′(y) = 0,
(62)

and the wedge product of (62) with dx, we eliminate H(x):

x [(x + y)x + x− y] G′′(g) + (x− 1)G′(g) + K ′′(y) + K ′(y) = 0. (63)

Taking the differential of (63):

x [(x + y)x + x− y] G′′′(g) dg + (x− 1)G′′(g) dg

+K ′′′(y) dy + K ′′(y) dy + G′′(g) dx = 0,
(64)

and the wedge product of (64) with dy, we eliminate K(y):

g (x2 + g + x−
g

x
] G′′′(g) + (3g −

2g

x
+ 3x2 + 2x + 1)G′′(g) = 0. (65)

Equation (65) is equivalent to the system















g2G′′′(g) + (3g + 1)G′′(g) = 0,

G′′(g) = 0,

G′′′(g) = 0,

i.e., to the equation G′′(g) = 0. Up to an arbitrary constant, the solution of
the latter equation is G = ag, where a is an arbitrary constant.
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If G = ag, then equation (63) becomes

K ′′(y) + K ′(y) + a (x− 1) = 0.

It follows that a = 0 and G(g) = 0. The equation for K(y) becomes K ′′(y) +
K ′(y) = 0. Up to an arbitrary constant, its solution is K(y) = −be−y, where
b is an arbitrary constant.

Now equation (61) becomes

H ′(x) = b(1 + y)e−y + b xe−y.

It follows that b = 0 and H ′(x) = 0. Hence, up to an arbitrary constant,
H(x) = 0 and K(y) = 0.

Finally equation (59) implies that F (f) = 0.
Thus, the web under consideration admits no abelian relations.

6 Abelian Differential Equations

In this section we discuss properties of abelian equations.
Recall that the abelian equation for a planar d-web given by differential

1-forms
ω1, ..., ωd

is a first-order PDE system for functions λ1, ..., λd of the form

λ1ω1 + · · ·+ λdωd = 0,

d (λ1ω1) = · · · = d (λdωd) = 0.

Let us write down the abelian equation in more explicit form. To this end,
we choose a 3-subweb, say, the 3-web given by

ω1, ω2, ω3,

and normalize the d-web as it was done earlier:

a1ω1 + ω2 + ω3 = 0, a2ω1 + ω2 + ω4 = 0, ...., ad−2ω1 + ω2 + ωd = 0,

with a1 = 1 and dω3 = 0.
It is easy to see that, if i ≤ 3, then, due to the structure equations, we get

d (λωi) = dλ ∧ ωi + λdωi = (dλ− λγ) ∧ ωi

or
d (λωi) = δ (λ) ∧ ωi,

if we consider λ as a function of weight one.
Assuming that all λi are functions of weight one and the functions ai are

of weight 0, we get
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d (λ1ω1) = −δ2 (λ1)ω1 ∧ ω2,

d (λ2ω2) = δ1 (λ1)ω1 ∧ ω2,

d (λ3ω3) = (δ2 (λ3)− δ1 (λ3)) ω1 ∧ ω2,

d (λiωi) = (δ2 (ai−2λi)− δ1 (λi))ω1 ∧ ω2

for i = 4, ..., d.
The normalization condition

∑d

1 λiωi = 0 implies that

λ1 = a1u1 + · · ·+ ad−2ud−2,

λ2 = u1 + · · ·+ ud−2,

where
u1 = λ3, . . . , ud−2 = λd.

Therefore the abelian equation can be written in the explicit form as the
following PDE system:

∆1 (u1) = · · · = ∆d−2 (ud−2) = 0,

δ1 (u1) + · · ·+ δ1 (ud−2) = 0,

where ∆i = δ1 − δ2 ◦ ai.
Let

π : R
d−2 × R

2 −→ R
2

be the trivial vector bundle, where π : (u1, ..., ud−2, x, y) 7→ (x, y).
Denote by A1 ⊂ J1 (π) the subbundle of the 1-jet bundle corresponding to

the abelian equation, and by Ak ⊂ Jk (π) the (k − 1)-prolongation of A1.
Let

πk,k−1 : Ak −→ Ak−1

be the restrictions of the natural jet projections

πk,k−1 : Jk (π) −→ Jk−1 (π) .

Then, if k ≤ d − 2, one can easily check that Ak are vector bundles, the
maps πk,k−1 are projections and

dimkerπk,k−1 = d− k − 2.

In other words, we have the following tower of vector bundles:

R
2 π
←− R

d+2 π1,0

←− A1
π2,1

←− A2
π3,1

←− · · ·
πd−3,d−4

←− Ad−3
πd−2,d−3

←− Ad−2.

The last projection
πk,k−1 : Ad−2 −→ Ad−3

is an isomorphism, and geometrically it can be viewed as a linear Cartan
connection (see [19]) in the vector bundle
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πd−3 : Ad−3 → R
2.

This proves that the abelian equation is formally integrable if and only if this

linear connection is flat.
It is easy to see that the dimension of this bundle is equal to (d−2)(d−1)/2.
The dimension of the solution space is the rank of the corresponding d-web.

The above computation shows that the rank of a d-web is finite-dimensional
and does not exceed

(d− 1)(d− 2)

2
.

This result was first established by Bol [7] (see also [5]).
The compatibility conditions for the abelian equation can be found (see

[12]) by use of multi-brackets (see [15]).
These conditions have the form

κ = �1u1 + · · ·+ �d−2ud−2 = 0,

where

�i = ∆1 · · ·∆d−2 · δ1 −∆1 · · ·∆i−1 · δ1 ·∆i+1 · · ·∆d−2 ·∆i

are linear differential operators of order not exceeding d− 2.
Summarizing, we get the following

Theorem 1. A d-web is of maximum rank if and only if κ = 0 on Ad−2.

Remark that κ can be viewed as a linear function on the vector bundle
Ad−2, and therefore the above theorem imposes (d−1) (d− 2) /2 conditions on
the d-web (or on d−2 web functions) in order the web has the maximum rank.
A calculation of these conditions is pure algebraic, and we shall illustrate this
calculation below for planar 3-, 4- and 5-webs. Note also that expressions for
κ in the case of general d-webs are extremely cumbersome while for concrete
d-webs it is not the case.

7 Rank of 4-Webs

7.1 The Obstruction

In order to simplify notations, we put a2 = a in the normalization for 4-webs
:

ω1 + ω2 + ω3 = 0,

aω1 + ω2 + ω4 = 0,

and reserve the subscripts for the covariant derivatives of a. Thus, a2 = δ2 (a),
etc.
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For abelian equations we shall use the functions u, v, where u = u1, v = u2.
Then the abelian equations have the form

(u + av) ω1 + (u + v) ω2 + uω3 + vω4 = 0,

where
λ1 = u + av, λ2 = u + v, λ3 = u, λ4 = v,

and the functions u and v satisfy the equations

δ1 (u)− δ2 (u) = 0,

δ1 (v)− δ2 (av) = 0,

δ1 (u) + δ1 (v) = 0.

In the case of 4-webs, the tower of prolongations has the form

R
2 π
←− R

4 π1,0

←− A1
π2,1

←− A2,

where the isomorphism π2,1 : A2 → A1 defines a linear Cartan connection on
the three-dimensional vector bundle

π1 : A1 → R
2.

In what follows, we use coordinates in the jet spaces adjusted to the Chern
connection and weight. Thus, for example, uk,l stands for the operator δk

1δl
2.

In these coordinates, the abelian equation takes the following form:

u1 − u2 = 0,

v1 − av2 − a2v = 0,

u1 + v1 = 0,

and the obstruction

κ = (∆1∆2δ1 − δ1∆1∆2)u + (∆1∆2δ1 −∆1δ1∆2)v

equals
κ = c0v2 + c1v + c2u,

where c0, c1, and c2 are certain functions of the curvature function K, the
basic invariant a and their covariant derivatives Ki and ai, aij (see formula
(1) in [12]).

The coefficient c0 in the expression of κ has an intrinsic geometric meaning.
Namely, by the curvature function of a 4-web we mean the arithmetic

mean of the curvatures of its 3-subwebs [1, 2, 3], [1, 2, 4], [1, 3, 4] and [2, 3, 4].
Then (see [12]) the coefficient c0 equals the curvature function of the 4-web.



On Rank Problems for Planar Webs and Projective Structures 21

7.2 4-Webs of Maximum Rank

A planar 4-web has the maximum rank three if and only if the obstruction κ

identically equals zero, i.e., if and only if c0 = c1 = c2 = 0. Computing these
coefficients leads us to the following result (see [12]).

Theorem 2. A planar 4-web is of maximum rank if and only if the following

relations hold:

c0 = K +
a11 − aa22 − 2 (1− a) a12

4a(1− a)
+

(−1 + 2a) a2
1 − a2a2

2 + 2 (1− a)2 a1a2

4 (1− a)
2
a2

,

c1 =
K2 −K1

4(1− a)
+

(a− 4) a1 +
(

11− 20a + 12a2
)

a2

12 (1− a)
2
a

K +
a112 − a122

4a(1− a)

+
a1 − aa2

4a2(1− a)
a22 +

(2a− 1) (a1 − aa2)

4 (1− a)
2
a2

a12 −
a2
2 ((1− 2a) a1 + aa2)

4 (1− a)
2
a2

,

c2 =
aK2 −K1

4a(1− a)
+

(1− 2a)a1 − (a− 2) aa2

4 (1− a)2 a2
K.

Vanishing of the coefficients c1 and c2 for 4-webs with c0 = 0 is equivalent
to linearizability of the web (see [4]). Therefore the above theorem can be
formulated in pure geometric terms:

Theorem 3. A 4-web is of maximum rank three if and only if it is linearizable

and its curvature vanishes.

Theorem 3 leads to interesting results in web geometry.

1. A linearizable planar 4-web is of maximum rank if and only if its curvature
vanishes.

2. A planar 4-web of maximum rank is linearizable (algebraizable) (Poincaré).
3. If a planar 4-web with a constant basic invariant a has maximum rank,

then it is parallelizable.
4. Parallelizable planar 4-webs have maximum rank.
5. The Mayrhofer 4-webs are of maximum rank.

Recall that a 4-web is called the Mayrhofer web if all 3-subwebs of this
web are parallelizable.

7.3 4-Webs of Maximum Rank and Surfaces of Double Translation

A surface S ⊂ R
3 is a surface of translation in if it admits a vector parametric

representation r = R(u, v), where R(u, v) is a solution of the wave equation

Ruv = 0.

Then
r = f(u) + g(v), (66)
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or, in components of vectors














x = f1(u) + g1(v),

y = f2(u) + g2(v),

z = f3(u) + g3(v).

A surface S is a surface of double translation if in addition to representation
(66) it also admits a representation

r = h(s) + k(t), (67)

such that the coordinate functions u, v, s, t on the surface are pairwise inde-
pendent.

In other words, they define a 4-web on the surface S. If S is a surface of
double translation, then it follows from (66) and (67) that

f i(u) + gi(v) − hi(s)− ki(t) = 0 (68)

for i = 1, 2, 3. These relations can be viewed as abelian relations for the 4-web
mentioned above.

If the surface S does not belong to a plane, then (68) gives three indepen-
dent abelian relations for the web. Therefore, this web has the maximal rank,
and as we have seen earlier, it is linearizable (algebraizable). This result was
first proved by Sophus Lie in the form.

Theorem 4. ([16]) If S is a surface of double translation not belonging to a

plane, then the curves f ′(u), g′(v), h′(s) and k′(t) belong to an algebraic curve

of degree four.

More on the subject, its further developments and references one can find
in [8] and [3].

7.4 4-Webs of Rank Two

As we have seen, a 4-web admits an abelian equation (has a positive rank) if
and only if the equation

c0v2 + c1v + c2u = 0 (69)

has a nonzero solution.
Suppose that c0 = 0. Then if two other coefficients c1 = c2 = 0, then a

4-web is of maximum rank three. If c0 = 0 but one of the coefficients c1 or c2

is not 0, then c1v+c2u = 0 and then, say u, satisfies a first-order PDE system
of two equations. Therefore, the 4-web admits not more than one abelian
equation (i.e., it is of rank one or zero).

Assume that c0 6= 0. Then we can find all first derivatives ui, vj from the
abelian equation and (69):
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u1 =
ac1 − a2c0

c0
v +

ac2

c0
u,

u2 =
ac1 − a2c0

c0
v +

ac2

c0
u,

v1 =
a2c0 − ac1

c0
v −

ac2

c0
u,

v2 = −
c1

c0
v −

c2

c0
u.

Therefore, a 4-web has rank two if and only if the above system is compatible.

Theorem 5. A planar 4-web is of rank two if and only if c0 6= 0, and

Gij = 0, i, j = 1, 2, (70)

where

G11 = ac0(c2,2 − c2,1) + ac2(c0,1 − c0,2)− a (1− a) c1c2

+ (2a2 − a1 − aa2) c0c2 −Kc2
0,

G12 = ac0(c1,2 − c1,1) + ac1(c0,1 − c0,2)− a (1− a) c2
1

+ (2a2 − a1 − 2aa2) c0c1 +
(

a2
2 + a12 − a22

)

c2
0,

G21 = c0(c2,1 − ac2,2) + c2(ac0,2 − c0,1)− 2a2c0c2 + a (1− a) c2
2,

G22 = c0(c1,1 − ac1,2) + c1(ac0,2 − c0,1) + a (1− a) c1c2 − a2c0c1

−a2(1− a)c0c2 + (a22 −K) c2
0.

Example 2. Consider the planar 4-web with the following web functions

x, y,
x

y
, xy(x + y).

The linearizability conditions (see [4]) for this web are not satisfied, and
therefore, this 4-web is not linearizable, but in this case G11 = G12 = G21 =
G22 = 0. Hence, the 4-web is of rank two.

This example gives us the following important property:
General 4-webs of rank two are not linearizable.

7.5 4-Webs of Rank One

As we have seen earlier, a 4-web can be of rank one if c0 = 0 but one of
the coefficients c1 and c2 of (69) is not 0 or if c0 6= 0. The following theorem
outlines the four cases when a 4-web can be of rank one.

Theorem 6. A planar 4-web is of rank one if and only if one of the following

conditions holds:
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1. c0 = 0, J1 = J2 = 0, where

J1 = a2c1c2(c1 − c2) + ac2
2(c1,2 − c1,1)

+c1c2(c1,1 + a(c2,1 − c1,2 − c2,2)) + c2
1(ac2,2 − c2,1),

J2 = c2
1 (c1 − c2)

2
K + (c1,11 − c1,12) c1c2 (c2 − c1)

+c2
1 (c1 − c2) (c2,11 − c2,12)− c2 (2c1 − c2) c1,1(c1,2 − c1,1)

+c2
1c2,1(c1,2 − c2,2 + c2,1) + c2

1c1,1(c2,2 − 2c2,1)

and c1 6= c2, c1 6= 0.
2. c0 = 0, c1 = c2 6= 0, and J3 = 0, where

J3 = (a22 − a12) (1− a) + a2(a2 − a1)− (1− a)
2
K.

3. c0 = 0, c1 = 0, c2 6= 0, and J4 = 0, where

J4 = a12a− a1a2 −Ka2.

4. c0 6= 0, and J10 = J11 = J12 = 0, where

J10 = G11G22 −G21G12,

J11 = c0(G21,1G22 −G22,1G21) + (a2c0 − ac1)G
2
21

+(ac2 − a2c0 + ac1)G21G22 − ac2G
2
22,

J12 = c0(G21,2G22 −G22,2G21) + (a2c0 − ac1)G
2
21

+a(c2 − c1)G21G22 − c2G
2
22.

Proof. See [12].

Example 3. Consider the planar 4-web with the following web functions

x, y,
xy2

(x − y)2
,

x2y

(x− y)2
.

For this web, we have c0 = 0 and J1 = J2 = 0. Thus, we have the web of
type 1 as indicated in Theorem 6, and this 4-web is of rank one.

In this example the 4-web is not linearizable. Therefore,
General 4-webs of rank one are not linearizable.

8 Planar 5-Webs of Maximum Rank

Let us consider a planar 5-web in the standard normalization
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ω1 + ω2 + ω3 = 0, aω1 + ω2 + ω4 = 0, bω1 + ω2 + ω5 = 0,

where a and b are the basic invariants of the web.
The abelian equation for such a web has the form

(w + au + bv)ω1 + (w + u + v)ω2 + wω3 + uω4 + vω5 = 0,

where we have
λ1 = w + au + bv, λ2 = w + u + v,

and
λ3 = w, λ4 = u, λ5 = v.

The functions w, u, and v satisfy the abelian equation

δ1 (w)− δ2 (w) = 0, δ1 (u)− δ2 (au) = 0,

δ1 (v)− δ2 (bv) = 0, δ1 (w) + δ1 (u) + δ1 (v) = 0,

and their compatibility condition takes the form

κ = (∆1∆2∆3δ1 − δ1∆2∆3∆1) (w) + (∆1∆2∆3δ1 −∆1δ1∆3∆2) (u)

+ (∆1∆2∆3δ1 −∆1∆2δ1∆3) (v) = 0.

In the canonical coordinates in the jet bundles, the abelian equation has
the form

u1 + v1 + w1 = 0, v1 − bv2 − b2v = 0,
u1 − au2 − a2u = 0, w1 − w2 = 0,

and the obstruction κ equals

c0w22 + c1w2 + c2v2 + c3w + c4u + c5v = 0,

where the explicit form of expressions for the coefficients c9, c1, c2, c3, c4 and
c5 can be found in [12].

This gives the following result [12]:
A planar 5-web is of maximum rank if and only if the invariants c0, c1, c2, c3, c4 and

c5 vanish.

Similar to the case of 4-webs, the coefficient c0 in the expression of κ for
5-webs has an intrinsic geometric meaning.

Namely, we call by the curvature function of a 5-web the arithmetic mean
of the curvature functions of its ten 3-subwebs.

The straightforward calculation shows that the curvature function equals
to c0.

In other words [12], the curvature of a planar 5-web of maximum rank
equals zero.

For the case of planar 5-webs with constant basic invariants a and b the
invariants ci, for i = 0, 1, 2, 3, 4, 5, vanish (and the web is of maximum rank)
if and only if this web is parallelizable [12].
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Example 4. We consider the Bol 5-web with the web functions

x, y,
x

y
,
1− y

1− x
,
x− xy

y − xy
.

For this web we have

K = 0, a =
xy − x

xy − y
, b =

y − 1

x− 1
,

and ci = 0, for i = 0, 1, ..., 5.
Thus, the 3-web is of maximum rank.
Using the linearizability conditions for planar 5-webs [4], we see that the

Bol 5-web is not linearizable.

The above example leads us to the following important observation:
General planar 5-webs of maximum rank are not linearizable.

9 Projective Structures and Planar 4-Webs

In this section we give more direct construction of the projective structure
associated with 4-webs (see [13]).

Remind that an affine connection ∇ on the plane determines a covariant
differential

d∇ : Ω1
(

R
2
)

→ Ω1
(

R
2
)

⊗Ω1
(

R
2
)

.

This differential splits into the sum

d∇ = da
∇ ⊕ ds

∇,

where
da
∇ : Ω1

(

R
2
)

→ Ω2
(

R
2
)

is the skew-symmetric part, and

ds
∇ : Ω1

(

R
2
)

→ S2
(

Ω1
) (

R
2
)

is the symmetric one.
The connection is torsion-free if and only the skew-symmetric part coin-

cides with the de Rham differential:

da
∇ = d.

A foliation given by a differential 1-form ω is geodesic (i.e., all leaves of
the foliation are geodesics) with respect to connection ∇ if and only if (see
[13]):

ds
∇(ω) = θ · ω

for some differential 1-form θ.
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Remark that it follows from the above formula that two affine connections,
say, ∇ and ∇′, are projectively equivalent (i.e., have the same geodesics) if
and only if there exists a differential 1-form ρ such that

ds
∇(ω)− ds

∇′(ω) = ρ · ω

for all differential 1-forms ω.
Assume that a 4-web is given by differential 1-forms ωi, i = 1, 2, 3, 4, which

are normalized

ω1 + ω2 + ω3 = 0,

aω1 + ω2 + ω4 = 0,

and
dω3 = 0.

Let ∇ be a torsion-free connection for which all foliations ωi = 0, i =
1, 2, 3, 4, are geodesics.

We call such 4-webs geodesic.
Then

ds
∇(ωi) = θi · ωi

for all i = 1, 2, 3, 4 and some differential 1-forms θi.
Differentiating the normalization conditions, we get

θ1 · ω1 + θ2 · ω2 + θ3 · ω3 = 0,

da · ω1 + aθ1 · ω1 + θ2 · ω2 + θ4 · ω4 = 0.

If
θi = Aiω1 + Biω2

for all i = 1, 2, 3, 4, then the above system is just a system of linear equations
for coefficients Ai and Bi.

Solving this system, we find that

A2 = A1 + z, B2 = B1 + z,

A3 = A1, B3 = B1 + z,

A4 = A1 +
a1

a
, B4 = B1 + z,

where

z =
a1 − aa2

a(1− a)
.

In other words, the affine connection is completely determined by the differ-
ential 1-form θ1, and
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θ2 = θ1 − zω3,

θ3 = θ1 + zω2,

θ4 = θ1 +
a1

a
ω1 + zω2.

This shows that all such affine connections are projectively equivalent. Taking
the representative with

θ1 =
z

2
ω3,

we get the following result (this result was first obtained in [6], §29, p. 246):

Theorem 7. There is a unique projective structure associated with a planar

4-web in such a way that the 4-web is geodesic with respect to the structure.

The projective structure is an equivalence class of the torsion-free affine

connection ∇ with the following symmetric differential:

ds
∇(ω1) =

z

2
ω3 · ω1,

ds
∇(ω2) = −

z

2
ω3 · ω2.

We say that a planar d-web is geodesic with respect to an affine connection
if all leaves of all foliations are geodesic.

The above theorem gives a criterion for a d-web to be geodesic. For sim-
plicity we take the case of 5-webs. Let a 5-web be given by differential 1-forms
ωi, i = 1, 2, 3, 4, 5, which are normalized as follows:

ω1 + ω2 + ω3 = 0,

aω1 + ω2 + ω4 = 0,

bω1 + ω2 + ω5 = 0,

and
dω3 = 0.

This web is geodesic if and only if the fifth foliation ω5 = 0 is geodesic with
respect to the canonical projective structure determined by the 4-web (ωi, i =
1, 2, 3, 4).

We have

ds
∇(ω5) = θ5 · ω5 + (zb(1− b)− (b1 − bb2))ω

2
1 .

Therefore, in order to have a geodesic 5-web, the last term should vanish.

Theorem 8. A 5-web is geodesic if and only if the basic invariants a and b
satisfy the following condition:

a1 − aa2

a(1− a)
=

b1 − bb2

b(1− b)
. (71)
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The linearizability problem (see [4]) for planar webs can be reformulated
now as follows: a planar d-web is linearizable if and only if the web is geodesic

and the canonical projective structure of one of its 4-subwebs is flat.

The flatness of a projective structure can be checked by the Liouville tensor
(see [18], [17], [14]). This tensor can be constructed as follows (see, for example,
[21]). Let ∇ be a representative of the canonical projective structure, and Ric
be the Ricci tensor of the connection ∇. Define a new tensor P as

P(X, Y ) =
2

3
Ric(X, Y ) +

1

3
Ric(Y, X)

for all vector fields X, Y .
The Liouville tensor L is defined as follows:

L(X, Y, Z) = ∇X(P)(Y, Z)−∇Y (P)(X, Z)

for all vector fields X, Y, Z.
The tensor is skew-symmetric in X and Y , and therefore it belongs to

L ∈ Ω1(R2)⊗Ω2(R2).

It is known (see [18], [21], [17], [14]) that the Liouville tensor depends on the

projective structure defined by ∇ and vanishes if and only if the projective

structure is flat.

For the case of the projective structure associated with a planar 4-web we
shall call this tensor the Liouville tensor of the 4-web

Consider three invariants:

w =
fy

fx

, α =
aay − wax

wa(1− a)
, k = (log w)xy . (72)

Then the Liouville tensor has the form

L = (L1ω1 +
L2

w
ω2)⊗ ω1 ∧ ω2,

where L1 and L2 are relative differential invariants of order three. The explicit
formulas for these invariants are

3L1 = w(−(kw)x + αxx + ααx) + (αwxx + (α2 + 3αx)wx − 2αxy − 2ααy)

+w−1(−αwxy − 2αywx + αw2
x) + w−2αwxwy,

3L2 = w2(−(kw−1)y + 2ααx) + w(2α2wx − 2αxy − ααy)

+(−αwxy − 2αywx + αyy) + w−1(αwxwy − αywy).

(73)
Summarizing, we get the following result.

Theorem 9. A planar d-web is linearizable if and only if the web is geodesic

and the Liouville tensor of one of its 4-subwebs vanishes.
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Corollary 1. If the basic invariants of all 4-subwebs of a d-web are constants,

then the d-web is linearizable if and only if it is parallelizable.

Proof. First of all, the web is geodesic because of conditions (71).
Moreover, for a 4-subweb , condition a = const . implies α = 0, and by

Theorem 9 and (73), the 4-web is linearizable if and only if

(kw)x = 0,

and
(kw−1)y = 0.

Then w = A(x)B(y) and by (8), K = 0. Therefore, due to Section 3, the
4-web is parallelizable.

The d-web is parallelizable too, because it geodesic and has constant basic
invariants.
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26. Pirio, L.: Sur la linéarisation des tissus. Preprint arXiv: 0811.1810v1 (2008)
27. Ripoll, O.: Determination du rang des tissus du plan et autres invariants
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