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Abstract. A stochastic theory for the toppling activity in sandpile models is

developed, based on a simple mean-field assumption about the toppling process. The

theory describes the process as an anti-persistent Gaussian walk, where the diffusion

coefficient is proportional to the activity. It is formulated as a generalization of the Itô

stochastic differential equation with an anti-persistent fractional Gaussian noise source.

An essential element of the theory is re-scaling to obtain a proper thermodynamic limit,

and it captures all temporal features of the toppling process obtained by numerical

simulation of the Bak-Tang-Wiesenfeld sandpile in this limit.
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1. Introduction

The existence of self-organized critical dynamics in complex systems has traditionally

been demonstrated through numerical simulation of certain classes of cellular automata

referred to as sandpile models [1]. Non-linear, spatio-temporal dynamics is always

essential for the emergence of SOC behavior, but the details of this dynamics for a

specific natural system is often poorly understood and/or not accessible to observation.

In many cases the information available is in the form of time-series of spatially averaged

data like stock-price indices, geomagnetic indices, or global temperature data. For

scientists who deal with such data a natural question to ask is: are there specific

signatures of SOC dynamics that can be detected from such data?

In this letter we shall report some results which provide a partial answer to such

a question. Some important statistical features of the toppling activity are common to

most weakly driven sandpile models described in the literature, and these are used to

formulate a stochastic model for the toppling activity signal. A benchmark case against

which our results are tested, is a numerical study of the Bak-Tang-Wiesenfeld (BTW)

sandpile [2]. A crucial step in our work is a re-scaling of the dynamical variables which

allows a natural passage to the thermodynamic (continuum) limit. We demonstrate

that this leads to new results concerning SOC scaling laws. We find that the probability

density function (pdf) for the toppling activity is a stretched exponential or close to

the Bramwell-Holdsworth-Pinton distribution [3], depending on whether the sandpile

is so slowly driven that avalanches are well separated, or it is driven so hard that

several avalanches run simultaneously. The pdf for avalanche durations is unique in

the thermodynamic limit, but is not a power law, unless we redefine the meaning of an

avalanche to be the activity burst between successive times for which the activity rises

above a positive threshold. Implementing such a threshold yields an exponent for the

avalanche duration pdf of 1.63, in agreement with [4], but in contradiction to [7]. It

also gives power-law quiet-time statistics as in [4] and thus refuting the claim in [8] that

SOC implies power-law distributed avalanche durations, but Poisson-distributed quiet

times.

The sandpile models considered in this short paper deal with a d ≥ 2-dimensional

lattice of Nd sites each of which are occupied by a certain integer number of quanta

which we conveniently can think of as sand grains. The dynamics on the lattice is

given by a toppling rule which implies that if the number of grains on a site exceeds a

prescribed threshold, the grains on that site are distributed to its nearest neighbors. If

the occupation number of some of these neighbors exceed the toppling threshold these

sites will topple in the next time step, and the dynamics continues as an avalanche until

all sites are stable. The details of this toppling rule can vary, but a useful theory for a

broad class of natural phenomena should not be very sensitive to such detail.

In natural systems the SOC dynamics is usually driven by some weak random

external forcing. In sandpile models this can be modeled by dropping of sand grains at

randomly selected sites at widely separated times. In numerical algorithms this is often
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Figure 1. a): A realization of the toppling activity xN (t) in the BTW sandpile. b):

The increments ∆xN (t) = xN (t + 1)− xN (t) of the trace in (a), showing that ∆xN (t)

is large when xN (t) is large. c): Conditional pdfs of xN + ∆xN for xN = 10, 20, 30

respectively. d) The conditional mean and variance of ∆xN versus xN .

done by dropping sand grains only at those times when no avalanche is running. This

ensures that the drive does not interfere with the avalanching process. Usually it will

then only take a few time steps from one avalanche has stopped until a new starts, so for

a large system the quiet times between avalanches will appear insignificant compared

to their durations.

A more physical drive would be to drop sand also during avalanches. If the dropping

rate is slower than the typical duration of a system-size avalanche the drive would still

not interfere with the avalanche dynamics, but the quiet times would depend on the

statistical distribution of dropping times, which is typically a Poisson distribution. In

many natural systems, however, avalanching occurs all the time, corresponding to a

higher driving rate. In such cases, and also because there will always be noise in time-

series data, we cannot identify the start and termination of an avalanche from a zero

condition of our observable. In practice we have to define avalanches as bursts in the

time series identified by a threshold on the signal [4]. In a sandpile simulation such

bursts are correlated and therefore the quiet times between the bursts are power-law

distributed even if the dropping of sand grains is chosen to be a Poisson process. Hence

if focus is on modeling features that can be detected in observational data we shall think

of avalanches as activity bursts starting and terminating at a non-zero threshold value.

Moreover, one of the main results of this work is that power-law shape of the pdf for

avalanche duration is true only if one defines avalanches in this way.

2. The stochastic model

We shall assume that the lattice has linear extent L = 1 with Nd sites, so the

thermodynamic limit N → ∞ can be thought of as a continuum limit. The sandpile

evolves in discrete time steps labeled by k = 1, 2, 3 . . ., and the number of sites whose
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occupation number exceeds the toppling threshold at time k is called the toppling

activity xN (k). The toppling increment is ∆xN (k)
def
= xN (k + 1) − xN (k). Let us define

two active sites as dynamically connected if they have at least one common nearest

neighbor, and define a connected cluster as a collection of active sites which are linked

trough such connections. From numerical simulations of sandpiles we observe that such

clusters never consist of more than a few elements and that the instantaneous number

of clusters nN increases in proportion to xN . This implies that at each time k we can

label the clusters by i = 1, . . . , cxN(k), where c < 1 is a constant depending on the

specific toppling rule and the dimension d of the sandpile. We can then decompose

the increment ∆xN (k) into a sum of local increment contributions ξN,i(k) produced by

each of the clusters, i.e. ∆xN(k) =
∑cxN (k)

i=1 ξN,i(k). We think of the local increment

contributions as random variables which take values in a finite sample space. Indeed, if

each cluster i only consists of a single overcritical site, then ξi,N takes values in the set

{−1, 0, . . . , 2d − 1}.
As a first step to a stochastic model we make a mean-field assumption [10, 11],

which impiles that ξN,i(k) and ξN,j(k) are statistically independent for i 6= j. Then the

central limit theorem states that in the limit N → ∞, xN (k) → ∞ the conditional

probability density P [∆xN(k)|xN(k)] of an increment ∆xN (k), given xN(k), is Gaussian

with variance σ2 xN (k), where σ2 = c2(E[ξ2
N,i|xN ] − (E[ξN,i|xN ])2). This has been

verified numerically in the two-dimensional BTW-model as shown in Fig. 1. The figure

demonstrates the need to introduce a conditional probability: The conditional variance

of the increments is proportional to xN and the conditional mean is not zero.

In fact, numerical simulations show that the the conditional mean increment,

E[∆xN |xN ], is positive for small xN , reflecting the natural tendency for the activity

to grow when it is small. On the other hand the mean increment decays exponentially

to zero for moderate xN , and becomes negative when xN is comparable to the activity of

a system-size avalanche, reflecting the limiting influence of the finite system size. These

effects will be incorporated as a drift-term correction to the model, but for now we

consider for simplicity of argument a Gaussian process with non-stationary increments

and no drift term:

∆xN (k) = σ
√

xN (k)w(k) , (1)

where w(k) is a stationary Gaussian stochastic process with unit variance. From the

numerical sandpile data (see Fig. 1) we observe that the normalized toppling process

W (k)
def
=

k
∑

k′=0

w(k′) =
k

∑

k′=0

∆xN(k′)

σ
√

xN (k′)

has the characteristics of a fractional Brownian walk with Hurst exponent H ≈ 0.37

on time scales shorter than the characteristic growth time for a system-size avalanche,

consistent with a power spectrum which scales like f−1.74. Thus we model the normalized

increment process as w(k) = WH(k+1)−WH(k), where WH(k) is a fractional Brownian

walk with Hurst exponent H . For the transition to the thermodynamic limit, where
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time will become a continuous variable, we can think about WH(k) as the result of a

discrete sampling of the (continuous-time) fractional Brownian motion (fBm) WH(t).

This process has the property 〈|WH(t+ τ)−WH(t)|2〉 = τ 2H . We now have a stochastic

difference equation

∆xN (k) = σ
√

xN (k) (WH(k + 1) − WH(k)). (2)

Numerical simulations show that xN ∼ ND1 ‡, where 0 < D1 ≤ d can be interpreted

as a fractal dimension of the set of active sites imbedded in the d-dimensional lattice

space. This property is used to re-scale xN (k) such that it has a well-defined limit

as N → ∞. We also have to re-scale the time variable by letting t = k∆t, where

∆t = N−D2 . The value of D2 will become apparent if we define the normalized activity

variable XN(t) = N−D1xN (t/∆t), such that the corresponding increment becomes

∆XN(t) = NHD2−D1 σ
√

XN(t) ∆WH(t) , (3)

where ∆WH(t) = WH(t + ∆t) − WH(t). A well-defined thermodynamic limit N → ∞
requires D2 = D1/2H , for which Eq. (3), by introduction of the limit function

X(t) = limN→∞ XN(t), reduces to the stochastic differential equation

dX(t) = f(X) dt + σ
√

X(t) dWH(t), (4)

where we have heuristically added a drift term f(X) dt to account for the non-zero

mean of the conditional increment. We take f(X) to be an exponentially decaying

function based on the numerical results from the sandpile. In the 2-dimensional BTW

model we find that D1 ≈ 0.86 and hence D2 = 1.16. This defines re-scaled coordinates

XN = xN/N0.86 and tN = k/N1.16.

3. Analysis of avalanches

A time series X(t) ≥ 0, representing a succession of avalanches with zero quiet times,

can be constructed numerically from the discrete-time version of Eq. (4) by integrating

the equation using realizations of the fractional Gaussian noise process ∆WH(t). At

those times when X(t) drops below zero we consider the avalanche as terminated, and

a new, independent realization of ∆WH(t) is generated and used to produce the next

avalanche. From long, stationary time-series generated from the stochastic model and

from the sandpile model this way, we can construct pdfs P(X) which turn out to give

almost identical results for the two models (see Fig. 2). The shape of this pdf is universal

in the thermodynamic limit: a stretched exponential P(X) ∼ exp (−aXµ) with µ ≈ 0.5.

A different pdf appears if the time-series are constructed by launching the avalanches at

random times (Poisson-distributed) with characteristic time between launches shorter

‡ The BTW model does not exhibit perfect finite-size scaling [5] and hence the scaling xN ∼ ND1 is

not valid for very large activity. The effect of imperfect scaling with increasing N can be built into Eq. 4

through an N -dependent drift term. However, the distributions of duration and size of sub-system size

avalanches (defined by a threshold Xc > 0) is not sensitive to this feature of the BWT model. We have

given a detailed treatment of this problem in [6].
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Figure 2. Logarithmic plots of P(X) from simulations of the 2-dimensional BTW

sandpile for N = 1024. Also shown is P(X) found from simulations of Eq. (4), and a

stretched exponential fit (dashed curve, vertically shifted for visibility). All pdfs are

scaled to unit variance.

than the growth time of a system size avalanche. In this case several avalanches may

run simultaneously, and P(X) from both models are close to the Bramwell-Holdsworth-

Pinton distribution, which was claimed to be valid for the toppling-activity in the BTW-

model in [3].

Consider a solution of Eq. (4) with initial condition X(0) = Y > 0, and let

P (X, t) be the evolution of the density distribution in X-space of an ensemble of

realizations of the stochastic process X(t) all launched at activity X = Y at time t = 0.

Every realization X(t) will sooner or later terminate at a finite time t = τ for which

X(τ −1) > 0 and X(τ) ≤ 0, and then we remove it from the ensemble. P (X, t) contains

information about all commonly considered avalanche characteristics. For example, it

is easily found from from Eq. (4) that, on time scales shorter than the growth time of

a system-size avalanche, X(t) is a self-similar process with non-stationary increments

and self-similarity exponent h = 2H [6]. Hence the variance of X(t) with respect to

P (X, t) will scale as ∼ t2h. That this relation holds for the 2-dimensional BTW model

can easily be verified through numerical simulation (Fig. 3(a)).

We can also compute the survival probability ρ(τ) =
∫ ∞

0
P (X, τ) dX, which is the

probability that a realization of an avalanche has not terminated at the time τ . This

function is related to the pdf for avalanche durations by pdur(τ) = −ρ′(τ), so that pdur(τ)

is a power law if and only if ρ(τ) is a power law. Fig. 3(b) shows the function ρ(τ) for

numerical simulations of the BTW sandpile in the re-scaled coordinates XN and tN ,

demonstrating that the pdf for avalanche durations does not represent a power law.

The power-law form ρ(τ) ∼ τ 0.5 proposed in [7] can only be obtained as a tangent to the

log-log plot of ρ(τ) at a given duration time τ , and the slope of this tangent depends

crucially on the duration time τ for which this tangent is drawn.

The situation changes if we let all avalanches terminate when X drops below a

small threshold Xc > 0 as proposed in [4]. In this case avalanche durations are the



7

1

1

N 64

N 256

N 1024

N 2048

1

1

10 -4 10 -3 10 -2 10 -1 1 10

10 -4

10 -3

10 -2

10 -1

1

N 64

N 256

N 1024

N 2048

v
ar

ia
n
ce

 o
f 

X
(t

)

10
-1

10
-2

10
-3

10
-4

10
-5

10
-3

10
-2

10
-1

time t

su
rv

iv
al

 f
u
n
ct

io
n
 ρ

(τ
)

10
-1

10
-4

10
-3

10
-2

10
-1

duration τ

(a)

(b)

=

=

=

=

=

=

=

=

Figure 3. a) Double-logarithmic plots of the variance of X(t) with respect to the

pdf P (X, t). The variance grows like t2h, with h = 2H = 0.74 for times less than

the duration of a system size avalanche. b) Double-logarithmic plots of the survival

function ρ(τ) in the re-scaled coordinates XN and tN , demonstrating that the pdf of

avalanche durations is not a power-law. The dotted line has slope −0.5.

return times to the line X = Xc, and by changing coordinates to Y = X − Xc we

see that this corresponds to the return times to the time axis of the process given by

the stochastic differential equation dY (t) = σ
√

Xc + Y (t) dWH(t). For small avalanches

where X(t)−Xc ≪ Xc we can approximate this expression with dY (t) = σ
√

Xc dWH(t),

i.e. can approximate Y (t) by a fractional Brownian motion with Hurst exponent H .

Using the result of Ding and Yang [9] on the return times of a fractional Brownian

motion we get pdur(τ) ∼ τ 2−H = τ−1.63.

Numerical simulations of the BTW model verify this result: The survival function

ρ(τ) becomes a power law on time scales shorter than a system-size avalanche (see

Fig. 4(a)), and the slope of the graph in a log-log plot is approximately −0.63, which

corresponds to a scaling of the pdf for duration times on the form pdur(τ) ∼ τ−1.63. The

result is also reproduced by simulations of Eq. (4) with an exponentially decaying drift

term. Fig. 4(b) shows the log-log plot of the pdf for duration times in the stochastic

differential equation and a line with slope −1.63, demonstrating that the avalanche

statistics in the BTW sandpiles is captured by the stochastic differential equation.
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Figure 4. a) The survival function for the BTW sandpile in re-scaled coordinates

XN and tN for N = 64, 256, 1024, 2048 when the durations are defined by putting a

small threshold Xc on the toppling activity. The function shows power-law behavior

with exponent −0.63 for avalanches smaller than system size. b) The pdf for duration

times from simulations of Eq. (4) when avalanches are defined in the same way as for

the sandpiles. The dotted line has slope −1.63.

From the scaling ρ(τ) ∼ τ−α we can deduce an exponent for the pdf of avalanche size

as well. On the time scales where the toppling activity can be approximated by a

fractional Brownian motion WH(t), the signal disperses with time as X ∼ tH , the size

of an avalanche of duration τ scales like S(τ) ∼
∫ τ

0
tH dt ∼ τH+1. Assuming that the

pdf for avalanche size is on the form psize(S) ∼ S−ν , the relation psize(S) dS = pdur(τ) dτ

yields τ−ν(H+1)+H ∼ τ−α−1, so

ν =
H + α + 1

H + 1
=

2

H + 1
. (5)

With H = 0.37 we obtain ν = 1.46.

We also remark that if we omit the drift term and let H = 1/2 and Xc = 0 we

obtain the so-called mean-field theory of sandpiles. In this case the stochastic differential

equation has a corresponding Fokker-Planck equation

∂P

∂t
=

σ2

2

∂2

∂X2
(XP ) .

If we solve this equation on the interval [0,∞) with absorbing boundary conditions in

X = 0 we can obtain an analytical expression for P (X, t), and from some straightforward
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algebra we find for large τ that pdur(τ) ∼ τ−2 [6]. Since Xc = 0 we can not approximate

the toppling activity by a Brownian motion on any scale and thus X(t) diverges like

∼ th, where h = 2H . By replacing H with h = 2H in Eq. (5) we get psize(S) ∼ S−3/2,

in agreement with previous mean field approaches [10, 11].

4. Concluding remarks

We point out that the validity of Eq. 4 is not restricted to the BTW model. For instance,

the equation has been verified for the Zhang model [6, 12], though with a different Hurst

exponent H . Time series of global quantities derived from numerical simulation of

different sandpile and turbulent fluid systems can be shown to be adequately described

by Eq. 4, where H and the specific form of the drift term depend on the system at

hand [6].
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