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Abstract 

Marine copepods of the genus Pseudocalanus (Calanoida) are common in Svalbard 

waters as well as throughout the northern hemisphere. They contribute considerably to 

plankton biomass in addition to Calanus spp. and play an important role in the marine 

food web as a link between planktivores, such as fish larvae, and microalgae. 

Pseudocalanus consists of several sibling species, and two of them, Pseudocalanus 

minutus and P. acuspes, are known to inhabit the Svalbard area. A third species, P. 

major, is listed as potentially present in this area, but has rarely been reported. As for the 

other members of the genus, discrimination between these species is time consuming and 

requires detailed microscopy. Most studies thus lump them into Pseudocalanus spp., 

ignoring differences in life history strategies and behaviour. In the current master’s 

project, a molecular species-specific polymerase chain reaction (PCR) was developed, 

using the mitochondrial gene cytochrome oxidase subunit I (mtCOI) to aid morphological 

and morphometrical discrimination. The DNA sequence variation confirmed the presence 

of both species in Svalbard waters. The statistical comparison of morphological 

identification with the PCR results gave ambiguous results: a Chi-square test yielded a 

significant difference between the groups, but with low power due to a low sample size. 

However, this indicates that microscopic species determination may be wrong. Moreover, 

morphometrical analysis revealed deviations from expected length ratios in both species, 

and the PCR sometimes failed to produce results. This may suggest the presence of a 

third species, presumably P. major, for which no molecular information is available. 
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Introduction 

Marine copepods of the genus Pseudocalanus Boeck 1872 are widespread throughout the 

Northern Hemisphere and they are among the most abundant copepods in these waters 

(Corkett and McLaren 1978). Copepods of this genus play a significant role as a 

secondary producers, feeding mainly on microalgae at the base of the marine food web 

(Corkett and McLaren 1978). Under post-bloom conditions they are also capable of 

participating in the trophic web in close association with the microbial loop, where they 

may feed on heterotrophic protozoans (Wassmann et al. 2006). Pseudocalanus spp. 

therefore provide an important food source for larval stages of many fish species (Corkett 

and McLaren 1978; Hinrichsen et al. 2002) and also for adult pelagic planktivorous fish 

like sprat (Sprattus sprattus) and herring (Clupea harengus) (Mollmann and Koster 

2002).  

 

The Arctic Ocean is probably the least studied of the world oceans. It is inaccessible due 

to ice coverage and therefore the marine ecology of the Arctic Ocean is poorly known 

(Blix 2005). The key factors affecting Arctic Ocean ecosystems are low temperatures and 

seasonal variability of ice cover, light regime and primary production. For primarily 

herbivorous zooplankton like Pseudocalanus this means life cycle adaptations such as 

energy storing in the form of lipids for overwintering and makes reproduction possible 

before the major phytoplankton bloom outburst in the spring (Hagen 1999).  

 

The genus Pseudocalanus consists of seven sibling species, some of which co-occur in 

certain habitats, for example P. newmani and P. moultoni in Georges Bank (Bucklin et al. 

2001) and P. minutus and P. acuspes in the Barents Sea (Falk-Petersen et al. 1999) and in 

an Arctic fjord of Svalbard (Lischka and Hagen 2005). Some attempt has been made to 

describe the morphology of the different species and the most comprehensive one is 

written by Frost (1989) where he distinguishes and describes seven species through out 

the Northern hemisphere. Earlier six species had been described, those are reviewed in 

Corkett and McLaren (1978) where they noted various proposed synonymies, 

inconsistencies and uncertainties concerning the six species. To distinguish between these 
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sibling species morphologically is time consuming and the procedure requires detailed 

microscopy. In many ecological studies on species distribution patterns they are referred 

to as Pseudocalanus spp. (Walkusz 2003; Gislason and Astthorsson 2004) or even 

grouped together with the genus Paracalanus (Heath and Lough 2007). By merging 

different species and even genera, the biodiversity of the zooplankton community is 

underestimated and furthermore the ecology of co-existing species combined ignoring the 

different preferences for habitat, food and time of reproduction. In order to understand 

the function of the ecosystem, both species richness and functional diversity need to be 

mapped in details. Therefore methods need to be developed to correctly identify species 

that formerly have been lumped together.  

 

According to Frost (1989) two Pseudocalanus species, P. acuspes (Giesbrecht, 1881) and 

P. minutus (Krøyer, 1845) are found in Svalbard waters. Frost (1989) also suggested that 

a third species, P. major, might be found in the fjords of Svalbard. P. major has 

occasionally been found in Arctic locations together with P. minutus and P. acuspes in 

samples from near shore waters and where the water is strongly influenced by freshwater 

runoff (Frost 1989). The species might thus be expected in Svalbard fjords especially 

during the melting season, when a lot of freshwater is mixed into the fjords.  

 

Size alone is not a good identification factor for the genus Pseudocalanus as the species 

differ only in minor details of morphology (Frost 1989). Size of individual copepods has 

been related to temperature, where as they tend to grow larger at lower temperatures but 

be smaller at higher temperatures (Saiz and Calbet 2007). Another factor of size is a 

variance in DNA content of cells, as more DNA means larger cells and therefore larger 

individuals. Studies on P. major showed that they had greater DNA content per cells than 

any other species of Pseudocalanus (Frost 1989; McLaren et al. 1989). 

 

P. acuspes is distributed through out the Arctic region with southern limits in the Baltic 

Sea and the Bedford Basin (Nova Scotia, Canada) in the North Atlantic Ocean. In the 

North Pacific Ocean, the distribution ranges south into the eastern Bering Sea (Frost 

1989). The life cycle of P. acuspes varies depending on location. In the southern parts of 
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the Barents Sea two-three generations per year are produced, while there are likely to be 

fewer generations further north (Norrbin 1991). The overwintering stages are CIII-CV 

(Norrbin 1991). P. minutus is distributed throughout the Arctic Ocean with a southward 

extension into the western North Atlantic Ocean and western North Pacific Ocean (Frost 

1989). A life history study from a high Arctic fjord (Kongsfjorden, Svalbard) revealed a 

one year life cycle of P. minutus also with the overwintering stages CIII-CV (Lischka and 

Hagen 2005).  

 

The genus Pseudocalanus is generally considered to comprise neritic species (Corkett 

and McLaren 1978), but P. minutus is regarded as more oceanic (Norrbin 1991). 

Therefore it would be expected that P. acuspes could be prevalent in more isolated fjords, 

while P. minutus should be more common in fjords that have regular exchange of water 

masses with the open ocean. 

 

The seas around Svalbard are influenced by different water masses and are therefore 

divided into biogeographically different zones. The West Spitsbergen Current, with water 

of Atlantic origin, flows along the west and north coasts, while along the east coast there 

is water of Arctic origin (Loeng 1991). These environmental settings provide the 

opportunity to investigate possible differences in the presence, abundance and 

distribution of Pseudocalanus minutus and P. acuspes at locations influenced by different 

water masses.  

 

One way to achieve accurate identification of sibling species is to apply a molecular 

method, such as species-specific polymerase chain reaction (PCR) (Bucklin et al. 1999). 

The PCR technique involves three main steps (Figure 1). The first step is a denaturisation 

of the double-stranded DNA by heating. The strands then separate and the second step 

takes place as the annealing of the primers to the edges of the amplification sites takes 

place. This occurs at slightly lower temperature. For the final step the temperature is 

raised somewhat again and primer elongation takes place. That is where the strands 

between the bordering primers are synthesized with a thermostable DNA polymerase. 

These steps are repeated 20 times or more, depending on optimization (Avise 2004). A 
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primer is a short sequence of DNA, usually 20 to 30 base pairs (bp). It has high sequence 

similarity to regions bordering the target sequence (Avise 2004). Primers are used in 

pairs. One is a common primer that recognises sequence sites for both species, while the 

other primer recognises only a species-specific site. The length of the sequence between 

the common primer and the species-specific primer has to be different to make it possible 

to identify the differently sized bands (also termed amplification products) that are 

produced (Bucklin 2000). The primers usually are named after the base pair number site 

on the sequence they attach to and those names can be used to find the size of the 

amplification product by subtracting the higher number from the lower one and then add 

one (e.g. the primer pair HCO-2198 and LCO-1490 would yield a amplification product 

of the size 709 bp). The bands are usually visualised on agarose gel electrophoresis. 

Species-specific PCR can be carried out simultaneously and competitively for both 

species at once in the same tube, as the species-specific primers recognise only their 

specific sequence site (Bucklin 2000). 
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Figure 1: Polymerase chain reaction, PCR. The three steps of DNA amplification. 
 

To establish a species-specific PCR the first step is to obtain the DNA sequence of a 

selected region of interest (Bucklin 2000). Universal primers have been described to 

amplify a 709 bp fragment of the mitochondrial gene cytochrome c oxidase subunit I 

Cycle 1 

New primers 

3´ 
3´ 5´ 
5´ 

5´ 

5´ 3´ 

3´ 

3´ 

3´ 5´ 

5´ 

5´ 3´ 

3´ 5´ 

5´ 
3´ 

3´ 
5´ 3´ 

5´ 

5´ 
3´ 

3´ 

5´ 3´ 

5´ 

Primer 1 

Primer 2 

Denaturation 

Annealing 

Extension 

Denaturation 
+ Annealing 

Extension 

Cycle 2 

And so forth 

Primer 1 



 14 

(mtCOI gene) (Folmer et al. 1994). Based on the sequence of this fragment, primers can 

be designed that are specific to a given species (Bucklin 2000). Historically, the mtCOI 

gene has been chosen to distinguish species with PCR methods, because it has proved to 

be diagnostic at species level (Bucklin et al. 2003). Amplification sites within the 

mitochondrial COI gene have been used with good results for the identification of other 

Pseudocalanus species, such as P. moultoni and P. newmani (Bucklin et al. 2001). 

 

The objectives of this study are fourfold: 1) to determine the distribution of the two 

Pseudocalanus species, P. minutus and P. acuspes, in the Svalbard area in order to find 

out if they co-occur and where; 2) to determine if differential distribution patterns of both 

species relate to Atlantic/Arctic water influences; 3) to determine how useful 

morphometrics could be for identification; and 4) to develop a molecular method to 

discriminate the species using their DNA. The methodological comparison of 

microscopic and molecular identification will reveal the accuracy and suitability for 

future ecological studies on the species involved.  

 

In order to achieve the objectives of the study, we collected samples of Pseudocalanus 

females from several fjords around Svalbard. They were then identified morphologically 

and a number of morphometrical features were measured. Furthermore a species-specific 

PCR protocol was developed and then applied on the already morphologically identified 

individuals. According to morphology identification P. minutus and P. acuspes co-occur 

in all sampling locations but due to low sample size for the PCR analysis further studies 

are needed to conclude on the difference between the morphological and molecular 

identification. 
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Materials and methods 

The study area 

Svalbard is an archipelago situated in the north-western Barents Sea. It ranges from 76°-

81° N and 10°-35° E. The largest island, Spitsbergen, is the location of all sampling sites 

except for one located on the north-central shore of Nordaustlandet (Figure 2). The 

samples were taken in spring and summer 2007 (Table 1). 

 
Figure 2: The archipelago of Svalbard. Arrows indicate the main current systems, with red arrows for water 
of Atlantic origin (The West Spitsbergen Current) and blue arrows for water of Arctic origin (The East 
Spitsbergen Current). Sampling locations are A = Austfjorden, B = Billefjorden, I = Isfjorden, H = 
Hornsund, R = Rijpfjorden, S = Storfjorden and V = Van Mijenfjorden.  
 

The west coast of Spitsbergen is exposed to water transported with the West Spitsbergen 

Current (Figure 2), which is a continuation of the Norwegian Atlantic Current that carries 
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warm and saline Atlantic water from the Norwegian Sea to the Arctic Ocean (Piechura et 

al. 2001). The current flows along the continental slope, but onshore of the continental 

shelf another current carries water of Arctic origin (Saloranta and Svendsen 2001). The 

latter is originated in the East Spitsbergen Current and is called South Cape Current as it 

passes the south cape of Spitsbergen. The two water masses are usually separated by a 

hydrological front outside the west coast of Spitsbergen, but since the current speed and 

net volume transport are likely much larger in the West Spitsbergen Current than in the 

shelf current, it would be more likely to find remnants of the slope water on the shelf than 

the other way around (Saloranta and Svendsen 2001). This hypothesis is supported by the 

relatively light ice conditions in the open (no sill or a low sill ) fjords along the west coast 

of Spitsbergen (Saloranta and Svendsen 2001).  

 

The fjords chosen for the present study differs in location and degree of Atlantic water 

mass input, with some fjords strongly influenced by Atlantic inflow, and others only 

mildly influenced or uninfluenced. Four of the fjords are located on the west coast of 

Spitsbergen: Isfjorden, Billefjorden, Van Mijenfjorden and Hornsund (Figure 2). 

Isfjorden is a broad fjord with no sill at its mouth and is therefore exposed to the Atlantic 

water coming in with the West Spitsbergen Current (Berge et al. 2005). Billefjorden, a 

branch-fjord of Isfjorden, is a threshold fjord with very little or no Atlantic inflow 

(Walkusz 2003). Van Mijenfjorden is located on the south west coast of Spitsbergen and 

its opening is partly closed by the island Akseløya and a sill which restrict, to some 

extent, the water flow of the coastal water, including the West Spitsbergen Current into 

the fjord (Renaud et al. 2007). Hornsund is an open fjord without a sill. It is the 

southernmost fjord on the west coast of Spitsbergen and is under the influence of both the 

coastal South Cape Current that carries Arctic Water and the West Spitsbergen Current 

(Weydmann and Kwasniewski 2008). 

 

Additional sampling sites in the north and east of Svalbard are Austfjorden, Rijpfjorden 

and Storfjorden (Figure 2). Austfjorden is the innermost part of a longer fjord called 

Wijdefjorden. Wijdefjorden branches in from the north coast of Spitsbergen and some 

Atlantic inflow is expected as a result of the West Spitsbergen current flow along the 
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north coast of Spitsbergen. The inner part, Austfjorden, is rather isolated from the rest of 

Wijdefjorden by a shallow sill (Dale et al. 2006), so Atlantic influences are expected to 

be limited there, but its oceanography is little studied. Rijpfjorden branches from the 

north coast of Nordaustlandet, a large island northeast of Spitsbergen. It opens to a broad 

shallow shelf, resulting in little warm, Atlantic subsurface water entering the fjord from 

the north (Ambrose et al. 2006). Storfjorden is a large fjord separating Barentsøya and 

Edgeøya from the east coast of Spitsbergen, where the East Spitsbergen current flows 

with relatively cold and fresh Arctic water from north to south (Loeng 1991). 

 

Collection and preservation of samples 

Zooplankton samples were collected in March and April through the sea ice and in ice 

free conditions in May, June and July, by vertical tows from the bottom to the surface. In 

a few cases, samples taken in Austfjorden and Billefjorden, vertically stratified tows were 

performed with two and three depth intervals, respectively (Table 1). The depth intervals 

for Billefjorden for the two different months were not the same but were considered to be 

equivalent. The sampling position in the fjords varied: in Isfjorden and Rijpfjorden 

sampling was carried out in the fjord mouth, whereas in for the other fjords sampling 

positions were located in the fjord head. The plankton net used was a standard WP-2 net, 

mesh size 200 µm, except for Hornsund, where a net of 180 µm mesh size was deployed.  

 
Table 1: Sampling details for zooplankton samples and environmental data. Temperature is given as 
average temperature in the water column for a given month. Temperature references and corresponding 
month: 1. Daase, April (unpublished data) (Appendix A, Figure C); 2. Arnkvaern et al. (2005), March and 
April, 3. Weydmann and Kwasniewski (2008), July; 4. Steen et al. (2007), July; 5. Nygård (unpublished 
data), April and June, (Appendix A, Figure A and B); 6. Skogseth et al. (2005), April; 7. Fer and Widell 
(2007), March. 
Location Latitude (N) Longitude (E) Date/Month Sample depth 

intervals (m) 
Bottom 
depth (m) 

Nr of 
repl. 

Tempref 

°C 
Austfjorden 78°59.932' 16°11.430' 28/3 0-50-150 170 3 -1.71 

Billefjorden 78°39.683' 16°44.268' 29/3 0-50-100-150 170 3 -1.02 
Billefjorden 78°39.566' 16°42.274' 8/5 0-25-75-180 196 2 -1.02 

Hornsund 77°00.494' 16°29.218' 28/7 0-180 180 1 -0.33 

Isfjorden 78°10.990' 14°20.451' 8/5 0-100 100 1 1.04  

Rijpfjorden 80°15.954' 22°17.397' 23/4, 5/6 0-145 148 1, 1 -1.85 

Storfjorden 78°15.703' 19°07.440' 17/4 0-28 30 5 -1.76 

Van 
Mijenfjorden 

77°50.942' 16°43.233' 12/3, 16/4  0-50 50 3, 3 -1.87 
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All samples were preserved in 96% ethanol, except for samples from Rijpfjorden and 

Austfjorden which were preserved in 99% ethanol, and then stored until further analysis. 

 

Abundance 

The abundance of each species was estimated by counting the females from each sample 

after microscopic identification. For replicated samples abundance was estimated as the 

average of abundance in all individual replicates. Usually whole samples were counted 

but for very dense ones females were counted from subsamples with a split of ½ to ¼ of 

the total. In those cases the samples were divided with a Motoda splitter (Motoda 1959) 

and at least 100 individuals total were counted. The abundance as individuals per m3 was 

calculated using the diameter of the net opening (0.25 m2) and the sampling depth, 

assuming full filter efficiency (Eq. 1 and 2).  

 

Opening of the net (m
2
) x tow depth m = filtered volume (V) Eq. 1 

 

Number of individuals x aliquot / filtered volume (V) = abundance per m
3 
 Eq. 2 

 

Morphological identification 

Adult Pseudocalanus females were sorted from the samples for morphological 

identification and morphometric measurements. Adult females were targeted in this study 

because their morphological features are best known and more extensively described than 

for younger stages. Main body parts are outlined in Figure 3. 
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Figure 3: A schematic figure of a copepod labelled with body parts mentioned in the text.  
 

 To distinguish between Pseudocalanus acuspes and P. minutus the difference in the 

shape of the prosome was used (Frost 1989). The prosome of P. acuspes looks stocky in 

lateral view (Figure 4), although this is somewhat variable, and the cephalosome is 

usually rounded, barely extending anteriad of the rostrum (Frost 1989). The prosome of 

P. minutus, on the other hand, looks slender (Figure 4), and the cephalosome protrudes 

anteriad of the rostrum, often somewhat angularly (Frost 1989). 

 

 
Figure 4: Photograph from the stereo microscope. P. acuspes (the three individuals on the left) and P 

.minutus (the three to the right). Both species have prosome length of about 1000 µm. 
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Morphometrics 

An image analyzer (Motic Images Plus 2.0 ML) was used to measure the length of the 

prosome, the cephalosome, the urosome and the seminal receptacle (Figure 3) for all 

samples except from Hornsund where only prosome and urosome was measured (using 

Leica Application Suite, Version 3.1.0). The measurements were used to estimate body 

ratios as those have been used as potential identifiers in addition to morphology. Frost 

(1989) studied ratios of lengths of various body parts, such as prosome length vs. 

urosome length, and concluded that such ratios, along with body shape, are well suited to 

identify the Pseudocalanus species. According to his results the distinguishing feature 

between P. minutus and P. acuspes in Arctic locations is the ratio of prosome to urosome, 

being larger for P. minutus, as it has a shorter urosome, than for P. acuspes. The ratio of 

the length of the seminal receptacle to cephalosome length, separates P. minutus and P. 

acuspes from a third species, P. major (Frost 1989).  

 

Molecular identification 

Development of species-specific PCR protocol 

A species-specific PCR protocol was designed in order to identify P. minutus and P. 

acuspes. DNA was extracted with QIAGEN DNeasy Blood & Tissue kit from 10 P. 

minutus and 10 P. acuspes, from Billefjorden, that had previously been identified by 

morphological traits as described above. A 709 bp region of the mtCOI gene was 

amplified for P. minutus using general invertebrate primers, LCO-1490 and HCO-2198 

(Folmer et al. 1994) that have been utilized to amplify DNA from other Pseudocalanus 

species (Bucklin et al. 2001). For P. acuspes a 1118 bp region of the same gene was 

amplified using LCO-1490 (Folmer et al. 1994) and COI – 2607 (Bucklin, unpublished).  

 

LCO-1490 5´-GGT CAA CAA ATC ATA AAG ATA TTG G-3´ (forward) 

HCO-2198 5´-TAA ACT TCA GGG TGA CCA AAA AAT CA-3´ (reverse) 

COI - 2607 5´- ACA TAG TGG AAA TGT GCT ACA TA-3´ (reverse) 
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The amplification protocol for P. minutus was: 95°C (1 min), 45°C (2 min), 72°C (3 min) 

carried out for 40 cycles in a Perkin Elmer 480 thermal cycler. The same protocol was 

used to amplify P. acuspes mtCOI, with the exception that the annealing temperature was 

37°C instead of 45°C. 

 

PCR products were purified with the Qiagen PCR Purification Kit and processed with the 

BigDye v3.1 Cycle Sequencing Kit (Applied Biosystems). Sequencing was performed on 

an Applied Biosystems 3130 Genetic Analyzer. The sequencing protocol was 96°C (10 

sec), 50°C (5 sec) and 60°C (4 min) with an initial denaturation step of 96°C (1 min) 

carried out for 35 cycles. Sequences were edited using Sequencer (Gene Codes corp) and 

entered into BLAST (Altschul et al. 1997) to confirm molecular species identification. 

The obtained sequences (Appendix B) were used to design species-specific primers.  

 

Species-Specific PCR 

179 individuals of each species from 5 locations (Austfjorden, Rijpfjorden, Storfjorden, 

Billefjorden and Van Mijenfjorden) were processed. They were chosen based on the total 

number in the samples, samples with numbers lower than 30 of each species were not 

considered (Bucklin et al. 2001). For the processing of the 358 individual copepods the 

following protocol was performed: each individual copepod was transferred to a 

microcentrifuge tube with 32.75 µl sterile distilled water and heated in a microwave oven 

for one minute to allow the ethanol to evaporate. The copepods were then crushed with a 

pipette tip against the tube in order to aid the release of DNA. Each 50 µl reaction 

consisted of 10 µl of 5 x PCR buffer (Promega) and 3 µl of 25 mmol l-1 MgCl2 solution, 1 

µl of a 10 mmol l-1 dNTP solution (equimolar mix dATP, dCTP, dGTP, dCTP), 1 µl of a 

10 µmol l-1 solution of Primer A (common Primer), 1 µl of a 10 µmol l-1 solution of 

Primer B (P. minutus-species-specific), 1 µl of a 10 µmol l-1 solution of Primer C (P. 

acuspes-species-specific) and 0.25 µl (1,25 units) of GoTaq Flexi DNA polymerase. The 

primers used in the protocol were:  

 

Primer A: PsCOI_1561F 5´-GCA GGW ATR ATT GGG ACA GG-3´, (forward) 
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Primer B: COI_1932R 5´-AAC ACC TGC TAA A T GTA AA-3´, (reverse) 

Primer C: COI_2060R 5´-TGA CAG CAG TAG AAG AAT AG-3´, (reverse) 

 

PCR amplification with PsCOI 1561 and P. minutus SS-primer COI 1931R produced a 

product of 372 bp while PsCOI 1561 and P. acuspes SS-primer COI 2060R produced a 

500 bp product. A negative control, containing only mastermix but no copepod, was run 

with every procession to control for contamination.  

 

The amplification protocol was 40 cycles of: 45 sec at 94°C for the denaturation step, 1 

min at 47°C for the annealing step and 1 min and 30 sec at 72°C for the elongation step 

and a final elongation step of 72°C for 3 min. This was performed on an Applied 

Biosystems 2720 thermal cycler. 

 

The buffer used to make the gels was a 1x TBE buffer and the agarose was measured 

precisely to make the gel concentration 2%. After heating the gel mixture, 5 µl of 

Ethidium Bromid was added to allow visualisation of the DNA. The gels were left to 

stiffen for 10 minutes with two rows of gel combs for making the DNA loading wells. 

The gel system was High Speed/ conventional submarine gel system from Biokey 

American Instruments Inc. Before loading the PCR amplification products into the gel, 

1x TBE buffer solution (~450 ml) was poured into the chamber surrounding the gel, 

distilled water (~50 ml) was loaded on top of the gel and the gel combs were removed. 

Then 10 µl of PCR amplification products were loaded into the wells of the gel. This was 

electrophorized with a programmed power system (Bio Rad, Power Pac 300) for exactly 

10 minutes at 220 volts. After the electrophoresis the gels were captured on photos using 

the program GeneSnap from SynGene. The camera system was Gene Genius, Bio 

Imaging System from SynGene. 

 

The number of individuals of each species was then determined by migration distance of 

the DNA fragments through the gel from the loading well. Larger products (P. acuspes, 

500 bp) migrate for shorter distance than do smaller ones (P. minutus, 372 bp) and 

therefore produce identifiable bands on the gel. 



 23 

 

Some problems occurred throughout the processing of the PCR samples due to various 

technical problems. For example frequent contamination problem which made some of 

the gel results unusable. Contamination is displayed as a positive result in the negative 

control. The buffer that was used to make the gels might also have been getting to old by 

the time when the last gels were processed, so the different sized bands were not 

separating well enough to make a clear distinction between the two species. Furthermore 

in some cases there was no amplification produced from individual copepods. 

Data analysis 

Morphometrics 

The difference of prosome length for each species was tested between sampling 

locations. First the data was tested for normality by calculating the skewness and kurtosis 

of the distribution and plotting a qq plot. As the prosome length data were not normally 

distributed, a nonparametric test for difference between in ranked data, Kruskal – Wallis 

test, was performed. This was carried out in S-PLUS 8.0 for Windows. The difference 

was then analysed with a graph of mean prosome length ± 95% confidence limits. 

 

Molecular data 

The number of morphological identified individuals (the expected numbers) were 

compared with the number of molecularly identified individuals (the observed numbers) 

by using the frequency chi square test for goodness of fit. This was performed in 

Microsoft Office Excel 2003. The results of the chi square were then tested with a 

Binomial test of Power and Sample Size. This was performed in S-PLUS 8.0 for 

Windows. 

 

Graphs 

The graphs were drawn using S-PLUS 8.0 and Microsoft Office Excel 2003. The map 

was made with Matlab 7.0.4.  



 24 

Results 

Abundance 

Females of both species were found at all sampling locations except in the sample from 

Isfjorden in May, where only P. acuspes was found. The abundance of P. minutus ranged 

from 0.2 females m-3 in Hornsund in July, not replicated sample, to 14 females m-3 in 

Austfjorden in March, three replicates of all depth intervals. The abundance of P. acuspes 

ranged from 0.5 females m-3 in Van Mijenfjorden in April to 15 females m-3 in 

Billefjorden in May. P. minutus dominated in samples from March and April, while P. 

acuspes was more abundant in the samples from May, June and July (Figure 5).  

 

The west coast samples were from Van Mijenfjorden, Billefjorden, Isfjorden and 

Hornsund. In Van Mijenfjorden, P. minutus was dominating in both the sample from 

March and April with 3 females m-3 and 1 female m-3 respectively. For Billefjorden P. 

minutus was dominating in the March sample with 4 females m-3 while P. acuspes was 

far more abundant in the May sample with 15 females m-3. The Isfjorden sample, from 

May, like already stated, contained only P. acuspes with 1.5 females m-3. In the 

Hornsund sample, from July, P. acuspes was dominating with 3 females m-3.  

 

The north coast samples were from Austfjorden and Rijpfjorden. The Austfjorden 

sample, from March, had P. minutus dominating with 14 females m-3. In the Rijpfjorden 

sample from April, P. minutus was more abundant (3.5 females m-3) but in the June 

sample it had switched to P. acuspes being more numerous with 2 females m-3. The only 

east coast sample was from Storfjorden in April. There P. minutus had 5 females m-3 

while P. acuspes had 2.5 females m-3. 
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Figure 5: P. minutus and P. acuspes females. Abundance per m3 for sampling locations around Svalbard 
from March to July 2007.  
 

Vertical distribution 

In Billefjorden P. minutus dominated in all sampling depths in March. Its abundance was 

3 females m-3 in the deepest layer (100 - 150 m), increased to 6 females m-3 in the middle 

layer (50 – 100 m) and decreased again to 4 females m-3 in the surface layer (0 – 50 m). 

The maxima was thus in the middle layer. In the May sample P. minutus had the 
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abundance of 1 female m-3 in the deepest layer (75 – 180 m). In the middle layer (25 – 75 

m) it was 6 females m-3 and in the surface layer (0 – 25 m) 8 females m-3 (Figure 4). The 

maximum of P. minutus had thus shifted to the surface layer in May.  

 

The abundance of P. acuspes in Billefjorden, March, was 0.5 females m-3 in the deepest 

layer (100 – 150 m). In the middle layer (50 – 100 m) the abundance was 0.7 females m-3 

and in the surface layer it was 2 females m-3. In the May sample the abundance was 1.5 

females m-3 in the deepest layer (75 – 180 m), in the middle layer it was 5 females m-3 

and in the surface layer it was 38 females m-3 (Figure 6). The maximum number of P. 

acuspes was thus in the surface layer for both months.  

 

The abundance of P. acuspes in Billefjorden increased extensively between March and 

May in all three depth intervals (Figure 6). However the depth intervals are not the same 

but are considered to be more or less equivalent in terms of numbers of copepods. The 

highest increase was in the surface layer where in March it was 1.5 females m-3 but in 

May it had raised to 38 females m-3. The increase was less pronounced in the two deeper 

layers; with 0.7 females m-3 in the 50 - 100 m layer and 0.5 females m-3 in the layer from 

100 – 150 m in March rising to 5 females m-3 at intermediate depth (25 – 75 m) and 1.5 

females m-3 close to the bottom (75 – 180 m). 

 

The changes were not as distinct in P. minutus. In the top layer the abundance was 4 

females m-3 in March but 8 females m-3 in May. For the two deeper intervals the number 

of females was 6 m-3 from 50 – 100 m and 3 females m-3 at depths of 100 – 150 m in 

March and increased to 6 females m-3 (25 – 75 m) and 1 female m-3 (75 – 180 m).  
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Figure 6: P. minutus and P. acuspes females. Abundance per m3 in different depth layers for Billefjorden 
(B) in March and May, and Austfjorden (A) in March, 2007.  Note the different depth intervals for 
Billefjorden between the two months.  
 

In Austfjorden, P. minutus dominated in both sampling intervals in March (Figure 6). In 

the surface layer (0 – 50 m) the abundance of P. minutus was 16 females m-3 while P. 

acuspes was 4 females m-3. In the lower layer (50 – 150 m) the abundance of P. minutus 

was 12 females m-3 and P. acuspes 9 females m-3. Within each species P. minutus was 

more numerous in the surface layer while P. acuspes had more representatives in the 

deeper layer (Figure 6).  

Morphometrics 

The prosome length of P. minutus ranged from 742 µm to 1296 µm with an average of 

1073 ± 76 µm. The prosome length of P. acuspes ranged from 786 µm to 1315 µm with 

an average of 1044 ± 107 µm. There was almost a complete overlap in the prosome 

length of the two species (Figure 7).  

B
ill

e
fj
o

rd
e

n
  

A
u

s
tf

jo
rd

e
n

 

March May 

A 
B 



 28 

700 760 820 880 940 1000 1060 1120 1180 1240 1300 1360

Prosome length (µm)

0

25

50

75

100
N

u
m

b
e
rs

P. minutus n = 606

P. acuspes n = 482

 
Figure 7: The prosome length (µm) of the two species. All sampling locations included.  
 

However the length frequency distribution for P. acuspes was bi-modal with modes at ~ 

860 µm and ~ 1100 µm (Figure 7). Individuals of the smaller group were found at all 

sampling locations (Figure 8). 
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Figure 8: Prosome length (µm) of P. acuspes and P. minutus for each sampling location. For each box the 
line in the middle represent the median of the data set. The lower limit of the box is equal to the first 
quartile and the upper limit is equal to third quartile. The whiskers are equal to 1.5 x interquartile distance 
(the difference between the third and the first quartiles). Data points plotted outside the whiskers are 
outliers.  
 

Prosome length differed significantly between locations for both P. minutus and P. 

acuspes. For both species the significance value p was much lower than 0.01 (P. minutus: 

Kruskal-Wallis χ[5] = 83.64 and P. acuspes Kruskal Wallis χ[6] = 121.26). The locations 

that differed in prosome length for P. acuspes are Storfjorden and Van Mijenfjorden 

where they were smaller (Figure 9). At the other locations there is some degree of 

overlap in 95% confidence limits of the mean.  
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Figure 9: P. acuspes. Mean prosome length ± 95% confidence limits for different locations.  
 

For P. minutus there are no locations that differ drastically from the others but like for P. 

acuspes there is a similarity between Storfjorden and Van Mijenfjorden, and those two 

fjords differ somewhat from the rest of the locations whereas P. minutus also is a bit 

smaller than for the other locations (Figure 10). 
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Figure 10: P. minutus. Mean prosome length ± 95% confidence limits for different locations. 
 

The mean prosome length ± 95% confidence limits for the two species in different 

locations (Figure 9 and 10) indicate that in Storfjorden and Van Mijenfjorden where P. 

acuspes is smaller the P. minutus also is smaller, while in Austfjorden, Billefjorden, 

Hornsund and Rijpfjorden both species are of the larger form.  
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The mean prosome:urosome length ratio (± 95% confidence limits of mean) for the two 

species was 2.75 (± 0.02) for P. minutus and 2.54 (± 0.03) for P. acuspes. Although the 

ratio for P. minutus is slightly higher, it’s cluster (Figure 11) falls within the cluster 

formed by the data for P. acuspes. The regression equation for P. minutus is 77.12 + 

0.29PL and for P. acuspes 57.89 + 0.34PL (Figure 12). The slope values are 0.33 R2 for 

both species.  
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Figure 11: Prosome length in relation to urosome length for adult females of P. acuspes and P. minutus 
pooled for all sampling locations. Note axes range in relation to equations intercepts, the axes are not 
drawn from zero in order to display the data better.  
 

The data points for the relationship between the cephalosome length and the length of the 

seminal receptacle overlap for P. minutus and P. acuspes (Figure 12). However the 

regression lines show that there is a slight difference between the two data clusters. The 

black line (SRL = 0.027CL + 21.5) in figure 12, Frost (1989), indicates the separation 

line for the species P. major (above the line) which could potentially co-occur with P. 

minutus and P. acuspes (below the line). 
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Figure 12: Length of seminal receptacle (SRL) in relation to cephalosome length (CL) for adult females of 
P. minutus and P. acuspes with regression lines. No data points for Hornsund. For the black line see text 
for details. Note axes range in relation to equations intercepts, the axes are not drawn from zero in order to 
display the data better. 
 

Molecular analyses 

Development of species-specific PCR 

Approximately 400 base pair (bp) long sequences were obtained from 9 individuals of P. 

minutus and ~200 bp sequences from 4 individuals of P. acuspes (Appendix B). These 

were used to develop species-specific primers for each species, P. minutus-SS: 

COI_1932R and P. acuspes-SS: COI_2060R (see primer sequences in Materials and 

methods).  
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The PCR amplification products for P. minutus yield bands of 372 bp and P. acuspes 

gives bands of 500 bp (Figure 13). The bands were found to migrate for 12 mm (P. 

acuspes) and 10 mm (P. minutus) on a 2% agarose gels run for 10 minutes at 220 volts 

(Gel photo 1 in Appendix C). 

 

 
 
Figure 13: Gel photo showing species-specific PCR products for individual Pseudocalanus spp. The first 
lane is a molecular size marker, lanes 2 and3 represent P. acuspes (500 bp) and lanes 4 and 5 P. minutus 
(372 bp). 
 

Comparison of morphological identification and species-specific PCR 

A total of 358 individuals of both species were processed on 14 gels but only 95 

individuals on 5 gels were usable due to contamination and other technical problems, 

listed in ´Materials and methods` (see appendix C for successful gel photos). These 95 

individuals came from 3 different locations (Figure 14 and 15), Rijpfjorden, Austfjorden 

(both species) and Billefjorden (only P. acuspes). Of the 96 (only 95 yielded products) of 

each species identified morphologically 58 turned out to be P. minutus and 37 P. acuspes 

(Table 2).  
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Figure 14: P. minutus Numbers of individuals identified with both methods. 
 

Of the 15 P. minutus identified with morphology from Rijpfjorden came out as P. 

minutus (Figure 14) and in addition 9 of those identified as P. acuspes (Figure 15) 

according to the PCR analysis. All of the 30 individuals from Austfjorden were equally 

identified by both methods. 
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Figure 15: P. acuspes. Numbers of individuals identified with both methods. 
 

Only 2 P. acuspes were successfully processed from Billefjorden and both of them were 

P. acuspes according to PCR (Figure 15). 
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The successful agarose gel electrophoresis was tested with chi square test of goodness of 

fit. The H0 hypothesis for the chi-square is that there is no difference between the 

expected (those identified with morphology) and observed (those identified with PCR) 

frequency of P. minutus and P. acuspes. The p value was less than 0.05 so the H0 

hypothesis was rejected (Table 2). Thus there was a difference between what was 

identified morphological and molecular identification of the species.  

 

Table 2: Results from successful gel PCR amplifications (See gel photos in appendix C) 

 Expected Observed Failed 
P. minutus 48 58 0 
P. acuspes 48 37 1 
Sample size n 96 95 1 
Chi test  p value < 0.05   
H0 : Expected values = Observed values 
H1 : Expected values ≠ Observed values 
 

However, a power analysis indicates that the power of this test with a sample size of n = 

95 is only 50% so we might be incorrectly rejecting the H0 hypothesis. For a power of 

80% the ideal sample size should be n = 178 (Table 3). The null hypothesis (H0) for the 

power analysis is based on the expected ratio of the two species from the gel 

electrophoresis and the alternative hypothesis (H1) is based on the observed ratio (Table 

2). 

 

Table 3: Power analysis based on successful outcome of gel electrophoresis 
H0 H1 Alpha Power Sample size n 

0.50 0.39 0.05 0.50 95 
0.50 0.39 0.05 0.80 178 
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Discussion 

The genus Pseudocalanus was found all around the archipelago of Svalbard. The genus 

was represented by two identified species, P. minutus and P. acuspes. Those were found 

to co-occur in the fjords studied for this thesis. Which species dominated represented by 

the abundance of adult females was found to vary with location and season. As 

morphology of the two species is very similar, a molecular method was developed and 

applied to verify the microscopy identification. A potential difference was revealed 

between morphological species identification and discrimination between the species 

using the molecular method. These points will be discussed below. 

 

Distribution of Pseudocalanus species around Svalbard 

There appeared to be no geographical difference in occurrence between the two species 

around the study area of Svalbard according to morphological identification and thus the 

different water masses do not seem to affect the occurrence of the species. Both species 

were present at all locations except one, Isfjorden where only P. acuspes was found. 

However, the Isfjorden sample was not replicated and since P. minutus was found in 

Billefjorden (a branch fjord of Isfjorden), and has been reported in the Barents Sea (Falk-

Petersen et al. 1999) and Kongsfjorden (Lischka and Hagen 2005) its absence from the 

Isfjorden sample may have be attributed to a low number of samples (only one).  

 

P. minutus dominated numerically in all samples from March and April (Figure 5). Those 

samples are from all around Svalbard, or the west, east and north coast (Figure 5). In the 

late spring/summer samples P. acuspes is dominating. Those samples are from the west 

and the north coast. Explanations for that might lay in the life history of the two species 

as P. acuspes has been shown to be able to grow very quickly when food is abundant and 

be more of an opportunistic species than P. minutus (Norrbin 1991). Furthermore it might 

have higher reproductive rates, or differ in predation mortality compared to P. minutus. 
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The vertically stratified tows from Billefjorden in March and May showed that the 

abundance of P. acuspes increases many times more than did P. minutus, especially in 

the surface layer (Figure 6). That might indicate that P. acuspes is quicker in responding 

to increased food abundance than P. minutus and utilise the resource to grow from 

overwintering stages to adults. In March both species were in similar numbers in all three 

depth layers. In the May sample, however, most were found in the middle and in the 

surface layers while almost none were in the deepest interval. That might indicate that the 

copepods migrate upwards later in the spring when food is probably more abundant when 

the ice breaks up and spring bloom starts.  

 

Morphometrics and distribution 

The bimodal length distribution of P. acuspes might indicate advection of the species 

from further south. The smaller group with average length of ~ 860 µm fits well with the 

length reported for the species from northern Norwegian fjord, ranging from ~ 700 µm to 

~900 µm depending on season (Norrbin 1994). Another reason for this bimodal length 

distribution could be overlap of generations, but since Pseudocalanus is a copepod with a 

long generation time and potentially short adult life that is an unlikely explanation (Frost 

1989). However, the smaller form of P. acuspes was found mainly to be in Storfjorden 

and Van Mijenfjorden. Those locations are rather isolated from Atlantic water inflow and 

therefore these animals are not likely to originate from further south but rather from 

locally formed populations. These two locations also showed to be separated (Figure 10, 

prosome length difference) from others for P. minutus though it was not as distinct as for 

P. acuspes. 

 

These two locations, Storfjorden and Van Mijenfjorden, where both species were 

somewhat smaller than for the other locations, might thus be perhaps more oligotrophic 

in terms of food than the other locations. Less food would mean that juveniles of both 

species would not have enough resources to add up to extra size growth for the last 

copepodite stages.  
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The usefulness of morphometrics 

The prosome to urosome length ratio was found to be 2.54 for P. acuspes and 2.75 for P. 

minutus. This ratio is quite a bit larger than what Frost (1989) reported from Baffin Bay 

or 2.14 for P. acuspes and 2.39 for P. minutus. His data formed two distinct clusters P. 

minutus having a significantly smaller ratio than P. acuspes. In this study the two data 

clusters overlap although the data for P. minutus seem to be in the lower range. That 

might indicate some misidentification of P. acuspes as P. minutus or perhaps the 

presence of the third species P. major, that according to Frost (1989), had prosome to 

urosome ratio (2.20) somewhat between the P. minutus and P. acuspes and looks fairly 

similar to P. acuspes with a stocky prosome and rounded cephalosome. One might 

speculate if P. major could possibly be a large form of P. acuspes due to increased 

amount of DNA content of cells.  

 

The data on the seminal receptacle to cephalosome ratio also indicates a possibility that 

individuals of P. major have been inadvertently included in the data. Frost’s (1989) 

separation line for P. major plotted with the data from this study (Figure 13) fell within 

the upper section of the data cluster. This species has been associated with conditions of 

extensive melt water runoff (Frost 1989). Most of the samples were taken before this 

time, but there could nevertheless be small numbers of P. major at these locations. No 

data points were obtained for the Hornsund sample that was the only one taken in July, at 

a time of brackish conditions, and thus the most likely to contain P. major in great 

numbers. 

 

Molecular method for species discrimination 

The species-specific PCR method developed for P. minutus and P. acuspes indicated that 

it is possible to discriminate between the two species based on different sizes of the 

amplification products (500 bp for P. acuspes and 372 bp for P. minutus; Figure 13).  

 

The results from the gel electrophoresis revealed that there is a difference between what 

is identified with morphological methods and the species-specific PCR method. From the 
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three location, Rijpfjorden, Austfjorden and Billefjorden, that successful samples were 

identified with both methods (Figures 14 and 15) only Rijpfjorden showed difference 

between methods. However some difficulties occurred throughout the testing of the 

samples and the final sample size of 95 identified individuals were only enough to reject 

the H0 hypothesis with an accuracy of 50%. It might thus be incorrectly rejected and H0 

could be correct as in there is no difference between morphologically identified 

individuals and molecularly identified individuals. Furthermore it is hard to draw some 

conclusion from if there is a true difference between the three locations in terms of what 

identification method is used as more processed individuals might indicate a different 

pattern.  

 

The difficulties that occurred throughout the process can be divided into three categories. 

First there was a frequently occurring contamination, possibly in stock solution of the 

PCR reagents like buffers, primers etc. Another problem was that the gel buffer might 

have been too old at the end of the process (the time interval between the first gels and 

the last gels is 5 months) so the bands were not separating well enough making it hard to 

discriminate between them, even though the running time of the electrophoresis was 

extended and the buffer had been stored in a sealed container. The third problem was that 

of non amplifying copepods which occurred in all processed samples. That might be due 

to failure in releasing DNA from the copepods or possibly in the existence of the third 

species, P. major, in which case the primers would not recognise its DNA. Another factor 

that might be worth looking into before continuing with PCR analysis on these two 

species is a further optimization of the protocol with focus on primer design. It is 

especially important to amplify more sequences from P. acuspes, as only four sequences 

were obtained from those ten processed in this study. More sequences from various 

locations, also for P. minutus, could give an idea on subpopulations as well.  

 

Conclusions and further studies 

 

This study revealed that P. minutus and P. acuspes co-occurred in all sampling locations 

except for one where only P. acuspes was found, Isfjorden, but that might be due to 
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chance as that sample was not replicated and P. minutus has been recorded in locations 

close to Isfjorden and in comparable other locations, such as Kongsfjorden (Lischka and 

Hagen 2007). The morphometrical data indicated a overlap for the two species and thus 

alone did not make up for a good identification but instead revealed patterns for prosome 

length difference for both species, although more apparent for P. acuspes. The species-

specific PCR method made it possible to discriminate between the two species using their 

DNA although the final sample size of successfully identified individuals were not 

enough to conclude comprehensively on the overall distribution of the two species.  

 

This study raises some interesting questions as the morphometrics and the species-

specific PCR indicated the possibility of existence of the third species P. major but also 

on if it is a good species or a larger form of the other species due to genome size.  
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Figure A: Rijpfjorden, April 2007. Temperature and salinity profiles. 
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Figure B: Rijpfjorden, June 2007. Temperature and salinity profiles.  
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Figure C: Austfjorden, April 2004. Temperature and salinity profiles. 
 
 



   

 

Appendix B 
Sequences obtained from P. minutus:  
 

1. 3´GATGACCAAATTTATAATGTAGTTGTGACAGCTCATGCATTTATCAT
AATTTTTTTTATAGTTATACCCATCTTAATTGGGGGCTTTGGTAATTGA
CTAGTACCCTTAATATTAGGTGCGGCAGATATAGCTTTTCCACGTATA
AATAATATGAGATTCTGATTTTTAATACCGGCTTTAATCATACTTCTTT
CAAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATGAACTGTTTACC
CCCCATTATCCAAAAATATTGCTCATGCAGGAGGGTCAGTAGATTTTG
CTATTTTTTCTTTACATTTAGCAGGTGTTAGATCTATTTTAGGGGCTGT
AAATTTTATTAGCACATTAGGTAATTTACGAGTATTTGGTATACTCCTA
GACCAAATACCTTTGTTT-5´ 

 
2. 3´GATGACCAAATTTATAATGTAGTTGTGACAGCTCATGCATTTATCAT

AATTTTTTTTATAGTTATACCCATCTTAATTGGGGGCTTTGGTAATTGA
CTAGTACCCTTAATATTAGGTGCGGCAGATATAGCTTTTCCACGTATA
AATAATATGAGATTCTGATTTTTAATACCGGCTTTAATCATACTTCTTT
CAAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATGAACTGTTTACC
CCCCATTATCCAAAAATATTGCTCATGCAGGAGGGTCAGTAGATTTTG
CTATTTTTTCTTTACATTT-5´ 

 
3. 3´CAAATTTATAATGTAGTTGTGACAGCTCATGCATTTATCATAATTTTT

TTTATAGTTATACCCATCTTAATTGGGGGCTTTGGTAATTGACTAGTAC
CCTTAATATTAGGTGCGGCAGATATAGCTTTTCCACGTATAAATAATA
TGAGATTCTGATTTTTAATACCGGCTTTAATCATACTTCTTTCAAGATC
CTTAGTTGAAAGGGGGGCAGGTACAGGATGAACTGTTTACCCCCCATT
ATCCAAAAATATTGCTCATGCAGGAGGGTCAGTAGATTTTGCTATTTTT
TCTTTACATTTAGCAGGTGTTAGATCTATTTTAGGTGCTGTAAATTTTA
TTAGCACATTAGGTAATTTACGAGTATTTGGTATACTCCTAGACCAAA
TACCTTTGTTTGCG-5´ 

 
4. 3´CACTAATTGGAGATGACCAAATTTATAATGTAGTTGTGACAGCTCAT

GCATTTATCATAATTTTTTTTATAGTTATACCCATCTTAATTGGGGGCT
TTGGTAATTGACTAGTACCCTTAATATTAGGTGCGGCAGATATAGCTTT
TCCACGTATAAATAATATGAGATTCTGATTTTTAATACCGGCTTTAATC
ATACTTCTTTCAAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATGA
ACTGTTTACCCCCCATTATCCAAAAATATTGCTCATGCAGGGGGGTCA
GTAGATTTTGCTATTTTTTCTTTACATTTAGCAGGTGTTAGATCTATTTT
AGGTGCTGTAAATTTTATTAGCACATTAGGTAATTTACGAGTATTTGGT
ATACTCCTAGACCAAATACCTTTGTTTGCGTGGTCTGTATTAGTCACAG
CCATCCTTTTATTACTATCCT-5´ 

 
5. 3´GCAGGGTCACTAATTGGAGATGACCAAATTTATAATGTAGTTGTGAC

AGCTCATGCATTTATTATAATTTTTTTTATAGTTATACCCATCTTAATTG
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GGGGCTTTGGTAATTGACTAGTACCCTTAATATTAGGTGCGGCAGATA
TAGCTTTTCCACGTATAAATAATATGAGATTCTGATTTTTAATGCCGGC
TTTAATCATACTTCTTTCAAGATCCTTAGTTGAAAGGGGGGCAGGTAC
AGGATGAACTGTTTACCCCCCATTATCCAAAAATATTGCTCATGCAGG
AGGGTCAGTAGATTTTGCTATTTTTTCTTTACATTTAGCAGGTGTTAGA
TCTATTTTAGGTGCTGTAAATTTTATTAGCACATTAGGTAATTTACGAG
TATTTGGTATACTCCTAGACCAA-5´ 

 
6. 3´TCACTAATTGGAGATGACCAAATTTATAATGTAGTTGTGACAGCTCA

TGCATTTATCATAATTTTTTTTATAGTTATACCCATCTTAATTGGGGGC
TTTGGTAATTGACTAGTACCCTTAATATTAGGTGCGGCAGATATAGCTT
TTCCACGTATAAATAATATGAGATTCTGATTTTTAATACCGGCTTTAAT
CATACTTCTTTCAAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATG
AACTGTTTACCCCCCATTATCCAAAAATATTGCTCATGCAGGAGGGTC
AGTAGATTTTGCTATTTTTTCTTTACATTTAGCAGGTGTTAGATCTATTT
TAGGTGCTGTAAATTTTATTAGCACATTAGGTAATTTACGAGTATTTGG
TA-5´ 

 
7. 3´ATGACCAAATTTATAATGTAGTTGTGACAGCTCATGCATTTATCATA

ATTTTTTTTATAGTTATACCCATCTTAATTGGGGGCTTTGGTAATTGAC
TAGTACCCTTAATATTAGGTGCGGCAGATATAGCTTTTCCACGTATAA
ATAATATGAGATTCTGATTTTTAATACCGGCTTTAATCATACTTCTTTC
AAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATGAACTGTTTACCC
CCCATTATCCAAAAATATTGCTCATGCAGGAGGGTCAGTAGATTTTGC
TATTTTTTCTTTACATTTAGCAGGTGTTAGATCTATTTTAGGTGCTGTA
AATTTTATTAGCACATTAGGTAATTTACGAGTATTTGGTATACTCCTAG
ACCAAATACCTTTGTTTG-5´ 

 
8. 3´TTTATAATGTAGTTGTGACAGCTCATGCATTTATTATAATTTTTTTTA

TAGTTATACCCATCTTAATTGGGGGCTTTGGTAATTGACTAGTACCCTT
AATATTAGGTGCGGCAGATATAGCTTTTCCACGTATAAATAATATGAG
ATTCTGATTTTTAATACCGGCTTTAATCATACTTCTTTCAAGATCCTTA
GTTGAAAGGGGGGCAGGTACAGGATGAACTGTTTACCCCCCATTATCC
AAAAATATTGCTCATGCAGGAGGGTCAGTAGATTTTGCTATTTTTTCTT
TACATTTAGCAGGTGTTAGATCTATTTTAGGTGCTGTAAATTTTATTAG
CACATTAGGTAATTTACGAGTATTTGGTATACTCCTAGACCAAATACC
TTTGTTTGCGTGGTCTGT-5´ 

 
9. 3´AATTGGAGATGACCAAATTTATAATGTAGTTGTGACAGCTCATGCAT

TTATCATAATTTTTTTTATAGTTATACCCATCTTAATTGGGGGCTTTGGT
AATTGACTAGTACCCTTAATATTAGGTGCGGCAGATATAGCTTTTCCA
CGTATAAATAATATGAGATTCTGATTTTTAATACCGGCTTTAATCATAC
TTCTTTCAAGATCCTTAGTTGAAAGGGGGGCAGGTACAGGATGAACTG
TTTACCCCCCATTATCCAAAAATATTGCTCATGCAGGAGGGTCAGTAG
ATTTTGCTATTTTTTCTTTACATTTAGCAGGTGTTAGATCTATTTTAGGT



 l 

GCTGTAAATTTTATTAGCACATTAGGTAATTTACGAGTATTTGGTATAC
TCCTAGACCAAATACCTTTGTTTGCGTGGTCTG-5´ 

 
Sequences obtained from P. acuspes 
 

1. 3´GGAGATGACCAAATTTATAATGTAGTCGTTACTGCGCATGCATTCAT
CATAATTTTTTTTATAGTTATGCCAATTTTAATTGGGGGATTTGGTAAC
TGGTTAGTACCTTTGATATTAGGTGCGGCAGATATAGCTTTTCCTCGTA
TAAATAATATAAGGTTCTGATTTTTAATACCAGCCCTAATTATACTCCT
CTCCAGGTCTCTAGTGGAGAGAGGTGCAGGTACAGGGTGAACTGTATA
CCCTCCTCTATCAAGAAATATTGCTCATGCTGGAGGTTCTGTAAATTTT
GCTATTTTTTCCCTGCACCTCGCAGGAGTAAGATCTATCTTA 

 
2. 3´CCTGGATCATTAATTGGAAATGACCTATTTTTTAATGGAGTCGTTACT

GCGCAAGCATTCATCATAATTTTTTTTATAGTTATGCCAATTTTAATTG
GGGGATTTGGTAACTGGGTAAAACCTTTGATATTTGGTGCGGGAAAAA
TAGCTTTTCCTCGTATAAATAAAATAAGGTTCTGATTTTTAAAACCAGC
CCTAATTATACTCCTCTCTAGGTCTCTAGTGGAAAGAGGGGCAGGAAC
AGGGGGAAAAGAATACCCTCCTCTTTCAAGAAAAATTGCTCATGCTGG
AAGAACTGTAAATTTTGCTATTTTTTC-5´ 

 
3. 3´TTCATAAAAAATTATTCCAATAGAGGTAGGGCAAGCTGGATCACTCC

TTGGAGATGACCAATTTTATAATGTTGTCGTTAGTGCTCATGCATTCAT
CATAATTTTTTTTATAGTTATGCCAATTTTAATTGGGGGATTTGGTAAC
TGGTTAAAACCTTTGGA-5´ 

 
4. 3´ATAGAGGGGGGGCAACCTGGATCGCCCCTTGGAAACGACCTATTTTT

TAATTCCCTCTATAGGGCTCCAGTATTCAACATTATTTTTTTTATAGTT
ATGCCAATTTTAAGTGGGGGATTTGGTAACTGGGTAGAACCTTTGATA
TTAGGTGCGGCAGATTTAGCTTTTCCTCAATAAATAATATAAGGTTCTG
ATTTTTAATACCAGGCCTAATTATACTCCTCTCCAGGTCTCTTGGGGAA
AGAGGTGCAGGTAAAAGGCGAACTGAAACCCCTCCTCTATCAAGAAA
TATTG-5´ 

 



   

 

Appendix C 
 
Successful gel analysis 
 

 
Gel photo 1: Two individuals. One from Austfjorden, identified as P. acuspes, and one from 
Rijpfjorden, identified as P. minutus. 
 

 
Gel photo 2: 30 individuals from Rijpfjorden. 25 identified as P. minutus, 4 as P. acuspes and 1 
failed (second lane in lower row). 
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Gel photo 3: 30 individuals from Austfjorden. 30 out of 30 identified as P. minutus. 
 

 
Gel photo 4: 30 individuals from Austfjorden. 30 out of 30 identified as P. acuspes. 
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Gel photo 5: 4 individuals. Two from Billefjorden, identified as P. acuspes and two from 
Austfjorden, identified as P. minutus. 


