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An Application of Modular approach to

Separable Nonlinear Programming Problem

M ILEERIRS: S 28 (Akinori Iwasaki)
VY R W Jt4A (Mitsunori Hikita) .
R LIERRS: Il B (Yuji Nakagawa)
f L ERRFRY A #Z (Hiroyuki Narihisa)

Abstract

A discrete optimization method, which is called modular approach, is proposed for solving a

* separable nonlinear programming problem. By dividing seach space of variables, the nonlinear pro-
gramming problem is translated into a discrete optimization problem that is equivalent to nonlinear
knapsack problem. When the nonlinear knapsack problem is solved, we do not need the convexity
and differentiability of original problem. The nonlinear knapsack problem can be solved efficiently by
modular approach. It is shown that modular approach can be applied to a nonlinear programming

problem by computational experiments.

1. Introduction

A separable nonlinear programming problem with one constraint func-

tion i1s written as follows:

<N>
maximize  f( x) = Zlfz(xz)y . (1)
subject t0g(a) = o) <5 @)
z€S; (i EEI), ’ o - (3)
where I ={1,2,... ,‘n}, and S; C R is a seach space, and b is a maximum

amount of available resource.

We divide the seach space S; into finite set A; for each ¢ — th variable:

<K> , |
maximize  f(x) = gfz(ﬂfz), (4)
subject to  g(x) = > gi(x;) < b, (5)

icl

ZE,’EA@CSZ' (iEI), (6)
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where I = {1,2,...,n}, A; = {ai1,ai,...,aij,...,a;,}. The search
space S; is represented by k; points {ai, . . . ai, }. | A

The original problem <N> is translated into discrete optimization
problem <K> that is equivalent to the nonlinear knapsack problem. Solv-
ing the nonlinear knapsack problem by discrete optimization method, the
convexity and differentiability of original problem are not required.

We use modular approach(MA) for solving the nonlinear knapsack
problem <K>>. MA can solve the large scale nonlinear knapsack problem.

The optimal solution of the problem <K> is a near optimal solution of
the original problem <N>. The search space S; of the original problem
can be reduced to the neighborhood of the near optimal solution. The
new problem with reduced search Spaces is created and solved by MA. By
repetition of the above procedures, the near optimal solutions converge
into the optimal solution of original problem <N>.
2. }Modular approach

Nakagawa[l] proposed a new solution method called modular approach
(MA) for solving discrete optimization problem. MA is a bottom-up
scheme as well as Dynamic Programming. First, MA considers an opti-
mization system corresponding to a given discrete optimization problem.
Next, MA executes the following items 1) 2) recursively until the number

of variables I becomes one.

1) The set A; is reduced by fathoming tests.
2) Integrate two variables into one variable.
~ As for fathoming tests, we use dominance test, bounding test and feasi-

bility test, which are techniques commonly used by Branch-and-Bound.

To integrate means to introduce a new set Ay g that is corresponding
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to cartesian product of the two sets as follows:
Anew = Aj X Ap, (7)

and j and m are removed from the set I.
There are four ways to select the sets 7 and m in the set I. Let k; be

the number of elements in the set A;.

1) j and m such that k; and k,, are the least.
2) j such that k; is the least, and m such that k,, is the most.
3) j and m such that k; and k,, are the most.

4) j and m in order of i € I.

We choose the item 2) that is the fastest and can solve the largest scale
problem. [3]

MA written by pseudo code is shown in figure 1. |
The input of Modular Approach() is a data sequence of Problem < PC >
and Quosi-Optimal Solution < NEAR >. Problem < PC > contains a
data sequence of current problem < P > and a data sequence of < T >
that is required to translate the current problem < P > into primal
problem. The Quosi-Optimal Solution < NEAR > is given by Recursive
Greedy method[2]. Function Fathom() reduces the set A; by fathoming
tests, and renews the current problem< P >. Function ChoicelM()
selects two sets A; and A,,. Function Integrate() integrates the two sets
A; and A,, into one set Aygw. After repeating the fathoming tests and
integration, function FindOptimalSolution() gives the optimal solution
of the one variable problem.
3. Computational experiments

We divide the serch space S; of given problem into finite set A4; . We

create the nonlinear knapsack problem from the set- 4;. The next two
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steps are repeated until required precision is given.

1) MA is applied to the nonlinear knapsack problem, and near

optimal solution of given problem is given.

2) The neighborhood of the near optimal solution is divided, and
the new nonlinear knapsack problem with reduced seach spaces

1s created.

3.1 Example 1

We consider a convex and differentiable problem as follows:
10

maximize  f(x) = Y (a; + bz;)?, (8)
1=1
10
subject to () = 3(ci + diz)? < e, ©)
i=1
z; € R. (10)

Coeficients a;, b;, ¢;, d; and e are shown in Table 1.

This problem is solved by numerical computation and MA. Each results
are shown in Table 2. Generally the results of MA are agreement with
the results of numerical computation.

3.2 Example 2

We consider the nonconvex and undifferentiable problem as follows:

maximize  f(x) = ‘14% fi(z:), (11)
i=1

subject to  g(@) = 3 gi(:), (12)
i=1

[ ai|sin(z; + b1)| (0.0 < z; < 1.0)

aig| cos(z; + bin)| (1.0 < z; < 2.0)

fi(zi) = | ai3ln(z; + bis) (2.0 < 2; <3.0) (13)
aia\/T; + bis (3.0 < z; < 4.0)

| aisexp(z;i/5+ bis) (4.0 < z; < 5.0),
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gi(z;) = (z; + i)’ <e. (14)
Coefficients a;1, ..., a5, b1, ...,bs,c; and e are shown in Table 3.

This problem is solved by MA and the results are shown in Table -
4. First, the seach‘space is divided into 100 elements, and the near
optimal solution is given by MA. Next, the neighborhood of the near
optimal solution is divided into 100 elements, and the second near optimal
solution is also given by MA. The second near optimal solution exhausts
the resource of constraint.

4. Concluding remarks
Solving two examples, it is shown that MA can solve nonconvex and -

undifferentiable nonlinear programming problem.
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DATADEF

< K >={I,{K, Ka,...,Ki}};
< f >= {{fl(l)v'“rfl(l(l))!"'!{fl(l)"":fl(l{l)}};
<g>={{nn(1),...,1(I1)},.-., {gr(1), ..., 90(K1)} }i

<P>={<K><f><g>0b);

< PC>={<P><T>}

< NEAR >= {fNEAR (NEAR

.,z FARYY,

< OPT >= {fOPT (20PT  _  2QPT}}.

< M >= {my,mp};

ENDDEF

FUNCTION ModurarApproach()

INPUT Problem< PC >,Quosi-

BEGIN

WHILE I>2 DO
{< PC>,< NEAR >} « Fathom(< PC >,< NEAR >);
..., I} such that K; =0 THEN
IsNear ol'Optimal — Yes;
< OPT >} — {< NEAR>};

IF exist i€ {1

XITWH

ENDIF

LE

{< M >} ¢« ChoiceIM(< PC >);

{< PC >} <= Integrate(< M >,< PC >);

ENDWHILE

IF IsNearSolOptimal = No THEN
{< OPT >} « FindOptimalSolution(< PC >);

1IF fOPT < fNEAR THEN

{< OPT >} — {< NEAR >)};

ENDIF
ENDIF

RETURN Optimal Solution< OPT >

END

timal Solution< NEAR >;
yes — 1; No « 0; IsNearSolOptimal «— No;

figure 1. Modular approach

- Table 1. Coefficient of Example. ]

e=1000
i a, b, [ d,
1 | -2.2073] 2.8969] -0.7442] -1.0398
2 2. 4402 4.3 3.7626] -4.3934
3 | -0.7114 559 -1.ss08] 1.7
4 1.2099|  7.832] 1.9367 3.4018]
5 -2. 2473 5.5 3.2503| 4.4436]
6 | -4.9337 -4.98] 1.0066] 243
7 2. 9042 2.9 31380 -1.7736
8 13991 -4.278] 2.8709 2.4
9 | -1.0905 3.0 -3.4813] -1.283
10 | -0.6581]  4.54] -3.4015| -2.3095
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Table 3. coefficients of Example. 2

e=150

i a, a, a, a, a b, b, b, b, b c

1 3.6 35 L6 11 07 45 292 15 08 04 038

2 o.4 29 o6 02 02 20 19 o6 03 07 15

3 | 50 48 31 25 08 40 42 08 10 05 20

4 2.00 1.9 o7 092 01 36 41| 02 02 o8 05

5 a5 40 3.0 24 o7 29 12 09 09 05 02

6 2.8/ 3.0 11 08 05 47 16 12 05 08 09

7 3.9 41 29 25 10 44 38 04 1.3 03 13

8 3.9 3.4 12 09 o6 33 o7 18 11 09 18

9 a1 50 27 21 o6 o8 36 o1 07 04 07

10 2.1 21 1o os o1 11 23 19 o6 02 03

Table 4. Results of Example. 2
X, X, X3 Xy X5 Xg Xy Xg Xo \ X0 f g
N=100 0.100 0.00] 3.400 o0.850 3.90] 0.00 3.80 4.90] 3.90] 0.35] 39.437] 149. 99

N=100x100| 0.182] 0.000] 3.526| 0.998| 4.000] 0.000] 3.866] 4.999] 4.000| 0.442] 39.444] 150

N:The number of division



