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An Application of Modular approach to

Separable Nonlinear Programming Problem

岡山理科大学 岩崎 彰典 (Akinori Iwasaki)
四国大学 疋田 光伯 (Mitsunori Hikita)
岡山理科大学 仲川 勇二 (Yuji Nakagawa)
岡山理科大学 成久 洋之 (Hiroyuki Narihisa)

Abstract

A discrete optimization method, which is called modular approach, is proposed for solving a

separable nonlinear programming problem. By dividing seach space of variables, the nonlinear pro-
gramming problem is translated into a discrete optimization problem that is equivalent to nonlinear
knapsack problem. When the nonlinear knapsack problem is solved, we do not need the convexity

and differentiability of original problem. The nonlinear knapsack problem can be solved efficiently by

modular approach. It is shown that modular approach can be applied to a nonlinear programming
problem by computational experiments.

1. Introduction

A separable nonlinear programming problem with one constraint func-

tion is written as follows:
$<N>$

maximize $f(x)= \sum_{i\in I}f_{i}(x_{i})$ , (1)

subject to $g(x)= \sum_{i\in I}g_{i}(x_{i})\leq b$ , (2)

$x_{i}\in s_{i}$ $(i\in I)$ , (3)

where $I=\{1,2, \ldots, n\}$ , and $S_{i}\subset R$ is a seach space, and $b$ is a maximum

amount of available resource.

We divide the seach space $S_{i}$ into finite set $A_{i}$ for each i–th variable:
$<K>$

maximize $f(x)= \sum_{i\in I}f_{i}(x_{i})$ , (4)

subject to $g(x)= \sum_{i\in I}.g_{i}(x_{i})\leq b$ , (5)

$x_{i}\in A_{i}$

.
$\subset S_{i}$ $(i\in I)$ , (6)
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where $I=\{1,2, \ldots, n\},$ $A_{i}=\{a_{i1}, a_{i2}, \ldots, a_{ij}, \ldots, a_{ik_{i}}\}$ . The search

space $S_{i}$ is represented by $k_{i}$ points $\{a_{i1}, \ldots a_{ik_{i}}\}$ .

The original problem $<N>$ is translated into discrete optimization

problem $<K>that$ is equivalent to the nonlinear knapsack problem. Solv-

ing the nonlinear knapsack problem by discrete optimization method, the

convexity and differentiability of original problem are not required.

We use modular approach(MA) for solving the nonlinear knapsack

problem $<K>$ . MA can solve the large scale nonlinear knapsack problem.

The optimal solution of the problem $<K>is$ a near optimal solution of

the original problem $<N>$ . The search space $S_{i}$ of the original problem

can be reduced to the neighborhood of the near optimal solution. The

new problem with reduced search spaces is created and solved by MA. By

repetition of the above procedures, the near optimal solutions conyerge

into the optimal solution of original problem $<N>$ .

2. Modular approach

Nakagawa[l] proposed a new solution method called modular approach

(MA) for solving discrete optimization problem. MA is a bottom-up

scheme as well as Dynamic Programming. First, MA considers an opti-

mization system corresponding to a given discrete optimization problem.

Next, MA executes the following items 1) 2) recursively until the number

of variables $I$ becomes one.

1) The set $A_{i}$ is reduced by fathoming tests.

2) Integrate two variables into one variable.

As for fathoming tests, we use dominance test, $boundin^{\backslash }g$ test and feasi-

bility test, which are techniques commonly used by Branch-and-Bound.

To integrate means to introduce a new set $A_{NEW}$ that is corresponding
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to cartesian product of the two sets as follows:

$A_{NEW}=A_{j}\cross A_{m}$ (7)

and $j$ and $m$ are removed from the set $I$ .

There are four ways to select the sets $j$ and $m$ in the set $I$ . Let $k_{i}$ be

the number of elements in the set $A_{i}$ .

1) $j$ and $m$ such that $k_{j}$ and $k_{m}$ are the least.

2) $j$ such that $k_{j}$ is the least, and $m$ such that $k_{m}$ is the most.

3) $j$ and $m$ such that $k_{j}$ and $k_{m}$ are the most.

4) $j$ and $m$ in order of $i\in I$ .

We choose the item 2) that is the fastest and can solve the largest scale

problem. [3]

MA written by pseudo code is shown in figure 1.

The input of ModularApproach $()$ is a data sequence of Problem $<PC>$
and Quosi-Optimal Solution $<NEAR$ $>$ . Problem $<PC>$ contains a

data sequence of current problem $<P>$ and a data sequence of $<T>$

that is required to translate the current problem $<P,$ $>$ into primal

problem. The Quosi-Optimal Solution $<NEAR>is$ given by Recursive
Greedy method[2]. Function Fathom $()$ reduces the set $A_{i}$ by fathoming

tests, and renews the current problem$<P>$ . Function ChoiceIM $()$

selects two sets $A_{j}$ and $A_{m}$ . Function Integrate $()$ integrates the two sets
$A_{j}$ and $A_{m}$ into one set $A_{NEW}^{\backslash }$ . After repeating the fathoming tests and

integration, function FindOptimalSolution $()$ gives the optimal solution

of the one variable problem.

3. Computational experiments

We divide the serch space $S_{i}$ of given problem into finite set $A_{i}$ . We

create the nonlinear knapsack problem from the set $A_{i}$ . The next two
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steps are repeated until required precision is given.

1) MA is applied to the nonlinear knapsack problem, and near

optimal solution of given problem is given.

2) The neighborhood of the near optimal solution is divided, and

the new nonlinear knapsack problem with reduced seach spaces

is created.

3.1 Example 1

We consider a convex and differentiable problem as follows:

maximlze $f(x)= \sum_{i=1}^{10}(a_{i}+b_{i}x_{i})^{2}$ , (8)

subject to $g(x)= \sum_{i=1}^{10}(c_{i}+d_{i}x_{i})^{2}\leq e$ , (9)

$x_{i}\in R$ . (10)

Coeficients $a_{i},$
$b_{i},$

$c_{i},$
$d_{i}$ and $e$ are shown in Table 1.

This problem is solved by numerical computation and MA. Each results

are shown in Table 2. Generally the results of MA are agreement with

the results of numerical computation.

3.2 Example 2

We consider the nonconvex and undifferentiable problem as follows:

maximize $f(x)= \sum_{i=1}^{10}f_{i}(x_{i})$ , (11)

subject to $g(x)= \sum_{i=1}^{10}g_{i}(x_{i})$ , (12)

$f_{i}(x_{i})=\{\begin{array}{l}a_{i1}|sin(x_{i}+b_{i1})|(0.0\leq x_{i}<1.0)a_{i2}|cos(x_{i}+b_{i2})|(1.0\leq x_{i}<\backslash 2.0)a_{i3}ln(x_{i}+b_{i3})(2.0\leq x_{i}<3.0)a_{i4}\sqrt{x_{i}+b_{i4}}(3.0\leq x_{i}<4.0)a_{i5}exp(x_{i}/5+b_{i5})(4.0\leq x_{i}<5.0)\end{array}$ (13)
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$g_{i}(x_{i})=(x_{i}+c_{i})^{2}\leq e$ . (14)

Coefficients $a_{i1},$ $\ldots,$ $a_{i5},$ $b_{i1},$
$\ldots,$

$b_{i5},$ $c_{i}$ and $e$ are shown in Table 3.

This problem is solved by MA and the results are shown in Table

4. First, the seach space is divided into 100 elements, and the near

optimal solution is given by MA. Next, the neighborhood of the near

optimal solution is divided into 100 elements, and the second near optimal

solution is also given by MA. The second near optimal solution exhausts

the resource of constraint.

4. Concluding remarks

Solving two examples, it is shown that MA can solve nonconvex and

undifferentiable nonlinear programming problem.
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$DAT_{<K}ADE_{>}F_{=\{I,\{K_{1},K_{2},\ldots,K_{J}\}\};}$

$<f>=ttf_{1}(1),\ldots,f_{1}(K_{1})\},\ldots,\{f;(1),\ldots,h(K_{J})\}\}$;
$<g>=\{\{g_{1}(1),\ldots,g_{1}(K_{1})\},\ldots,\{g_{l}(1),\ldots,gr(K_{l})\}\}$;
$<P>=\{<If>,<f>,<g>,b\}$ ;
$<PC>=\{<P>,<T>\}$ ;

$<OPT>=tf^{OPT}t^{x_{1}^{\acute{O}PT^{NB.4R}},..,x_{i}^{OPT’}\}\}}<NEAR>--\{[NB\lambda R\{x_{1\prime}\ldots x^{N.BlR},\}\}$
;

$END^{<M}DEF^{>=\{m_{1},m_{2}\};}$

$BEGI^{TProb1em<PC>,Qu\circ.si-\int)}INPU_{Nyarrow}FUNCTIONModurarAroac_{d_{earSolOp\lim alarrow No}^{tima1S\circ 1ution<NEAR}}esarrow 1,\cdot No^{pph}0,Is,>j$

WHILE $I>2$ DO
$t<PC\overline{>},$ $<NEAR>$} $\Leftarrow Fathom(<PC>, <NEAR >)$ ;
IF

$e_{I^{isti\in}}x_{sN\epsilon ar}1_{ol’\dot{O}p\iota imalarrow Yes;}^{1..,I\}suchthatK_{j}=0}$
TIIEN

$t_{XITWH}^{<OPT>}\}_{LE}^{arrow\{<NEAR>\}}$ ,

$ENDIFt<M>\}\Leftarrow Choic\epsilon IM(<PC>),\cdot$

$t<PC>\}\Leftarrow I$ leg $\cdot at\epsilon(<M>, <PC>)$;
ENDWHILE
IF

$IsN\epsilon arSolOptimal_{1}=NoTHENt<OPT>1\Leftarrow Fi\iota dOplir|\iota alSolu\ell io|\iota(<PC>)$ ;

$IFf^{OPT}<f^{NB\lambda R}ENDIFt<OPT>1arrow t<NEAR>)\};THEN$

ENDIF

ENDRETURN Optimal $Solution<OPT>$

figure 1. Modular approach

Table 1. Coefficient of Example. 1
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Table 3. coefficients of Example. 2

Table 4. Results of Example. 2

$N$ :The number of division


