
INF3981
MASTER’S THESIS IN

COMPUTER SCIENCE

Integrating libpesto with subversion

Oleg Jakobsen

June 15, 2007

Faculty of Science
Department of Computer Science

University of Tromsø
N-9037 Tromsø, Norway

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392161057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

INF-3981
MASTER’S THESIS IN COMPUTER SCIENCE

Integrating libpesto with subversion

Oleg Jakobsen
<oleg.jakobsen@gmail.com>

June 15, 2007

ii

Abstract

Subversion, an open-source centralized version control system, developed by CoallabNet, is
currently the second most popular version control system, after the ever popular CVS. Like
CVS, Subversion uses a client-server architecture, but has a cleaner, modular architecture. One
set of subversion modules, are the filesystem backends modules of subversion. Two “official”
backends are currently supplied with subversion, a berkleyDB based backend(bdb), and a cus-
tom filebased filesystem implementation (fsfs). At least another un-official backend module
using an SQL-database exists.

Pesto is a secure, decentralized, distributed peer-to-peer storage system, implemented both
as a NetBSD filesystem, and as middelware, a portable C-library (libpesto). Currently two
applications using libpesto have been written, a C#.Net windows client, and a highly scalable
serverfarm for Pesto, written in Java.

In this project we integrate subversion with pesto, by creating a new filesystem backend for
subversion using libpesto. The result is a version-control system, that works like a centralized
version-control system, but has decentralized storage. We show that this system can be used
for backup, mirroring of repositories, and as a decentralized version-control system.

iii

iv

Acknowledgments

First of all I would like to thank my supervisors, Feike Dillema and Anders Andersen, for su-
pervising me, and helping me put the finishing touches on this document. I would also thank
Feike for his help in debugging pfs, helping me getting started with pesto, and for implement-
ing new functionality in libpesto when it was required for pfs. I wish you the best of luck in
your future work on pesto. I would also like to thank Weihai Yu, for his insights on imple-
menting transactions, which I unfortunately had to cut from pfs, after I decided to base the
implementation of fsfs.

Thanks to the students and staff at the Department of Computer Science at the University of
Tromsø for creating a great environment for studying computer science. These five years have
passed faster than what I though possible.

Last, but not least, I would like to thank my family for supporting me during my studies, and
encouraging me to pursue a higher education. I would not have reached this far without your
help.

v

vi

Contents

1 Introduction 3

1.1 Background . 3

1.2 Problem statement . 4

1.2.1 Elaboration . 5

1.3 Methodology . 5

1.4 Outline . 5

2 Version control software 7

2.1 Introduction . 7

2.1.1 Delta compression . 7

2.1.2 Storage model . 8

2.1.3 Terminology . 10

2.2 SCCS and RCS . 10

2.3 CVS . 11

2.4 Subversion . 12

2.5 Darcs . 12

2.6 GIT . 13

3 Pesto 15

3.1 Usage scenarios for pesto . 15

3.2 Architecture . 16

3.2.1 Files . 16

3.2.2 Policies . 18

3.2.3 Trusted bases . 18

3.2.4 p2p . 19

vii

viii CONTENTS

4 Subversion 21

4.1 Features . 21

4.2 Layers . 23

4.3 Modules . 25

5 Requirements 27

5.1 Usage scenarios . 27

5.1.1 Subversion server . 27

5.1.2 Replication . 27

5.1.3 Collaboration . 28

5.1.4 Policies . 29

5.1.5 Mirroring . 29

5.1.6 Decentralized source control . 31

5.1.7 Concurrency control . 31

5.2 Functional requirements . 32

5.2.1 commit . 33

5.2.2 checkout . 33

5.2.3 update . 33

5.2.4 propset . 33

5.2.5 propget . 33

5.2.6 add . 33

5.2.7 delete . 34

5.2.8 move . 34

5.2.9 copy . 34

5.2.10 lock . 34

5.2.11 diff . 34

5.2.12 log . 34

5.3 Non-functional requirements . 35

5.4 Target platform . 35

5.5 Alternatives . 35

CONTENTS ix

6 The fsfs backend 37

6.1 Nodes and node-revisions . 37

6.2 Skip-deltas and data storage . 38

6.3 Transactions . 39

6.4 Revisions . 40

6.5 fsfs layers . 40

6.5.1 The file-layer . 41

6.5.2 The dag-layer . 41

6.5.3 The tree-layer . 41

7 Design 43

7.1 Nodes . 44

7.1.1 Noderevision meta-object . 45

7.1.2 node-properties . 45

7.1.3 node-data . 45

7.2 Revisions . 47

7.3 Transactions . 50

7.4 pesto abstraction . 50

7.4.1 Committing a transaction . 53

7.4.2 Checking out a revision . 53

8 Implementation 55

8.1 Identifiers . 55

8.2 pfs vault . 55

8.2.1 Transactions . 56

8.2.2 Revisions . 57

8.2.3 Node-revisions . 58

8.2.4 Representations . 60

8.2.5 Caching . 61

8.3 Working with transactions . 61

8.3.1 Locking . 61

8.3.2 Committing a transaction . 62

8.3.3 Aborting a transaction . 62

8.4 Interfacing with pesto . 63

x CONTENTS

8.4.1 Initializing the pesto backing directory . 63

8.4.2 Writing an object . 64

8.4.3 Accessing an object with a GUID . 64

8.4.4 Accessing a version of an object . 64

8.4.5 Finding revision roots . 64

8.5 Functionality . 66

9 Testing 69

9.1 Demonstration . 69

9.1.1 Demo configuration . 69

9.1.2 Normal subversion operations . 69

9.1.3 Collaboration . 72

9.1.4 Mirroring . 73

9.1.5 Decentralized subversion . 73

9.2 Testing . 74

10 Discussion 79

11 Future work 81

11.1 Performance improvements . 81

11.1.1 Caching . 81

11.1.2 Ramfs . 82

11.2 User-friendly features . 82

11.2.1 Error handling . 82

11.2.2 Installation . 82

11.2.3 Repository creation . 83

11.2.4 Policy interface . 83

11.2.5 Revision dependencies . 83

11.3 Distributed/decentralized subversion . 83

11.3.1 Consistency control . 84

11.3.2 Branching à-la git . 85

12 Conclusion 87

A The CDROM 1

CONTENTS xi

B Installation instructions 3

B.1 Building libpesto . 3

B.1.1 Building cwebx . 3

B.1.2 Building libpesto . 3

B.2 Building subversion . 3

B.2.1 Required dependencies . 3

B.2.2 Building subversion with pfs . 4

C Usage 5

C.1 Creating a repository . 5

C.1.1 Creating a repository . 5

C.1.2 Creating a mirror repository . 5

C.2 Normal use . 6

C.2.1 Checking out a repository . 6

C.2.2 Updating a repository . 6

C.2.3 Committing changes to the repository . 6

C.2.4 Getting the log history of a file . 6

C.2.5 Get changes between two revisions for a file 6

C.3 Get the GUID of a file stored in an pfs repository 7

xii CONTENTS

List of Figures

2.1 The file modifications Fa, Fb and Fc are merged back with the original file. 9

3.1 Conceptual view of a pesto node. 17

3.2 The update tree for a file . 17

3.3 The pesto-node ’A’ sends a message to ’B’ . 19

4.1 Subversion layers . 24

4.2 The component parts of subversion . 25

6.1 fsfs overview . 40

7.1 Timeline for a node . 44

7.2 Translation of a pfs node-revision into pesto and subversion objects 46

7.3 The noderevision meta-object . 46

7.4 The node properties-object . 47

7.5 The node data-object . 47

7.6 pfs revision . 48

7.7 The revision-anchor object . 49

7.8 Translation of a pfs revision-anchor into pesto and subversion objects 49

7.9 pfs transaction . 51

7.10 The transaction-anchor object . 52

7.11 Translation of a pfs transaction-anchor into files and subversion objects. 52

7.12 pfs overview . 54

8.1 The vault txn t structure. 56

8.2 The vault data t structure. 57

8.3 The vault rev t structure. 57

8.4 The vault noderev t structure used by pfs vault. 58

xiii

xiv LIST OF FIGURES

8.5 The node revision t structure used by subversion. 59

8.6 The vault representation t structure used by pfs vault. 59

8.7 The representation t structure used by subversion. 60

8.8 The lookup-table with revsion anchors and the root node-revision. 65

List of Tables

7.1 Vault operations . 53

9.1 Configuration of hydra . 69

9.2 Configuration of pastaws0 . 70

9.3 Statistics for the pesto cvs repository, as reported by cvs2svn. 75

9.4 Results from the tests . 76

9.5 Results from using pfs over mfs and writing to disk 77

9.6 The most used functions when committing and checking out from a pfs reposi-
tory as shown by gprof. 77

1

2 LIST OF TABLES

Chapter 1

Introduction

1.1 Background

Pesto has been created as part of the PENNE project, which itself is part of the PASTA project
at the University of Tromsø. The motivation of the project has been to provide secure resources
for mobile devices with limited resources.

Pesto is a system that provides mobile, and stationary devices with storage resources. The
guiding principle of pesto is that its users will have varying levels of trust to other users of
pesto. Depending on the level of trust between users, they can negotiate contracts with each
other (outside of pesto), where they offer each other services on their machines, mainly ac-
cess to storage resources. Pesto supports disconnected operation; files can be shared, and new
updates created by users that are offline. Pesto users can also operate in ad-hoc networks be-
tween a few users, that are disconnected from the rest of the world. Pesto has, so far, been
implemented as a NETBSD filesystem, using user-level tools(e-mail) to exchange pesto mes-
sages, and manage files stored in pesto, and more recently, as a user-level C-library, libpesto.

Although there have been written a few applications that use libpesto, they have dealt directly
with pesto, not having real-world use outside of pesto. We want to see how feasible it is to
have a real-world application use pesto. First of all, because it shows that pesto is a good idea,
and secondly to be able to find bugs that have crept into pesto.

Version control software seem to be a fine candidate for a real-world application that can bene-
fit from using pesto. Version control systems usually retain the history of objects that are added
to it. Pesto never deletes a file, and file updates in pesto are distributed as new versions of the
file. Modern version control software is written to be distributed, having several repositories
that share the same source. These systems are hard to use[7, 10] compared to the old type of
centralized version control systems. By using pesto as the backend for a centralized version
control system it can get many of the properties of a distributed version control system, while
still being as easy to use as a centralized system.

Such a system has many benefits. It can be used to provide automatic backups to without any
user intervention or backup-scripts. As new files are added to pesto, they can be replicated
to backup storage. Similarly it can be used to create mirrors of a repository automatically.
Popular open-source projects are often distributed in source form. Often as source-tarballs.

3

4 CHAPTER 1. INTRODUCTION

However, some projects can become popular while still being developed so fast that users like
to be on the bleeding edge of development1, and prefer to download the current source as
it is. Usually the ratio of users contra developers is quite high. To handle the load of many
users trying to get the latest sources, mirror repositories have to be set up. Mirroring is usually
done by mirror repositories that pull the central repository for the latest versions several times
a day, which is ineffective, since new updates can be added between updates, and mirrors
also poll the repository when there are no updates. Pesto instead pushes out new versions
of files as soon as they are added. This means that the mirror repositories would be updated
almost instantly. Another useful feature is to use a libpesto backed version control system
for mobile users. A user that is disconnected while for instance traveling on a plane, might
still want to work with the data stored in repository. Traditionally the user would have to
get the latest sources before leaving, make the desired changes, and then when connectivity
is reestablished, commit the changes to the repository. A pesto backed repository could allow
the user to commit and view the repository history while disconnected. And no explicit step
to fetch the latest sources before departure would be necessary, since the up to date files would
already have been pushed to the users laptop. Finally, there is no reason as to why objects in the
repository only should be accessed through the version control client. libpesto provides other
means of access to data stored in pesto. Professions that usually do not work with version
control systems, like for instance graphic designers, could benefit from it in a collaboration
project between programmers and graphic designers, for instance when creating a computer
game. Or the situation could be turned around, and pesto used as a delivery/deployment
mechanism for the software project in the version control system. The compiled binaries could
be put in version control with the source, and a pesto client, based on libpesto could be used
to obtain the latest version automatically, when such is available.

This project is being based on subversion. Subversion is a version control system, built to be
a modern replacement for the Concurrent Version System (CVS). Like CVS it is a centralized
system. It is one of the most popular version control systems. It is written in C, which makes it
ideal for integration with libpesto, which is also written in C, since no wrappers/compatibility
layers need to be created. Furthermore, subversion has a clean, modular layered-design, which
allows us to easily replace components in subversion, without affecting the correctness of the
rest of the code.

Basing this project on an already existing distributed version control system might seem like
a good idea, but one must keep in mind that these projects have their own idea of how the
versioned data should be distributed, and are based around that idea, and their own security
features that partially overlap with the functionality of libpesto. Adapting these projects to
work with libpesto could as well result in more work than distributing a centralized system.

Finally, a distributed subversion already exists, svk[11, 12], which shows that it is possible to
create a distributed version controls system, based on subversion.

1.2 Problem statement

In this thesis we investigate how pesto can be used to implement a versioning storage
system, and design and implement such a system using the already existing centralized

1The NetBSD-project uses CVS as its primary form of distribution. Users upgrade their systems by downloading
and sources from CVS and rebuilding the whole system.

1.3. METHODOLOGY 5

source control system, Subversion.

1.2.1 Elaboration

We design and implement a new filesystem-backend for subversion that uses libpesto to store
its data, and perform tests to evaluate its performance and functionality in comparison to the
original filesystem backend. We design the system so that it can in the future be extended to
work as a peer-to-peer decentralized version-control system, and discuss some aspects of that.
However, we do not implement that part of the system, because of limited time, and the not
yet finished peer-to-peer part of libpesto.

1.3 Methodology

The main work in this project consists of integrating two already existing software projects.
This is different from the traditional software development process, in that most of the time is
spent analyzing the already existing codebase, to be able to better understand how to solve the
problem. This in turn, means that the solution is bound to be dependent on the implementation
of subversion, and small implementation details of subversion can cause large changes in the
design of the new system. A initial design phase where the system is carefully designed is
therefore impractical. Instead of using a traditional software development framework, we use
what we would call exploratory programming. Instead of writing code after a given specification,
we first try out different ideas, and generally “play” with the existing code of subversion and
pesto, to get an impression of what the existing codebase accomplishes. Then starting the
implementation with a vague idea of what actually has to be changed, implementing new
functionality as needed.

1.4 Outline

The rest of this thesis is organized as follows:

Chapter 2 - A short description of the various version control terminology and techniques,
and a short survey of some of the most significant version control systems.

Chapter 3 - Takes a look at the pesto middelware, its functionality and limitations.

Chapter 4 - A closer look at subversion. Here we familiarize ourselves with subversion and
how it works. We take a look at the most commonly used components and how they
interact.

Chapter 5 - Requirements. Here we analyze the problem and specify the requirements for
solving it.

Chapter 6 - Here we take a closer look at the fsfs filesystem backend used by subversion. This
is necessary, since our own filesystem backend, pfs is based on fsfs.

Chapter 7 - Design. Gives a conceptual view of how pfs should work.

6 CHAPTER 1. INTRODUCTION

Chapter 8 - Implementation. Describes how pfs is implemented, and details the implementa-
tion details for complicated cases.

Chapter 9 - Testing. Here we demonstrate the functionality of pfs, and perform some simple
tests to evaluate its performance.

Chapter 10 - Summarizes the achievements we have made.

Chapter 11 - Future work, lists what has yet to be done, and gives recommendations and
ideas to how it should be done.

Chapter 12 - Conclusion.

Appendix A - A description of the contents of the attached CD.

Appendix B - Installation instructions.

Appendix C - Usage. A short users guide to subversion, and its most commonly used com-
mands, and instructions on how to set up a subversion/pfs repository.

Chapter 2

Version control software

2.1 Introduction

Version control software is software designed to track changes in a document, or several doc-
uments through the different states of a software development project. The version-control
software enables its users to roll-back to any previous states of the projects, in case a engineer-
ing dead-end is reached, and also enables its users to get the changes between two revisions.

Version control software is mostly used in software engineering to store source-code, but is
sometimes used in other projects to store text and sometimes also binary data. When working
in software development it is common, that the developers are working on several versions of
the code simultaneously. A team can be assigned to develop new functionality, while another
team can be assigned the task of finding and fixing bugs in older versions. The version control
system must therefore be able to efficiently work with several branches of the same project, and
be able to merge changes from one branch into another.

The simplest form of version control, which no doubt, has been discovered by all beginning
programmers, is to keep separate backups of the source for the different versions of the project,
under different names. What the beginning programmer, no doubt also discovers, is that this
method is both cumbersome to use, and error-prone. Several systems to automate this task
have been created, in this chapter we look at some of them, from the very humble beginnings
of SCCS and RCS to modern decentralized systems like darcs and git.

2.1.1 Delta compression

Since changes to a project stored in a version-control system between revisions, are usually
quite small, compared to the size of the size of the project itself. Delta-compression is used to
only store the change from one revision to another. Files then either start out as empty files,
where each change is then subsequently stored as the delta against the previous changes. Or
the deltas are done against the next-version of the file. In other words, storing the final revision
as a delta against an empty file, then changing the next to final revision to be a delta against
the final, and so on. The first method makes storage of new versions efficient, while the second
makes retrieval of the latest version efficient.

7

8 CHAPTER 2. VERSION CONTROL SOFTWARE

Traditionally revision control systems have only stored text-data, and deltas have only been
used for text-files, since the algorithm for delta compression of binary-files is more complicated
and requires more resources. However, some revision control systems employ a binary delta
algorithm for binary files.

2.1.2 Storage model

In most software development projects, multiple developers work on the same project. If two
developers try to change the same file at the same time, without any mechanism to manage
concurrent access to the data, developers can easily end up overwriting each others work. Ver-
sion control systems solve this problem on one of three different models, file locking, version
merging and decentralized version control.

File locking

The simplest method of preventing problems due to concurrent access, is for each developer
to simply send a request to a central arbitrator, requesting to lock a file, before changing it.
If the arbitrator sees that no other users have locks on the file, the request is granted, and a
lock on the file registered on that user. When the developer commits his/hers changes, the
revision control system checks whether the developer has the necessary locks to commit. If
not the commit is aborted. Or alternatively, if the system uses advisory locks, the user can be
warned about possible aftereffects of committing without the necessary locks, but still allowed
to commit. Files in the repository are usually readable by all developers1 , and file-locking
usually only grants exclusive access to modify a file.

The argument against using locks, is that it is cumbersome to use, since developers are not
always aware of what files they want to change before they start working on some changes.
Locks also slow down the development process, since they serialize access to files. In the worst
case it can prevent the whole development team of getting work done, if they all have to wait
for a file to be released before they can commit their changes.

Version merging

Most version control systems allow multiple developers to edit the same files concurrently.
When the developers commit their changes to the central repository, the repository merges
changes between the different versions of the same file submitted by the developers. If the
files cannot be merged, ie, the same line changes differently in each developers version, then
the file has to be merged manually, usually by the developer that checks in the conflicting file
last.

We illustrate (in figure 2.1): if three developers a,b,c modify the same file, F with revision R.
Then a commits Fa, creating a new file F’ with revision R+1, then b commits Fb. Fb and F’ are
merged to create F” with revision R+2, although they both are based on R. Later c commits.
The changes made by c, Fc are merged with F” producing F”’ with revision R+3.

1Subversion and possibly other version control systems, can be set up to deny access to some parts of the
repository to a remote user, if the user doesn’t have the necessary privileges.

2.1. INTRODUCTION 9

F
b

F
c

F
a

F’

F’’

F’’’

F

Revisions

Figure 2.1: The file modifications Fa, Fb and Fc are merged back with the original file.

10 CHAPTER 2. VERSION CONTROL SOFTWARE

Most version control systems combine locking with version merging, allowing a file to be
locked for exclusive access to one developer, although version-merging is supported by the
version control system.

Decentralized revision control

In a decentralized version control system, there is no central repository, instead each user oper-
ates his/hers own repository, which is an equal peer with the other repositories. Repositories
are organized in peer-to-peer fashion. Since there is no central repository, there is no “official”
version of the code. Instead of checking out and committing code to the central repository,
users instead pull updates from the other repositories. Usually a great deal of user control is
involved in this process, allowing the user to decide which changes to import and which to
leave.

Popular implementation of decentralized revision control systems are: BitKeeper, Darcs, Git,
Mercurial and Monotone.

2.1.3 Terminology

In the rest of this document we use the following cvs/subversion-centric terminology. The set
of related files stored in a version control system is called the repository. The files stored by
the user are called the working copy. To checkout a file or a set of files, is to fetch the requested
version of the files from the repository, and create a working copy for the files. To commit a file
or a set of files, is to update the repository so that the newest version of the files stored in the
repository corresponds to the working copy. To update is to acquire the latest changes from the
repository and applying them to the working copy.

2.2 SCCS and RCS

Source Code Control System (SCCS) was the first version control system. Written at Bell Labs
in 1972 by Marc J. Rochkind. While today considered obsolete, SCCS’ delta storage technique
is now considered by many systems to be key to advanced merging techniques.

RCS [9], short for Revision Control System is a program written by Walter F. Tichy in 1985,
it is used for revision control of text-files: configuration information, source-code and docu-
mentation. It can handle binary data, but the delta algorithm used by RCS, does not do so
efficiently.

RCS keeps revisions of individual files and stores the revisions in a RCS-file. The contents of the
files are stored using delta compression. The first revision of the file is a delta against an empty
file, and each subsequent revision is stored as a delta against the previous. RCS provides func-
tionality for storing a new revision of a file, creating branches, ie several different versions of
the file, all based on the same version, reading any version of a file, and merging said branches
to form a new, combined version. The RCS files are stored in the working directory with the
suffix “.v”. The commands ci and co are used to respectively check in and check out revi-
sions. RCS does not employ a client server paradigm, and is only usable by a single user, on

2.3. CVS 11

a single computer, in other words, it is a small improvement on keeping backup copies of the
revisions of a file.

Because of its limitations, RCS has been replaced by other version control systems.

2.3 CVS

The Concurrent Versions System (CVS)[8], is an open-source revision control system created by
Dick Grune. CVS based on RCS, and like RCS keeps track of all changes in a set of files, and uses
the same file-format as RCS. Unlike RCS, CVS is designed to allow several users to work with
the same repository. A later add-on to CVS allows a CVS repository to be accessed remotely.
Each cvs-user has a working copy, where the users changes are stored. The user connects to
the repository and fetches the changes between the requested version and the working copy.
When the user has finished editing the files, he/she commits the changes back to the repository,
which makes them accessible to other users. Clients are usually connected to the server over
a LAN network or over the internet, but a “local” cvs-server, running on the same machine as
the client is often used as a “personal” single-user repository.

Several clients can access the repository simultaneously, and CVS allows several developers,
potentially widely separated, to collaborate on a project. To prevent users from canceling each
others changes, CVS does only permit a user to commit a file, if the file in the users working
copy is based on the most recent revision of that file in the repository. If that is not the case, the
user is prompted to update the file from the repository. Any differences between the users file,
and the one stored in the repository are attempted to be automatically merged into the users
file. If a conflict is detected, ie the same area is changed in both the repository version and the
users copy, the user has to resolve the conflict manually.

When a file is committed, the version number of the file is incremented, and the authors name
is added to the log file, usually followed by a log message, describing the changes.

Individual branches can be created, allowing several developers to work on their own branches,
committing changes to their individual branches, and later merging the branches back into a
single version. Or the branches can be used to separate maintenance projects from develop-
ment of new features, by having a “development” and “stable” branch. “Tags” can also be
used, to tag the files at a particular time, to be able to easily refer to the state of the repository
at a particular time.

CVS only revisions individual files. This makes a commit non-atomic, since some of the files
form the users working copy can be committed, while others are not committed if the commit
should be aborted or fails for some reason. File renames are also not versioned. If a file is
renamed at a point in the software development cycle, all history information regarding the
file is lost. Files can however be renamed by editing the cvs-repository manually, but it is more
of a hack, and is impractical to use. Symbolic links are not versioned in cvs. Which means that
any project that uses symbolic links, has to use scripts that can recreate the symbolic links, and
instead version the scripts.

Despite its weaknesses, CVS is the most popular open source version control system in use to-
day; having found use in academia, most open source projects and many commercial software
firms.

12 CHAPTER 2. VERSION CONTROL SOFTWARE

2.4 Subversion

The subversion [3] team at CollabNet set out with the goal of creating a modern replacement
for CVS. Subversion is almost command compatible with CVS, meaning that the most used
commands of CVS have counterparts in subversion, which can be used by substituting “svn”
for “cvs”. Utilities exist which can transform an existing CVS-repository into a subversion-
repository, preserving the change history of the cvs-repository.

Despite this, subversion is quite different from CVS “under the hood”. Instead of revisioning
individual files, subversion revisions the whole repository. When a file is changed, no matter
how small the change is, a new snapshot of the repository is created. This means that the repos-
itory is always in consistent state. Ie, if developers always build the project, before committing,
any revision in the repository is guaranteed to compile. Unlike CVS, when the repository can
be in an inconsistent state, having some files from one users working copy, and some files from
another users. To store the snapshots efficiently, subversion employs copy-on-write semantics,
meaning that files are only stored when they are changed. Delta compression is also used to
store the changes more efficiently.

Like CVS subversion also uses a client-server architecture, and allows several users to collab-
orate on the same project. Conflicts are attempted automatically resolved during a commit,
if they cannot be resolved, the user is prompted to resolve the conflict manually. Since sub-
version revisions the complete repository, it also detects conflicts in the namespace, if a user
for instance deletes a directory, which another user edits a file in, subversion will detect the
conflict, and prompt the user to fix it. In addition to merging, subversion supports locking,
which allows a user to have exclusive write access to a set of files. Read access to the locked
files are allowed. File-lock in subversion are advisory, they can be overridden by a user when
committing. But give the user a warning that somebody is working on a file/directory, and
does not want the file/directory to be overwritten.

Branches and tags are not directly supported by subversion, instead subversions copy-on-
write semantics are used to create cheap copies (in the resource saving meaning) of the project
in a “tags” or “branches” directory. This means however that users have to be disciplined not
to write to an existing tag, since subversion has no mechanism for distinguishing a tag from a
normal directory copy.

Unlike CVS, commits in subversion are atomic. Subversion starts a new transaction each time a
commit is started, changes are applied to the transaction, before exclusive access to the repos-
itory is granted, and the transaction either is added to the repository or aborted. Depending
on which storage backend is used for the repository, several techniques are used to avoid a
situation where a system crash leaves a transaction partially committed.

Subversion also supports symbolic links, on platforms that support those, and creates copies
of the affected files, on platforms that do not.

2.5 Darcs

CVS and subversion are centralized version control systems. Systems like this are fine for de-
velopment projects that have a central authority, like an organization. However in projects that

2.6. GIT 13

are developed across organizational borders, or by a loosely knit group of people, like many
open-source projects, a centralized approach is not as well suited. Instead a decentralized
version control system is better to use.

Darcs[10] is a decentralized version control system created by David Roundy. In contrast to
subversion and CVS, it does not have an official repository, or an official branch. Instead each
users working copy acts as a repository on its own, which allows several different versions to
be maintained at different locations. Patches are global to all repositories, and are exchanged
and ordered based on a “theory of patches”. To use darcs, a user first gets a copy of any repos-
itory, then does changes to the data, pulls changes from other repositories, which is analogous
to update in a centralized system, and finally pushes the changes to the other repositories,
which is analogous to a commit. Darcs commands are interactive, allowing the user to select
which patches that should be incorporated in the users working copy.

2.6 GIT

GIT [7] is another open-source decentralized version control system, written by Linus Torvalds
to mange the source tree for the Linux kernel. GIT is written with the specific goal of being
useful for a loosely knit team, working on an open-source project. It is designed to be fast, and
to be able to merge branches easily 2.

In GIT each developers working copy is, like in darcs, a private repository on its own. Creating
and merging branches in git is made easy, by tracking the complete merge history of a file,
which is done by tracking all parents of a file, and not only the previous version. Branches in
GIT, are only visible to the developers committing to the branch, except for the master branch.
Therefore it is usual for each developer to have their own branch, or even several branches,
which can be used to test out some feature, or to work on some experimental fetures. The
GIT development process lets developers commit their changes to their own branch, then the
developer notifies potential interested parties of the update. Other developers can then inte-
grate the changes into their own branch as they see fit. Typically the project is organized in a
hiearchical fashion, topped by the master branch, which is the “official” version of the project.
An integrator controls the master branch, and receives patches from only a few trusted “lieu-
tenants”, and integrates the changes into the master branch.

2 A talk held by Linus Torvalds, the creator of git (amongst other things) about git, can be watched at
http://youtube.com/watch?v=4XpnKHJAok8

http://youtube.com/watch?v=4XpnKHJAok8

14 CHAPTER 2. VERSION CONTROL SOFTWARE

Chapter 3

Pesto

The pesto storage system is a distributed, secure, p2p storage system, that supports discon-
nected operations [1]. Pesto was developed by F.W Dillema at the University of Tromsø for his
Ph.d dissertation. Pesto is designed to allow users to share data with other users, and them-
selves in a distributed environment, where the level of trust between users, and connectivity
may vary. Each user of pesto owns one or more pesto-nodes, and is in position to negotiate
an agreement with other users of pesto. Depending on the level of trust between the users,
they may agree on performing different tasks for each other. A user could for instance have an
agreement with another user that he could store his encrypted data on her node. Another user
that is more trusted, could be allowed to access the plaintext data, or even be allowed to create
new versions of the data.

The nodes communicate with each other in a peer to peer fashion over an asynchronous
request-response protocol. Nodes can be part of an ad-hoc network, or even exchange data
over other channels than the p2p network.

Symmetric-key cryptography is used by pesto to encrypt its data. Access to data stored in pesto
is therefore reduced to access to the encryption keys to the files, which in turn is controlled by
encrypting the keys with asymmetrical cryptography[4]. Access to storage space then means
fetching and storing encrypted data at a node. While access to content means access to the
encryption key, which is needed to decrypt the data. Pesto allows nodes to share storage
contents independently from actual content.

Pesto is currently implemented as a filesystem for NETBSD, pfs 1. And libpesto, a portable
library written in C.

3.1 Usage scenarios for pesto

Pesto’s goals is to design a storage system that can be useful for several different applications.
Here are a few possible applications for which pesto can be useful.

1Which should not be confused with pfs, the libpesto based filesystem-backend for subversion, that we imple-
ment for this thesis.

15

16 CHAPTER 3. PESTO

Content distribution network
Pesto could be used as the backend of a content distribution network. It provides func-
tionality for pushing updates to mirror-nodes, as soon as the content is available.

DoS-resistant WWW server
Pesto could be used to implement a DoS-resistant web-server. When the server becomes
too loaded, because of a DoS-attack, or simply overloaded because of an overwhelming
number of valid requests, aka the slashdot effect, it could select other nodes in the pesto-
network to use as mirrors. These nodes could be possibly previously untrusted nodes,
but due to the severe condition, it might be a lesser risk to use these nodes as backup,
than to risk stopping operations. A pesto-node can quickly grant the new server read
access to its data, given that it has replicated its data to the new server, by giving it the
decryption key for the data.

Mobile office
Pesto can enable a user to truly use a mobile office. The idea is to let the user roam freely
between different working environments, while continuing to work on the same data.
This means that the user should be able to go from machine to machine, not only on his
workplace, but also to use his home-computer to access the data. In other words, this is
the traditional file-sharing system with a twist, instead of sharing data between several
users, the user instead shares data with himself on different locations, without fetching
the data from the same server. Since data is stored locally, a user can edit the data, even
when disconnected. This however means that the out-of-date data can be edited. The
user is in principle responsible for resolving these conflicts, but an application-level con-
sistency control can be implemented on top of pesto.

Clinical information system
Pesto can be used to implement a clinical information system. Since it is secure, and
allows ad-hoc, quick sharing of data, when needed.

3.2 Architecture

Pesto itself is divided into two layers, the storage layer, and the distribution layer. The storage
layer is responsible for storing file-updates, policies, and messages to local storage, while the
distribution layer is responsible for communication with other nodes, and distribution of data
to other nodes.

3.2.1 Files

The pesto storage system provides distributed storage of files to its users. A file in pesto starts
its life as an empty file, when the contents of the file are updated, the update is added to pesto,
but it is stored as a separate entity. Each file-update is identified by its GUID, a 128bit random
number. Each update also stores the GUID of the update it was based on, its parent update.
Updates can thus be organized in a tree, called the version tree or vtree for short. Several nodes
in the vtree can have the same parent. This could happen if two nodes try to create an update
of a file without knowing that a more up-to-date version of the file exists. pesto itself does

3.2. ARCHITECTURE 17

Figure 3.1: Conceptual view of a pesto node.

Figure 3.2: The update tree for a file

not have any consistency-control mechanisms. Instead pesto exposes the branches created by
concurrent updates to the application, leaving the task of consistency control to the application.
The semantics of a file update is also left to the application. It could either store deltas between
each version in updates, or it could store the complete file-version in each update.

The storage model for file updates is Write-Once Read-Many-Times (WORM). Files are stored
as a series of updates, and pesto provides no functionality to delete an update once it has
been created. The update can be in two different states, created and stored. When an update is
created, its metadata is stored and distributed. When the update is stored, its data is stored and
distributed. Once an update has been created, it can only be stored. Once it has been stored
it cannot be removed. But a stored update can be freed from a nodes local storage. Freeing
an update, does not, however forcibly remove the update from pesto-nodes that have already
received the update, but the node is then free to delete the update.

To create a file, pesto first creates and stores the first, empty update, of the file. After the update
has been stored it cannot be removed. Meaning that when a file first has been created, it cannot
be removed, only updated.

18 CHAPTER 3. PESTO

Nodes themselves are also represented by a file. This node contains administrative information
for the node, the GUID of this file identifies the node, and is called the node-id.

Each time an update is created, the node-id of the node that created it, is called of the node it
was created on, the creator id, is associated with it. The creator of the root update for the file, is
special, since it is the owner of the file.

3.2.2 Policies

Each file has a replication policy and an access control policy associated with it. These policies
are themselves also stored as files, and identified by their GUIDs. Policies are specified when
creating the file, and the policy governing a file cannot later be changed.

The replication policy specifies the set of nodes where the user wants to store the data of the
file, and also specifies the set of nodes responsible for distributing the replicas to these nodes.
Replicas are distributed according to the replication policy, anytime when a node can establish
a connection with any node that should store the replica.

The access control policy specifies who is allowed access to the contents of a file. I.e the nodes
that should have read access to a files updates. The access policy is implemented by encrypt-
ing the file-updates. Each update is encrypted with its own member key. Read-access for a
file-update is granted by giving out the member-key for that update. All member-keys are
encrypted with a file-key, which is generated when the file is created. Access to all current and
future updates is granted by giving out the file-key. Update access to a file is guarded by the
same mechanism as read access. When a request to update a file is received in the form of a
new file update, it is considered authorized if the update is encrypted with the fresh member
key, and that key is found encrypted with the file key for that file. A key is considered “fresh”
if there is no local file update encrypted with that key. To grant somebody update rights, a
user that knows the file-key, has to generate a new member key and encrypt it with the file-
key. Nodes encrypt updates with the received member-key. Any node that knows the file-key
can check the encryption of an update and verify the freshness of the member-key. This means
that any node that knows the file-key can grant another node a one time update right, without
giving read access to previous or future versions of the file.

An update authorization that has been granted to a node, can later be revoked. This might be
needed if a node hoards update authorizations, without using them. To revoke the authoriza-
tion the owner simply creates an empty file-update with the member key used for the grant.
If a new update is created with the same member-key, the member-key is no longer fresh, and
the update is not accepted. There is no mechanism to revoke read access to a update. The
closest thing to doing it is to copy the file data to a new file, and stop replicating the old.

3.2.3 Trusted bases

Pesto separates the different mechanisms for distribution, storage and access control. The
nodes responsible for handling the different mechanisms can be viewed as a collection of bases.

The trusted storage base (TSB) implements the storage policy for a file. The nodes in the TSB are
responsible for keeping the file stored and available. This is done by having the node store a
copy of the (encrypted) file on local storage.

3.2. ARCHITECTURE 19

Figure 3.3: The pesto-node ’A’ sends a message to ’B’

The trusted access base (TAB) implements the access control policy for a file. The nodes in
the TAB hand out encryption keys that allow reading the contents of a file, and hand out
authorizations for file updates. Multiple TABs can be defined for a file, one for each type of
access.

3.2.4 p2p

Pesto is loosely organized as a p2p network. Nodes are not part of pesto because they par-
ticipate in a global p2p network. They are pesto nodes simply because they can act as pesto
nodes and understand the p2p messages. The p2p protocol is fairly simple. There are in total
four commands, and the protocol is divided into two parts. The first part has the two com-
mands, store and fetch. The store and fetch messages are one to many, and symmetrical. I.e a
node can send a store or fetch request to many nodes, and will always get a store response to
a fetch request, and a fetch response to a store request. Both store and fetch commands take
a list of GUIDs as its arguments, which is the identifiers of the files to be stored or fetched.
A fetch-request message informs its recipients that the sender wants to store the file-updates
specified by its argument. A store-request message informs its recipients that the file updates
identified by the GUIDs are available for download. By responding to a fetch-request, with a
store-response, the sender acknowledges that it has the file identified by the GUID, and can
send it to the requester. By responding to a store-request with a fetch-response, the sender says
that it is ready to accept the file-update.

The second part of the protocol consists of the read and update commands. The read-command
has a list of GUIDs as its argument, and requests the encryption keys for its argument file-
updates. The update command requests a fresh encryption key to be used for making a new
valid authorized child update of the GUID in its argument.

The p2p system is implemented by the transport manager, which is a separate process. The
transport manager looks in the pesto directory for new file-updates and sends it to its destina-
tions as given by the files storage policy.

20 CHAPTER 3. PESTO

Chapter 4

Subversion

Subversion tries to be “command-compatible” with CVS, and appears to have a lot in common
with CVS. But under the hood subversion is quite a different beast. CVS keeps revisions of files,
and tracks changes to these files. Subversion on the other hand, keeps revisions of the whole
repository.

Users of subversion have each their own working copy, which is stored on the users machine.
The working-copy is a mirror of the repository. The user edits the files in the working copy,
and does a commit, when finished. Subversion then initiates a transaction, and a new revision of
the repository is then created in which the files are either updated to the contents of the users
working copy, or no revision is created at all. A working copy that contains only the files and
sub-directories of some directory in the repository can also be created. This working copy is
handled like any other working copy, and under a commit, the files not in the working copy,
are simply assumed to not have been changed.

Subversion itself is implemented as a collection of shared libraries. The subversion client,
server and management interface link with these libraries, but it is simple to create other pro-
grams that can be used instead of the official subversion programs.

The subversion server is also special, since there is no single master server-process. Instead
multiple server-processes, usually one per transaction are started. There is no inter-process
communication, and the server-processes all work on the same files.

4.1 Features

Subversion has some features that differentiate it from CVS, and make it a better versioning
system:

Revisioned metadata

Subversion does not only version changes done to files, but the whole working copy. This lets
the user easily roll-back to a consistent view of the repository, with all files in the state they had
at a certain revision. It also makes it possible to track subtle, non-data changes to the repository.

21

22 CHAPTER 4. SUBVERSION

Copying or moving a file with a subversion-client records the move in the repository, which
means that the history of the file is saved. Subversion also supports unix symbolic-links, and
recreates these on platforms that support symbolic links.

Cheap branching/tagging

Copying in subversion is cheap, the file/directory that is copied, is not really copied in the
repository. Instead a new entry for the file/directory is created in the parent directory. Both
the new and the old entries point to the same file, much like unix hard-links are implemented.
But in contrast to hard-links, when either the original or the copy is changed, a copy of the
file/directory is created in the repository, giving the subversion file-system copy-on-write se-
mantics. Copying a filesystem tree is similarly effective. When changes are made, only the
parent-directories of the changed file are copied. All other directory-entries are left still point-
ing to the original files.

This makes subversion-copy cheap, O(1) to be precise, since copying a file/directory does not
depend on the file size, or size of the directory sub-tree, the copy is done in constant time, and
constant space (the space of an extra directory entry).

Tags and branches are therefore implemented as copies in subversion. A subversion-repository
customary has a “tags” and a “branches” directory, where, respectively, “tags” and “branches”
are kept. To create a “tag” the root directory for the project is simply copied to the tags-
directory, and to create a branch, the project directory is copied to the branches-directory.

Atomic commits

Commits in subversion are atomic. The repository is either updated to the same state as the
working copy, or it is not touched at all. Subversion uses transactions to guarantee atomic
commits. Each time a user starts a commit a new transaction is started. All changes done to
the working copy are applied to the transaction. If no errors occur, and the transaction can be
committed, the transaction is added as the next revision of the repository. If an error occurs,
the transaction is discarded.

Properties

A feature of the subversion filesystem is its support for properties. A file/directory in subver-
sion can have properties associated with it. Properties are simple name, value pairs of text,
which subversion versions like other file-data. Subversion itself uses properties internally,
these properties are prefixed with “svn”, and contain information on the type of file, whether
the file is executable, etc. Users can set and edit their own custom properties via the svn-client
interface.

File-sharing

Suppose that two users, A and B are working on the same file, “foo.c”. A finishes first her
work firsts, and commits her changes. B finishes his work after A and tries to commit. B’s
copy of the edited file are then outdated, and the changes cannot be committed.

4.2. LAYERS 23

If a situation like this occurs, subversion will abort B’s commit. B can then try to update
his working copy to get the newest version. Since B’s “foo.c” has been modified from the
initial version, subversion cannot update B’s “foo.c” to A’s version, but B, still needs to see
A’s changes. Subversion then tries to merge A and B’s changes into one file, and adds A’s
version, B’s version and the merged version to B’s working copy. B will then have to manu-
ally resolve this conflict. Subversion is more tolerant of namespace conflicts. If A creates the
file “/foo/bar” and B creates “/foo/baz , subversion will automatically produce a revision in
which both “/foo/bar” and “/foo/baz” exits.

Subversion also has locks. Locks allow a user to reserve the right to edit a file, or all sub-
files/directories in a directory. Locks are held until they are freed by the user, or broken by the
administrator. However, locks are not absolute. A user can still commit changes to a locked
file, but the commit has to be forced, by giving the subversion client the ‘‘--force’’ switch.

4.2 Layers

Subversion uses a layered design, where each layer interfaces only with the layers directly
above and below it. The layers are implemented as shared libraries, and any can be replaced
with other modules that implement the same functionality.

The uppermost layer, is the client-layer. It consist of the libsvn client and libsvn wc libraries. The
client library is responsible for communicating with the server, and the wc-library is responsi-
ble for working with the working-copy.

Under the client-layer, lies the repository-access layer or WebDAV layer, depending on how the
repository is accessed. The WebDav is used by an apache-module, which allows the apache2
web-server to act as a subversion server, and also allows browsing of the repository as a ftp
server/dav server. The standard repository-access layer (RA) is used to access the repository
through the svnserve-server, or locally, through the file protocol, if the repository is stored
locally.

Beneath the RA-layer lies the repository-layer. It is made up of the libsvn repos and libsvn fs
libraries. The repos-library is responsible for firing of hooks-scripts, custom scripts which
users can add to the repository, and which should be executed after certain subversion oper-
ations. And to access the repository. The fs-library is an abstraction layer above the different
filesystem-backends for subversion. Together they implement the filesystem-interface of sub-
version.

The filesystem-backend provides a versioned filesystem. Instead of accessing files with a path,
files are accessed with a {path,revision number} tuple, and returns the contents of the file, how
it was in that particular revision.

There are two official filesystem-backends used by subversion now. The original base filesystem-
backend which is implemented as a berkley-db [13] database, bdb and the file-based backend,
fsfs. In addition to that there is a non-official sql filesystem-backend, which is based on the
bdb-backend, but uses an sql-database. It is possible to chose which filesystem is used when a
repository is created by giving svnadamin the --fs-type switch.

24 CHAPTER 4. SUBVERSION

repository-layercl ient-layer

repository access-layer

libsvn_ra

libsvn_ra_local libsvn_ra_dav

libsvn_repos

libsvn_fs

libsvn_fs_fsfs libsvn_fs_bdb

libsvn_wc

libsvn_client

Figure 4.1: Subversion layers

4.3. MODULES 25

Subversion

svnadminsvn

svnlook

svnversion

svnserve

svnsync

svndumpfilter

dav_svn

Figure 4.2: The component parts of subversion

bdb

The bdb filesystem backend uses a berkely-db database as its storage. Directories and files
are stored as table-entries, which have property and data representations. The representations
have a many-to-one relationship with the files/directories table, so a file/dir can have many
representations, one for each time the file/directory was modified.

When a transaction is committed, bdb stores the last version of the file-data as a plaintext, and
updates the previous version so that it is a delta against the newest version. This makes the
common-case of HEAD-checkouts faster than checkouts of previous versions.

fsfs

The fsfs filesystem is a more recent reimplementation of the filesystem backend for subver-
sion. We will describe fsfs in more detail later, but for now it is sufficient to say that fsfs uses
plaintext-files for storage. Each revision is stored in a file, which contains the changes for that
revision. In fsfs each file starts as an initially empty file. When the file is changed the delta
from the previous version to the next is to be reconstructed from its previous versions; and
revision-files are never changed once they have been created.

4.3 Modules

Subversion is implemented as a server and a client module, in addition to several management
and administration modules. The standard client shipped with subversion is the command-
line only client svn. Several other clients exits, most of which either integrate with the file-
manager of the operating system, or are a part of an integrated development enviroment.

Clients all link with the subversion client-library, libsvn client. The library implements access
to the repository over various protocols. The repository can be accessed locally, over the file-
protocol, or it can be accessed over the svn-protocol, or it can be accessed over the http-protocol.

26 CHAPTER 4. SUBVERSION

When a client accesses the repository over the file-protocol, it simply manipulates the files in
the repository directly. When it uses the http-protocol, a apache-module acts like a subversion-
sever, and communicates with the client over the WebDAV protocol.

When the client uses the svn-protocol, a special server-program, svnserve, is started on the
machine hosting the repository. svnserve can be started either as a daemon that listens for
new connections, or a new process can be spawned for each new connection by the inetd-
daemon svnserve speaks with the client and manipulates the repository-files on behalf of the
client. A special-case is when the svn+ssh protocol is used. ssh is used to tunnel the commu-
nication between the client and svnserve, and a svnserve-process is started automatically on
the host, with the permissions of the user. To use svn+ssh the user needs to have a login on the
server.

While the different protocols that subversion uses is of little consequence to this project, we
should note a few things. One, the repository has to be writable by all local-users that need
to access it. It should also be writable by the inetd-user, and the apache user. Two, multiple,
heterogeneous processes can access the repository concurrently. The filesystem-backend has
to be designed in a way that permits this, ie files that are written to, should be protected by
file-locks, and commits to the repository have to be serialized by some means.

Chapter 5

Requirements

5.1 Usage scenarios

The goal of this project is to modify subversion, so that it uses pesto for storage, instead of
storing data to local repositories. Before identifying the requirements for the system, we shall
look at some possible usage-scenarios for a pestified subversion.

5.1.1 Subversion server

This usage-scenario is quite straightforward. Users use a pesto-enabled subversion repository
like they would any other repository, perhaps not even knowing or caring abouth how sub-
version stores their data. The only major difference from normal subversion operation, is that
the data is encrypted, before being written to local storage.

RepositoryClient

checkout

commi t

Use-case: Standard subversion repository
Actors: Repository, client.
Description: The client interacts with the subversion-repository.

(Either checking out files, or committing changes.)

5.1.2 Replication

In this usage-scenario, a pesto-enabled subversion repository sends its data to other pesto-
nodes that are trusted by it to store its encrypted data. The repository could be running on a
computer with limited storage resources, for instance an laptop. The storage nodes could be

27

28 CHAPTER 5. REQUIREMENTS

servers with lot of storage space. The repository could even be programmed so that it removes
non-recent data from its disk, so that only the most recent changes are kept locally, and the
earlier changes are kept on the storage servers.

Repository

Storage A

Storage B

replicate

Use-case: Replication of data
Actors: Repository, storage node A, storage node B.
Description: The repository replicates its data to the storage nodes

A and B.

5.1.3 Collaboration

In this usage-scenario, the owner of a pesto-node, that runs a subversion repository, gives
another user (a pesto-node) rights to read a version/create a new version of a file stored in the
repository.

Owner

User

grant read access

grant write access

Repository

Use-case: Grant access to a file to another user.
Actors: Owner, user, repository.
Description: The owner of the repository grants the user some

rights to a file.

5.1. USAGE SCENARIOS 29

Similarly, a user can revoke the rights to modify a file from a user.

Owner

User

revoke read access

revoke write access

Repository

Use-case: Revoke access to a file from a user.
Actors: Owner, user, repository.
Description: The owner of the repository revokes the rights of the

user to a file.

5.1.4 Policies

In this usage-scenario the owner of the pesto-node hosting the subversion repository changes
the policies under which the files are stored.

Owner Repository

Change policy

Use-case: Change the policy for a file.
Actors: Owner, repository.
Description: The owner changes the policy associated with a file.

5.1.5 Mirroring

Several subversion-repositories can be created that share the same data. These repositories can
be used as mirrors to a single repository. This can be useful for a project with a relatively small
number of committers, and a large number of users that access the projects data, so that the
central repository to which developers commit is offloaded, while others can download the
sources from the mirror repositories.

This is common for a lot of opensource projects where the primary mode of getting the source
code for the project is checking it out of source control. Still, there is a small controlled group
that commits to the repository.

30 CHAPTER 5. REQUIREMENTS

Note that if the mirror repository has not been granted rights to create new versions of the files
in the repository, it cannot commit to the repository.

Primary repository

Mirror A Mirror CMirror B

Mirror

Use-case: Mirroring of a repository.
Actors: Primary repository, mirror repositories A, B and C.
Description: The central repository offloads its data to the mirror-

repositories.

Primary repository Mirror A Mirror CMirror B

Access

developer D User A User B User C

Access Access Access

5.1. USAGE SCENARIOS 31

Use-case: Mirroring of a repository.
Actors: Primary repository, mirror repositories A, B and C,

users a, b and c, developer d.
Description: The users access the repository closest to them.

5.1.6 Decentralized source control

This usage scenario is somewhat similar to the mirroring scenario, but here the mirror-nodes
have been given write access to the files. This means that commits can be done from any of the
nodes. This creates a decentralized source control system.

Mirror A Mirror CMirror B

User A User B User C

Commit Commit Commit

Use-case: Decentralized source control.
Actors: Repositories A, B and C, users a, b and c.
Description: The users commit to the closest repository.

5.1.7 Concurrency control

In a system that supports concurrent access to its replicated data, several nodes, some form
of consistency control has to be used. There are basically two forms of consistency control,
optimistic and pessimistic, and one always has to chose between degrees of availability, and
data consistency [6].

In a distributed system there is bound to be some delay from when a user commits the changes
at one repository, and the other repository sees the changes. With a pessimistic approach, a
commit to any repository would have to be delayed until either all repositories are up, or at

32 CHAPTER 5. REQUIREMENTS

least until a central, master repository is up and running. This is not desirable for this system,
since a user then would not be able to use the system while offline.

If an optimistic consistency control approach is taken, users are allowed to commit at any time,
and the conflict is resolved at a later time. An optimistic concurrency control system usually
carries a log of the changes done at each node, and tries to reorder the changes so that they can
be serialized, undoing any changes that are in conflict [6]. A version-control system is different
from normal consistency-control scenarios, in that it allows the user to correct inconsistencies
manually should they occur, which is typically referred to as merging in a version-control
system. The difference between typical merging and optimistic concurrency control, is that the
merging is done before or during a commit, and optimistic consistency control has to be done
after a commit.

Consistency control should therefore be done automatically if possible, should there be a con-
flict that cannot be resolved without user intervention, then the user has to be prompted to
resolve the conflict manually during a check-out of the inconsistent revision.

Mirror A Mirror CMirror B

Consistency controlt

User

Use-case: Decentralized source control.
Actors: Repositories A, B and C.
Description: The repositories do optimistic consistency control,

with the help of the user.

5.2 Functional requirements

The pestified repositories should be accessible by standard subversion clients. To do this, the
pesto-enabled subversion has to implement the core functionality of subversion. Here we
identify and describe the core-functions of subversion.

5.2. FUNCTIONAL REQUIREMENTS 33

5.2.1 commit

Use-case: Commit
Actors: Repository, user, working copy.
Description: The users commits the changes in his/hers working

copy to the repository.

5.2.2 checkout

Use-case: Checkout
Actors: Repository, user, working copy.
Description: The users checks out a revision from the repository,

and makes it his/hers working copy.

5.2.3 update

Use-case: Update
Actors: Repository, user, working copy.
Description: The users updates hers/his working copy to the con-

tents of a revision in the repository.

5.2.4 propset

Use-case: Propset
Actors: user, file, working copy.
Description: The users sets the properties of a file in the working

copy.

The property is set in the repository after the working copy is committed.

5.2.5 propget

Use-case: Propget
Actors: user, file, working copy.
Description: The users gets a property for a file in the working

copy.

Use-case: Propget
Actors: user, file, repository.
Description: The users gets a property for a file in the repository.

5.2.6 add

Use-case: Add
Actors: user, file, working copy.
Description: The users adds a file to the working copy.

The file is permanently added after the working copy.

34 CHAPTER 5. REQUIREMENTS

5.2.7 delete

Use-case: Delete
Actors: user, file, working copy.
Description: The users deletes a file from the working copy.

The file is removed from all future revisions, once the working copy is committed.

5.2.8 move

Use-case: Move
Actors: user, file, working copy.
Description: The users moves/renames a file in the working copy.

Subversion implements this as a delete followed by an add. Changes are made permanent
after the working copy is committed.

5.2.9 copy

Use-case: Move
Actors: user, file, working copy.
Description: The users copies the file in the working copy. The

history of the file is preserved.

The changes are made permanent, once the working copy is committed.

5.2.10 lock

Use-case: Lock
Actors: user, file, repository.
Description: The users locks the file in the repository, reserving

the rights to change the file for him/herself.

The file is locked, but other users can force edits to the file, in other words, the lock is a warning
to other users, not a barrier.

5.2.11 diff

Use-case: Lock
Actors: user, file, repository.
Description: The users gets the difference between two revisions

of a file in the repository.

5.2.12 log

Use-case: log
Actors: user, repository.
Description: The users gets the update history for a file, directory

or repository, between two revisions.

5.3. NON-FUNCTIONAL REQUIREMENTS 35

5.3 Non-functional requirements

Performance
The system is to be used in a research setting, and performance is therefore secondary.
Still it should give acceptable performance. Also, performance should conform with the
users regard of the complexity of the operation. Ie, adding small changes to the repos-
itory, should take less time than adding huge changes, updating a recent working copy
to the newest version should take less time than updating an out of date copy/checking
out the complete repository.

Extendibility
The resulting system shall be used for future research, and the code written should be
easy to extend in the future.

Security
The resulting system uses pesto which is a secure system, and the security of any com-
ponent of the system should not be much weaker than any of the security mechanisms
in pesto. It should also not leak any more information, than which is necessary to store
files in pesto.

5.4 Target platform

Pesto itself is portable and can be used on several unix implementations, and is mainly de-
veloped under NETBSD and MaxOS X. It is does also compile under Linux and is ported to
Microsoft Windows NT-family1.

Subversion is ported to many unix-flavors, linux, MacOS X and Microsoft Windows NT.

While this, in theory should mean that the new system should run under all platforms men-
tioned above, it should be made clear that this is just a research system, and resources for
testing on multiple platforms are not-available. The system should strive to be platform-
independent, and isolate any code that is platform dependent, but it should as minimum only
run on two platforms, NETBSD and linux running on intel 64 and 32bit cpus (x86 and x86 64).

5.5 Alternatives

The easiest way to store subversion data in pesto would be to take the whole subversion repos-
itory after each commit, compress it into a new file, and add that file to pesto. This could
even be accomplished by using subversion hook-scripts that would hook onto commits and
checkouts. While this approach would be simple to implement it would have a few serious
drawbacks.

First of all, since pesto doesn’t allow a file to be neither modified, nor deleted, after it has been
stored, it is impossible to replace the old repository in pesto with the new one. This means
that the data for the repository would be duplicated in each revision. This could be alleviated

1The original Windows NT, Windows 2000 and Windows XP

36 CHAPTER 5. REQUIREMENTS

by storing deltas/changes between each revision, like it is done in the fsfs backend. But there
is still a problem. The requirements specify that it should be possible to take any version of a
file in the repository, and grant another pesto-user access to that file-version. This means, in
practice, that each file has to be managed by its own policy, which in turn means that every
file-version has to be stored as a separate pesto-file. Deltas of individual files, can also not be
used. This is because it would be necessary to have access to all previous versions of the file
to be able to reconstruct it. Reverse deltas, can also not be used because of pesto’s WORM
semantics.

To fulfill the requirements, a new filesystem backend for pesto should be created that uses
pesto. We started to implement a new backend from scratch. While this approach had the most
chance of leading to a clean design, it proved to be quite difficult, and too time-consuming to be
implemented. Therefore we abandoned the project, and decided on a new approach. However,
this “experiment” did not prove to be completely fruitless; we had learned a valuable lesson,
the fsfs filesystem could be, relatively easily, modified to use pesto. It already has immutable
revisions, fundamentally, what had to be done, was to split up the revision-files into separate
files, and change the way file data was stored. In the next chapter, we will therefore look closer
at the implementation and design of the fsfs filesystem, before moving on to discuss how the
fsfs filesystem should be integrated with pesto in the design and implementation chapters.

Chapter 6

The fsfs backend

Since the libpesto backend for subversion implemented for this thesis is based on the fsfs back-
end used by subversion it is necessary for the reader to familiarize him/herself with some of
the implementation details of fsfs before moving on to discuss how the pfs-backend is imple-
mented.

6.1 Nodes and node-revisions

fsfs is a revisioned filesystem implemented on top of the operating systems filesystem. By
a revisioned filesystem, we mean a file-system in which any file or directory stored can be
restored to the state it had in any of its previous versions.

A file/directory in fsfs is stored in a fsfs-node, which is analogous to an inode [19] in unix. A
node is identified by its node-id. When a node is changed, a new revisions of the node, called
a node-revision is created. Each node-revision has a node-id which identifies it with the node,
but has, in addition a copy-id which is incremented every time a new node-revision of the node
is created.

A node-revision can be in one of two states, mutable or immutable. A node-revisions is mu-
table when it is created, and becomes immutable as soon as it is committed. Node-revisions
can only be created in a transaction 1, and a mutable-node-revision is therefore always part
of a transaction. Node-revisions belonging to a transaction are marked with a transaction
id, while immutable node-revisions are marked with the revision number of the revision in
which they were committed. Note that node-revisions in transactions use internal counters for
copy-ids, and two node-revisions in concurrent transactions can have the same combination
of node-id,copy-id, and a node is therefore only uniquely identified by the combination of its
node-id,copy-id and transaction-id or revision number.

To illustrate, suppose that a user creates a file, foo.c and adds it to the repository, with the path
/src/foo.c . A new node for foo.c is created, and the first node-revision for the node is created.
The parent directory, /src must then be updated to add foo.c to its directory entries. A new
node-revision for /src is created, and foo.c is added to its directory entries. Since a new node-
revision for /src is created, / has to be updated to point to the newest node-revision of /src . A

1With the exception of the zeroth revision, in which the root-node is created outside any transactions.

37

38 CHAPTER 6. THE FSFS BACKEND

new node-revision for / is therefore created, and the reference to /src is updated to point to the
newly created node-revision for /src . To minimize the number of node-revisions created, only
the first change to a node in a transaction creates a new node-revision, all remaining changes
are done to the node-revision which is already in the transaction.

Each node-revision can have data and properties. Properties are meta-information for the
file/directory, including but not limited to, permissions, mime-type, last author, and other
properties set by the user. The data of a node is either the contents (plaintext or delta) of file,
or the directory entries of a directory. Both data and properties are stored in what fsfs refers
to as representations. Each node-revision keeps a reference to its current data and properties
representations, which can be shared amongst several files. The representations are stored in
the node-file for node-revisions that are part of a transaction, or they are stored in the revision
file with the rest of the revisions data, if they belong to a committed revision. If a property
of a mutable node-revision changes, its properties-representation is updated. However, if the
properties for that node-revision are shared with a previous node-revision, the old properties-
representation is copied to the transaction as a new properties representation, and the property
is set. Data-representations are handled analogous to properties-representations, but are stored
differently, depending on their type. File data is never copied to the new representation, but
always created as an empty delta against the base-revision.

A similar operation to creating a new node-revision is copying a node. fsfs implements copy-
ing by having a copyfrom-field in each node-revision. When a node is copied, its copyfrom is
set to the node-id and revision of the original node. The data and properties representations of
the new node are left pointing to the same as data and properties as the original. Only when
the data changes, either for the original or the copy, is a new copy of the data created. Firstly
it makes it easy to track the copy-history of a node, to determine if the node was created in a
revision, or if it was at some time “forked” off another node. Two, it makes copying a node
a cheap operation, both in terms of speed and disk-space used. The last property comes in
handy, since subversion implements “tags” and “branches” as copies.

Subversion, in contrast to CVS, does not really use tagging. Instead it is common practice to
copy a “tag” to a separate directory. To illustrate, lets look at the fictious project “foo”, then
/foo/dev could be the unstable, development branch of the foo project, /foo/4.0rc1 could be
the release candidate for version 4.0, and /foo/3.0 could be the release for the not so popu-
lar, but still supported foo version 3.0. Suppose that a file bar.h hasn’t been changed since
v3.0. Then /foo/dev/bar.h , /foo/3.0/bar.h and /foo/4.0rc1/bar.h would all point to the
same node-revision. The file bar.c has been changed between 3.0 and rc1, but has not been
changed between from then. /foo/dev/bar.c and /foo/4.0rc1/bar.c would point to the same
node-revision, while /foo/3.0/bar.c would point to an earlier node-revision of bar.c .

6.2 Skip-deltas and data storage

How the data-representation of a node is stored depends on what type of node it is, and what
type of data the node has.

Directory entries are always stored in plaintext, that is, the newest/current version is always
written completely to the file.

6.3. TRANSACTIONS 39

Binary-files files are always stored in plaintext, since a delta of a binary file is impractical and
of little value in itself. Text-files are however stored as deltas. fsfs stores the first revision of the
file as a delta against an empty file. Each succeeding revision is then stored as a delta against
the previous. This creates a lot of overhead when checking out the latest revision, since all
previous revisions have to be read. To avoid this subversion uses skip-deltas. A skip-delta is a
delta against a revision other than the directly preceding revision. To determine which revision
to base the delta on, subversion “prints” the revision number out in binary, using big-endian
notation, flips the rightmost ’1’ bit, and bases the revision on it. Example, 54 (110110) becomes
52(110100), which means that we base the delta for the 54th revision on the plaintext of revision
52. The 52nd revision is based on the 48th(11000), the 48th is based on the 16th(10000), and the
16th is based on the 0th revision. This reduces the number of revisions needed to reconstruct a
file, from O(R) to O(log(R)), where R is the number of previous revisions of a file.

6.3 Transactions

When the user does a commit, he or she starts a new transaction. Subversion transactions
guarantee atomicity. Either all updates in the transaction are applied to the repository, or
none of them are applied. Subversion transactions are persistent objects. A client can stop a
transaction, disconnect, and at a later time reopen it. And then either abort or finish it. The
transaction is not removed until either the client commits or aborts it, or it is explicitly removed
by the administrator or a cleanup-script.

The result of a transaction can be one of three. Either it fails, leaving the repository in the same
state as it was before the commit, or it succeeds, updating all the files to the same state as the
ones in the users working copy, or it is merged with the results of another transaction.

A transaction can fail for several reasons, the most common being conflicts. If two developers
both check out the file /src/foo.c with revision number 1. Both developers change the file and
commit. Subversion will let the first commit, to complete, through. When the second commit
starts, subversion will detect that it tries to update a file with last change in revision 2, with a
file being based on revision 1. An error message is then generated and returned to the user, and
none of the changes made in the transaction applied to the repository. If the developers change
different files, /src/foo.c and /src/bar.c then the changes would be merged, producing a new
revision which does not correspond to the working copy of any developer. A transaction could
also fail from an internal error, power failure, cosmic rays, etc... The transaction system has to
be designed so that the repository is left in a consistent state, and all unfinished transactions
at the time of the crash are aborted. The filesystem backend is responsible for storing and
committing transactions so that they are guaranteed to be atomic.

fsfs stores the transactions in the transaction directory in the repository, giving each transaction
a unique name derived from the base revision of the transaction. The transaction-directory
contains one transaction file and a file for every node-revision modified in the transaction.
Meta-information is stored in the transaction file, and node-revision data and properties are
stored in the node-revision files.

40 CHAPTER 6. THE FSFS BACKEND

fs

fi le

dag

tree

lock

Figure 6.1: fsfs overview

6.4 Revisions

fsfs stores its data in several files. Revision-data is stored by having a file with the zeroth
revision stored in the revs directory under the name 0 . The zeroth revision contains nothing
but an empty root directory. Each succeeding revision is created by adding a new file, with
the name of the new revision number to the revs directory. Node-revisions are stored in the
revision-file for in the transaction to which they belong. The revision-file starts with a header
that describes the paths that were changed from the previous revision, and offsets into the file
for each node-revision. The node-revisions are stored at the specified offsets. Depending on
what type of update was done to the node the revision file might contain the data, properties or
both for the updated nodes. Node-properties are stored as a serialized hash of property-names
and values. How data is stored depends on several factors, most importantly what the node-
type is. Revision-properties are written to a similarly named file in the revprops directory.

When a transaction is committed, subversion goes through all nodes stored in the transactions
directory, removing any references to the transaction. Then it generates a proto-revision file,
which looks exactly like the revision-file that would be used for the next revision. If there are no
conflicts or locks that hinder the commit of the revision, the proto-revision is then moved to the
revs directory. Since moving a file is an atomic operation (either the file is moved successfully,
or it is not moved at all) operation on most filesystems, it guarantees atomicity for subversion.

6.5 fsfs layers

The fsfs system can be viewed as a set of layers each providing a different abstraction-level
of the filesystem backend. These layers do not strictly match the names of the c-modules in
the implementation, nor are they mentioned in the documentation, bur are nevertheless, in the
authors opinion, a good abstraction used when dealing with the fsfs implementation.

The layers of fsfs, are shown in figure 6.1, from bottom to up: the file-layer, the dag-layer and
the tree-layer. In addition there is a locking module, which is works directly with the filesystem,
and which does not deal with the other layers in fsfs.

6.5. FSFS LAYERS 41

6.5.1 The file-layer

The file-layer is responsible for storing nodes, both mutable and immutable to disk. Ie it works
with both transaction and non-transaction nodes. In addition it does house-keeping tasks, like
updating the counters used for the next copy-id and the next node-id, and is assigned the task
of assembling the deltas stored for a files data, so that the upper layers can read a file like an
ordinary stream.

6.5.2 The dag-layer

The dag layer lies above the node-layer, and provides all essential filesystem operations, but
exposes the filesystem’s internal structure. Nodes, as they are exported by the dag-layer are
shared between revisions. The client of the dag-layer has to do any cloning itself.

6.5.3 The tree-layer

The job of the tree-layer is to take a filesystem with lots of node sharing going on, the filesys-
tem as it is exported by the dag-layer, and make it look and act like an ordinary, tree based
filesystem without sharing.

The tree layer is the one responsible for sharing of files/directories between transactions. To
do this it employs copy-on-write semantics; as soon as the caller modifies a file/directory,
the appropriate node-revisions are cloned. Any previous references to the changed node are
changed so that they reference the new node-revision. If the parent-directory has not been
changed before in the transaction, then the tree-layer creates a clone of it and its parents too.

42 CHAPTER 6. THE FSFS BACKEND

Chapter 7

Design

pfs, the pesto-based filesystem backend, is based on fsfs. It reuses most of the code from
fsfs, but the node-layer has been replaced with code that writes to pesto instead of writing
directly to disk. This changes how transactions and revisions are stored and has a few other
side-effects.

When implementing pfs we have to chose what information should be stored in pesto and
what information should not be stored in pesto. As stated earlier, pesto does not support
modification or deletion of previously stored data. This makes pesto inconvenient for storage
of temporary data.

Locks in subversion are used when a user wants to hinder other users from modifying some
part of the tree in the repository. A lock is held by a user until the user either frees it, or the
lock is forcibly broken by the administrator. In principle, one could add locks to pesto, by
either creating a lock object for each lock, and adding a lock-cancel object as a successor to
the lock when it is opened, or having a lock object for all locks, updating its successors when
the locks change. However, only the current state of the locks is interesting to the user, and
lock history is not really worth saving. If the locks were stored in pesto, there would be no
way of removing unlocked locks. We therefore leave the locks on the local filesystem in pfs,
and postulate that locks are only valid on a per host basis. If locks are to be implemented
in a distributed environment with multiple hosts serving the same repository, then a locking
protocol should be implemented without using pesto. Alternatively, pesto could be extended
to support locking.

Transactions are, in subversion, persistent objects. A transaction is not deleted until it is either
aborted by the client, aborted due to an internal error or deleted by the administrator. This
means that a client-program can create a transaction and at a later time reopen and finish it.
This could be an argument for putting transactions in pesto, but transactions change often be-
fore being committed, and are often aborted before being committed. This makes transactions
impractical to store in pesto. We therefore store transactions locally, and state that a transaction
can only be reopened on the same host/repository that it was initially created on.

Revisions and revision-properties in subversion are created once and never modified after they
are created. They are therefore ideal for storage in pesto. Nodes and node-revisions that are
part of a transaction should therefore be stored in pesto. Each node-revision stored in pesto

43

44 CHAPTER 7. DESIGN

Figure 7.1: Timeline for a node

should be a successor of the previous node-revision. Data and property representations for the
nodes should be successors of the previous data and property representations for that node.

7.1 Nodes

A node in pfs, like in fsfs is a set of one or more node-revisions. Each time a change to the node
is committed a new node-revision is created. Each node-revision knows the number of node
revisions preceding it, and its immediate predecessor.

A node-revision is made up of three parts, all stored as separate pesto objects. The tree parts
are, the meta-object, the data-object and the properties object. Data is the file-data of the node,
if the node is a file, or the directory entries, if the node is a directory. Properties contains all
properties of the node that are viewable by the user/client while the meta-object only contains
internal information about the node used by pfs. The meta object contains references to the
data and properties objects. When a new node-revision is created only the references to the
changed object is changed. This means that the new node-revision will reuse data from the
previous node-revision if only the properties change, and vice versa, if the data changes, then
the properties-object can be reused. A new version of the meta-object is created for every
node-revision.

The timeline of a node can be viewed in figure 7.1. A node with a data and a properties object
is created in revision 0. In revision 1 the data object is changed and in revision 2 the properties
object is changed.

7.1. NODES 45

The translation of pesto objects to pfs-objects to subversion objects is shown in figure 7.2. The
node-revision, and representation info are stored as one pfs object, the nodrevision-meta object.
The contents of data and properties are stored as separate pesto-objects. Each object is created
as the successor of the same type of object of the previous revision of the node.

7.1.1 Noderevision meta-object

Each node-revision is uniquely identified by its copy-id, in contrast to fsfs where a node-
revision is only uniquely identified by the combination of {node id,copy id} and either its
transaction-id or revision number. Each node is also assigned a unique node-id, which is set
to the copy-id of the first node-revision of the node. Every node-revision that belongs to that
node is tagged with that node-id.

Each node-revision also stores the id of its predecessor, so that it is easy to trace the history
of a node. When the node-revision is committed to pesto, it is created as a successor of the
parent-id, thereby inheriting all policies associated with the predecessor.

The node-revisions kind and path are stored in the meta-object. Note that the nodes kind
should not change from revision to revision, while the path can, if the node is moved or re-
named.

7.1.2 node-properties

The properties object contains the pesto-identifier of its predecessor and a list of property-
names and the associated property values. When a property is changed a new node-properties
object is created. Properties from the predecessor are copied to the new object, and the new
property is set/un-set. When a properties object is committed to pesto, it is stored as a suc-
cessor of the previous version of the nodes properties object, or a as a new object, if the node
doesnt have any property-objects yet. This way, the properties object inherits the policies from
its predecessor.

7.1.3 node-data

The data object contains the pesto-identifier of its predecessor and a binary-blob with the data
for node. When the data-object is committed, it is stored as a successor of the previous version
of the nodes data object, or as a new object, if the node doesnt have any previous data.

Directory-entries are stored as a list of {id,path}, where id is the pesto-identifier of the node-
revision of the node stored in the directory, and path is the name of the node. Each time one of
the entries is updated, the data-object is updated to point to the new directory-entry. This in
turn updates the meta-object, which triggers an update of the parent-directory.

File-data is always stored as plaintext 1 , not as a delta against another version, as it is done
in the other backends . While this does have the obvious drawback of requiring more space,
it also has a few advantages. The extra space requirement is not that bad, considering that
text-files usually do not require much storage space to begin with, and binary files are stored

1Plaintext, as opposed to delta, not as decrypted ciphertext

46 CHAPTER 7. DESIGN

Pesto object

noderevision_meta

noderevision_data noderevision_properties

Pesto object Pesto object

data propert ies

node_revision

data_rep props_rep

node-layer

vaul t

pesto

Figure 7.2: Translation of a pfs node-revision into pesto and subversion objects

noderevision_meta:
node_id (GUID)
copy_id (GUID)
predecessor_id (GUID)
node_kind {dir,file}
node_path (path)
data_id (GUID)
prop_id (GUID)

Figure 7.3: The noderevision meta-object

7.2. REVISIONS 47

node_properties:
predecessor_guid (GUID)
properties ({propname,propval}[])

Figure 7.4: The node properties-object

node_data:
predecessor_guid (GUID)
data (byte[])

Figure 7.5: The node data-object

as plaintext for all storage backends used by subversion. Checking out a file becomes cheaper
than when using the other backends, since any revision of any file can be accessed directly in
plaintext. While bdb only allows plaintext access to the head-revision, and fsfs only allows
plaintext access to the first revision.

Storing a file is also less expensive, in terms of file access, than in the other backends. bdb has
to update all/some of the previous versions, when the file is updated. fsfs has to reconstruct
the previous version of the file so that it can create a delta against it. pfs only has to write the
data directly to the new file.

However, the main reason for always storing file-data in plaintext, is that it should be unnec-
essary to be able to read the previous revisions of a file to have access to the current revision.
This means that it is, for simple commit and checkout operations, only necessary to keep the
leaves of the vtree for each pesto-object locally. And that it is possible to give somebody access
to a file revision managed by the repository without using subversion.

This can be useful for running a local repository. The local repository can then cache only the
most recent revisions of each file, fetching older revisions from the main repository only if they
are required. If the main repository should be unavailable for some reason, it would still be
possible to commit to the repository and check out the most recent revisions.

Another scenario for which this might be useful is to allow read-access to some files in the
repository outside of subversion. The id of the file could be distributed by another channel
and all interested parties could, with the correct key, view it, and any future versions, as long
as the policy does not change.

7.2 Revisions

Subversion stores some properties for each revision, some of which can be set by the user, while
others are set by subversion. This includes the time at which the revision was committed,
who committed the revision, etc... It also stores which paths were changed in the revision,
and a short log message which is usually written by the user before a commit. To store this
information we create a revision-anchor (see figure 7.7) object in pesto.

When the zeroth revision is created a root node (/) is created, and its pesto-id is written to
the revision-anchor for the zeroth revision. The pesto-id of the revision-anchor itself is written

48 CHAPTER 7. DESIGN

/

dev/

revision_anchor

+revnum = N+1

/

dev/
stable/

revision_anchor

+revnum = N

dataprops data

datadatadata propsprops

foo.h foo.cfoo.cfoo.c

data data data data

= files in rev M

= succeeds= contains

name = node-revision type = node-representation

= f i les in rev N+1

= files in rev N

Figure 7.6: pfs revision

7.2. REVISIONS 49

revision_anchor:
revision_number (integer)
id (GUID)
properties ({propname,propval}[])
root_node_id (GUID)

Figure 7.7: The revision-anchor object

Figure 7.8: Translation of a pfs revision-anchor into pesto and subversion objects

to the disk. All subsequent revisions get their own revision-anchor. When a new revision-
anchor is added to pesto, it is created as the successor of the previous revision-anchor. This
way it is possible to find the revision-anchor for all revisions when only the id of the zeroth
revision-anchor and the revision-number is known.

We store the pesto-id of the revision-anchor for revision zero in the. Future revisions are cre-
ated as successors of the previous revision. To access a specific revision we use pesto to iterate
through all the pesto-tree of the revision-anchor looking for the revision-anchor with the cor-
rect revision-number.

To illustrate, suppose that the client tries to access /foo/dev/bar.c from revision 42. pfs will
then first look up the revision anchor for the 0th revision from pesto. This is straight forward
since the pesto-id of the 0th revision-anchor is stored locally. Then pfs looks through all suc-
cessors of the 0th revision-anchor, checking their revision number. If a revision-anchor with
revision number 42 is found, its root-node is then used as the starting point to resolve the path.
Since all parents of a changed node are updated when the node is changed, we know that the
root-node will always be updated if a node is updated.

Node-revisions belonging to a revision are stored in pesto. The node-revision meta-object is
stored as the successor of the previous node-revision meta-object. The properties-object is
stored as the successor of the previous properties-object, and the data-object is stored as the

50 CHAPTER 7. DESIGN

successor of the previous data-object.

The figure 7.6 illustrates a simple repository. A file, foo.c , has been modified in the revision
N, and revision N+1. And the properties for / have been modified in revision N. As we can
see from the figure, all the parent-nodes for foo.c are updated whenever foo.c is updated. A
directory, /stable was created as a copy of /dev in revision M. We can see that foo.h has not
been modified after that, as a result of that M, N and N+1 all reference the same node-revision
for both /dev/foo.h and /stable/foo.h .

The translation of pesto objects to pfs-objects to subversion objects is shown in figure 7.8. The
revision-anchor as is seen by the node-layer as three separate objects, the changes, revision and
properties objects. They are combined into the revision-anchor object which is stored as one
pesto-object.

7.3 Transactions

Subversion stores transaction-properties in a transaction. Some of the properties are used as
revision-properties when the transaction is committed, while other are used internally by sub-
version. In addition subversion stores the paths that were changed in the transaction and the
node-revisions which were created during the transaction. To access a transaction we define a
transaction anchor (see figure 7.10).

The anchor contains the revision on which the transaction is based on, the transaction id, a list
of properties for the transaction, paths that were changed in the transaction, and the id of the
node-revision of the root node (/) for the transaction.

When a new transaction is started, pfs first finds the newest revision-anchor and bases the
transaction on it. The base-revision is set to the revision-number of the revision-anchor. Note
that a transaction is guaranteed to update the root-node at some point, a new node-revision
for the root-node is therefore created as soon as the transaction starts. Later, when a node is
accessed in the transaction, the root-node of the transaction is used as base to find the node.

Meta-objects for modified node-revisions, and modified data and properties objects are also
stored in the transaction.

The figure 7.9 illustrates a transaction that changes the data for the file-node /dev/foo.c . Note
that only the meta-objects and representations that were changed are added to the transaction.

The translation from files to pfs-objects to subversion objects is shown in figure 7.11. The
transaction-anchor as is seen by the node-layer as three separate objects, the changes, revi-
sion and properties objects. The transaction-changes are written directly to the changes file in
the transaction, and the properties and transaction objects are combined into the transaction-
anchor which is stored as one file.

7.4 pesto abstraction

An abstraction layer is added between the file-layer of pfs and the filesystem. We call this ab-
straction layer the vault. The vault stores node-revisions and revision and transaction anchors.
And supports the operations shown in table 7.1.

7.4. PESTO ABSTRACTION 51

Figure 7.9: pfs transaction

52 CHAPTER 7. DESIGN

transaction_anchor:
base_revision (integer)
id (GUID)
properties ({propname,propval}[])
changes ({change,path}[])
root_node_id (GUID)

Figure 7.10: The transaction-anchor object

transaction_anchor

file

transaction

changes propert ies

node-layer

vaul t

fi le
fi le

Figure 7.11: Translation of a pfs transaction-anchor into files and subversion objects.

7.4. PESTO ABSTRACTION 53

Operation transaction revision anchor meta data props
fetch true true true true true true
put true false true true true true
remove true false false true implicit implicit
pestify true false true implicit implicit implicit

Table 7.1: Vault operations

The operation (fetch,{type,id}) fetches the object with the type type from either a revi-
sion or a transaction. The fetched object can be the anchor for a revision or transaction, the
meta-object for a node-revision, data-object or a properties-object. If an object is in a revision,
it is looked up in pesto, the corresponding pesto object is decrypted and written to a file. The
file is then parsed and a new pfs vault object is created. If the object is in a transaction, it
is read directly from a plaintext file in the transaction directory, and a new object is created by
parsing the file.

The operation (put,{object,type,id}) takes an object with the type, type from memory
and stores it with the id given in id in a transaction. The object can be a transaction-anchor, a
node-revision meta-object, data-object or a properties object.

The operation (remove,{object,id}) takes a node-revision meta-object and removes it from
a transaction. If the object has any data or properties objects registered with it in the transac-
tion, then they are also removed.

The operation (pestify,{txn anchor,id}) takes a transaction anchor with the id id and
creates pesto-objects from the associated transaction. It iterates over the meta-objects for the
node-revisions created in the transaction and adds any data or properties objects which were
created in the transaction. Then it writes all meta-objects to pesto, and finally creates a new
revision anchor from the transaction anchor, and adds it to pesto.

The structure of pfs can be viewed in the figure 7.12. A new layer, called vault has been in-
troduced between the file-layer and the filesystem. This layer works both with data stored in
pesto and with the filesystem.

7.4.1 Committing a transaction

Objects are meant to be fetched from the vault before they are used, and put back when they
have been changed. When all updates are done, and the transaction is committed, this is
done by invoking the pestify() operation on the transaction-anchor, which first pestifies all
objects changed under the transaction-anchor, before pestifying the transaction-anchor. The
changed objects are only made accessible after the transaction-anchor has been committed,
which means that the transaction is only really committed when the transaction-anchor has
been pestified.

7.4.2 Checking out a revision

To check out a revision the id of its revision-anchor is first looked up. Then the revision-anchor
is fetched through the vault. All node-revisions reachable from the revision-anchor are then
fetched from the vault, and their data is passed to the upper layers.

54 CHAPTER 7. DESIGN

Figure 7.12: pfs overview

Chapter 8

Implementation

8.1 Identifiers

The identifiers used by fsfs have been changed to suit pesto better. Subversion itself does not
really care about how the identifiers are stored. All it sees is a long text-string. Identifiers are
originally stored as a text string of base-36 numbers. pfs instead uses pesto GUIDs which are
128bit keys, stored as a base-16 encoded integer. The GUIDs are randomly generated, which
gives us 2128 different identifiers to chose from, which makes the possibility of a collision,
two objects getting the same id, quite unlikely, assuming that the random number generator
used is any good. By generating ids randomly, we remove the burden of keeping track of
used identifiers from the backend, at the expense of increased disk usage. Using GUIDs for
identification is also convenient, since it removes the need to convert between ids used in
pesto and subversion ids. Alternatively a file could be used to store the mappings between
pesto and subversion ids, but access to the mapping-file would have to be serialized, so that
two transactions do not try to update the file simultaneously, not to mention that it would be
a performance bottleneck.

Nodes are identified by the GUID of their first node-revision. The repository is identified by the
GUID of the zeroth revision anchor. Transactions are identified by the GUID of the transaction-
anchor. When the transaction is committed the GUID of the transaction-anchor is used as the
GUID for the revision-anchor for the new revision.

8.2 pfs vault

The module pfs vault implements the vault abstraction layer described in the design chap-
ter. The file-layer translates between pfs vault objects and their corresponding subversion
objects. Normally the file-layer first tells the pfs vault to create a new version of an object
in the transaction. Then it fetches the object from pfs vault and translates to its subversion
equivalent. Subversion then modifies the object and gives it back to the file-layer, which writes
it back to the pfs vault. When the transaction is finished, the file-layer tells the pfs vault
to create pesto-objects from all the objects in the transaction.

55

56 CHAPTER 8. IMPLEMENTATION

typedef struct{
apr_pool_t *pool;
GUID_P guid;
int base_rev;

vault_data_t *data;

svn_fs_id_t *root_id;
svn_fs_id_t *base_id;

} vault_txn_t;

Figure 8.1: The vault txn t structure.

Objects that are stored in pesto are decrypted by libpesto and written to a temporary file.
pfs vault then parses the object, and unlinks the temporary file. Objects that are in a trans-
action are read from/written to the corresponding file in the transaction directory. The trans-
action resides in the db/transactions directory of the repository. Each transaction gets its own
transaction id, which is a randomly generated GUID. The transaction directory’s name is set
to the id of the transaction. This makes it easy to determine whether an object is stored in a
transaction, and makes it easy to get the list of all current ongoing transactions.

Each object in the vault has a memory-pool associated with it. The object is allocated from
the pool. When the objects lifetime expires, all its allocated memory can be freed simply by
freeing its pool. Although, currently, the lifetime of an object does not exceed any function in
the file-layer, it could prove useful for future implementation of a cache.

8.2.1 Transactions

The vault txn t (see figure 8.1) structure is the pfs vault equivalent of a transaction-
anchor. It stores all necessary information about a transaction. guid is the transaction id,
base rev is the revision number the transaction was based on. The base id is the id of the
/ node-revision of the revision the transaction was based on, and root id is the id the /
node-revision of the transaction. The data part points to the common data shared between
transaction-anchors and revision anchors. The vault data t structure holds the proper-
ties for the transaction in the props attribute. The properties are stored as a hashtable of
{propname,propvals}, where propname is the name of the property, and propval is a sub-
version string holding the value of the property. The changes hash holds the changes done
so far in the transaction. The changes are stored in the hash as {changed path,change},
where changed path is the path of the changed node, and change is a string that describes
what was changed; whether properties or data were changed for the node, the id of the new
node-revision, the type of the node, and where the node was copied from, if the change was a
copy. root holds the GUID of the / node-revision.

A pfs transaction is stored in the db/transactions directory. Each transaction creates its own
sub-directory in the transactions-directory. The sub-directory is named with the GUID of
the transaction, which insures that no two transactions try to write to the same directory.
A new transaction creates the changes-file, the txn-file, and the props and data-directories.

8.2. PFS VAULT 57

typedef struct{
apr_hash_t *props;
apr_hash_t *changes;
GUID_P root;
apr_pool_t *pool;

} vault_data_t;

Figure 8.2: The vault data t structure.

typedef struct {
int revision;
GUID_P parent_guid;
GUID_P guid;
apr_pool_t *pool;
vault_data_t *data;

} vault_rev_t;

Figure 8.3: The vault rev t structure.

Each node-revision created in the transaction is stored in the transaction-directory, with the
name $COPY ID.node, where $COPY ID is the copy-id of the node-revision. The properties-
representations are stored in the props directory, with names on the form $ID.props, where
$ID is the GUID of the properties-representations. Data-representations are stored analogous
in the data directory, with names on the for $ID.data, where $ID is the GUID of the data-
representation.

The txn-file store the vault txn t and the vault data t structure, except for the changes-
hash. Changes are instead written to the changes file. This is done, since the changes of a
transaction are usually only read at the end of the transaction. In a large transaction the number
of changes can be quite high, and the transaction-anchor is read for every change done in the
transaction. If the changes were kept in the txn-file, it would mean that for every change pfs
would have to read in a quickly growing file, and thereby run super-linearly slower.

8.2.2 Revisions

Revision-anchors are represented by the vault rev t-structure. revision holds the revi-
sion number of the revision, parent guid is the GUID of the previous revision, or NULL if it
is the zeroth revision. guid is the GUID of the revision. data holds the data that is common
for both a revision and transaction anchor. When a revision is committed its data attribute is
simply copied.

pfs vault stores revision-anchors in pesto, identified by the GUID of the revision-anchor, and
stored as the successor of the revision anchor of the previous-revision.

To read from a revision, it is first decrypted into a temporary file, and parsed from it. When the
vault rev t has been parsed, the temporary file is deleted. A revision can only be written by

58 CHAPTER 8. IMPLEMENTATION

typedef struct {
apr_pool_t *pool; // pool from which node was allocated
GUID_P txn_id;
GUID_P id; // guid of current incarnation
GUID_P original_id; // guid of the first incarnation
GUID_P predecessor_id; // guid of the previous incarnation
svn_node_kind_t kind;
char *created_path;
int predecessor_count;
/* If this node-rev is a copy, where was it copied from? */
char *copyfrom_path;
int copyfrom_rev;
/* Helper for history tracing, root of the parent tree from whence

this node-rev was copied. */
char *copyroot_path;
int copyroot_rev;
vault_representation_t *data;
vault_representation_t *props;

} vault_noderev_t;

Figure 8.4: The vault noderev t structure used by pfs vault.

taking a transaction-anchor and converting it to a revision anchor through the pestify operation.
The resulting revision-root is the written to pesto.

8.2.3 Node-revisions

pfs vault defines the type vault noderev (figure 8.4) for storage of node-revisions. The
corresponding subversion type is node revision t (8.3). The id of the subversion node-
revision has been decomposed into a transaction GUID, node-revision GUID, and original GUID.
The original id “points” to the first node-revision of the node. The id is the id of the cur-
rent node-revision, and txn id is the id of the transaction that node-revision is part of. If the
node-revision is committed to pesto, then the transaction id is set to NULL to indicate that.
Rest of the attributes are equivalent to their subversion counterparts, except for the data and
properties representations attributes, which point to vault-representations (8.2.3). Note that
the vault-representations are part of the node-revision object, and are not stored separately.

The vault representation t (8.2.3) type stores information about a representation. Its
size, checksum, revision in which it was created and the GUID of it and its immediate predeces-
sor. Note that subversion keeps a few extra attributes for its representation objects (8.2.3). This
is extra information is used by subversion to reconstruct the representation from deltas, but is
not needed by pfs since representations are always stored as plaintexts. The transaction id is
set by subversion to indicate which transaction the representation is in, which is redundant,
since a representation is either in a revision (committed to pesto) or in the same transaction as
the node-revision to which it belongs. Note that each node-revision will “adopt” its parents
data and properties representations if they are present, until it creates some on its own. A

8.2. PFS VAULT 59

typedef struct{
svn_node_kind_t kind;
const svn_fs_id_t *id;
const svn_fs_id_t *predecessor_id;

const char *copyfrom_path;
svn_revnum_t copyfrom_rev;
svn_revnum_t copyroot_rev;
const char *copyroot_path;
int predecessor_count;
representation_t *prop_rep;
representation_t *data_rep;
const char *created_path;

} node_revision_t;

Figure 8.5: The node revision t structure used by subversion.

typedef struct {
unsigned char checksum[APR_MD5_DIGESTSIZE];
int revision;
svn_filesize_t expanded_size;

GUID_P guid;
GUID_P parent_guid;

} vault_representation_t;

Figure 8.6: The vault representation t structure used by pfs vault.

node-revision cannot unset its data or properties representations after they have been initially
set.

Storage

Node-revisions use a simple text-format for storage. The attributes are printed in an ordered
fashion to a file. Each attribute being preceded by a string identifying which attribute it is.
The type, however, is only used as a safety net to catch a corrupt node-revision, and the parser
will halt if it gets an unexpected value. If the node-revision does not have a value for an
attribute, the string “NULL” is printed. If the node-revision has a data-representation, then the
NODE HAS DATA field of the file is set to “true” and the data-representation follows. If not the
NODE HAS DATA field is set to “false”. Analogous, the NODE HAS PROPS field is set to true
if the node has a properties representation. A node-revision file is stored in the transaction-
directory, and has the extension .node .

60 CHAPTER 8. IMPLEMENTATION

typedef struct
{
unsigned char checksum[APR_MD5_DIGESTSIZE];
svn_revnum_t revision;
apr_off_t offset;
svn_filesize_t size;
svn_filesize_t expanded_size;
const char *txn_id;

} representation_t;

Figure 8.7: The representation t structure used by subversion.

8.2.4 Representations

The representations themselves are stored in separate pesto-objects/files, but all information
about a representation is stored in the node-revisions to which the representation belongs.

Properties-representations

Properties representations are stored in a hashtable of {propname,propval}. Where propname
is the name of the property, stored as a character array, and propval is a subversion string
type. Subversion provides methods for reading and writing hashes of this type to/from files.
To read a property for a node-revision with its properties representation stored in pesto, pfs vault
decrypts the pesto-object identified by the GUID stored in the properties-representations part
of the vault noderev for the node-revision to a file. Then reads the hash from the file to
memory and returns it to the file-layer. The file-layer finds the correct property-field and re-
turns its value. If the properties-representation is stored in a transaction, pfs vault looks
through the props directory in the transaction for a file named with the GUID of the property-
representation. Then it parses the hash, and returns it to the file-layer.

Properties, can logically enough, only be set on node-revisions that are part of a transaction.
When setting a property, pfs vault will first try to get the properties-representation asso-
ciated with the node-revision. To set a property pfs vault tries first to read the current
property-representation associated with the node-revision, if the node-revision has a property-
representation stored in pesto, it is decrypted from pesto, and written to a new properties-
representation in the props directory in the transaction. The new properties-representation is
set to be a successor to the properties representation it was created from. If the node-revision
does not have any properties-representation, a new, empty properties representation is cre-
ated in the props directory. If the node-revision already has a properties-representation in the
transaction, nothing is done. Then the hash is parsed from the properties-representation, the
property is set in the hash, and the hash written back to the properties-representation in the
transaction.

8.3. WORKING WITH TRANSACTIONS 61

Data-representations

Data representations for directories are treated much the same as properties-representations.
Directory-entries are stored as a hashtable of {pathname,description}, where pathname
is the path of the directory entry, and description is a description of the directory en-
try, consisting of the full id of the directory entry {node id, copy id, revision number
/ transaction id) and the kind of the directory entry. If a node-revision for a directory
node does not have any data-representation a new data-representation is created. If a pre-
vious data-representation exists, it is copied to the new data-representation, and the copy is
set to be the successor of the original. The hash is then parsed from the data-directory in the
transaction-directory, and the new directory entry written to the hash, whereupon the hash is
written back to the data-representation.

If the node is a file, data-representations are not read from pesto before they are modified.
Instead an empty file for the data-representation is created in the data directory. A new file-
stream is created to write to the file. The stream is one way, write only, meaning that it is not-
possible to reposition the stream, or read from it. While writing to the stream, the number of
bytes written are recorded, and a md5 checksum is computed from the written bytes. When the
stream is closed, an upcall is done to the file-layer, and the data-representation of the associated
vault noderev is updated, and then written back to the transaction directory.

8.2.5 Caching

Currently no caching is used in pfs. Caching in pfs could be done on two levels. One,
pfs vault could cache the files that were decrypted from pesto on disk. Two, pfs vault
could cache the parsed node-revisions and revision-anchors in memory. Caching transaction-
data would be more difficult, since there are no guarantees that more than one process might
be working on the same transaction.

8.3 Working with transactions

To start a new transaction, pfs fetches the newest revision-anchor from pesto and creates a
transaction-anchor from it. The transaction-anchors guid is randomly generated, and the
parent guid is set to the guid of the revision the transaction is based on. A new node-
revision for the root node is created, and the transaction-roots data is updated accordingly.

Each subsequent node-revision that is created is then added to the transaction. When a node-
revision gets added to a transaction a new node-file is written to the transaction directory. The
predecessor count of the node-revision is incremented, and its predecessor id is set to the
guid of the previous node-revision. If the data of a node-revision changes it is added to the
data directory, and if the properties of a node-revision are changed, a new file is added to the
props directory.

8.3.1 Locking

Locking in pfs is implemented on a per-host basis, and no form of distributed locking is cur-
rently supported. To lock a node, a hash of the nodes path is created, and a file with the name

62 CHAPTER 8. IMPLEMENTATION

set to the hash of the path is created in the locks directory, containing the path of the locked
node, and the owner of the lock. When a transaction is committed, all changes done in the
transaction are checked against the files. If a path hashes to a file in the locks-directory, the
lock is checked to see if the owner is the committer. If not, the transaction is aborted.

8.3.2 Committing a transaction

When all changes in a transaction is finished the client will try to commit the transaction. To do
this pfs first acquires an exclusive file lock on the write-lock file in the repository. The write-
lock is necessary to serialize commits to pesto, so that two processes do not try to commit the
same revision simultaneously.

pfs then reloads libpesto’s cache. This is done so that any new objects written to pesto will be
seen. pfs then tries to fetch the newest revision-anchor. If the revision-anchor is the same as
the revision-root that the transaction was based on, pfs will continue with the commit. If not
pfs will return control to the tree-layer, which will try to merge the transaction with the newer-
revisions. If a merge is not possible, a Transaction-out-of-date error will be returned.

If the changes can be merged, or if the transaction is based on the youngest revision-anchor pfs
will start the commit. To do this pfs compresses the changes done in the transaction, removing
changes to files that were later deleted, or file that were later removed, leaving one change per
path. pfs then looks through the locks directory, to see if anyone holds a lock on the changed
files. In another user holds a lock on the changed path, and the transaction was not started
with the Break-locks property set, then the commit fails with a Missing-lock error.

If the current user holds all locks necessary for the commit, pfs goes through all node-revisions
in the transaction directory. It then pestifies the properties and data-representation for each
node-revision. For directory data, it looks through all directory entries and changes refer-
ences to the transaction, to references to the revision to be committed, by removing the txn id
from the node-revision ids, and setting the revnum part of the id instead. When the data and
properties-representations have been written for a node-revision, or if the node-revision has
no new properties or data-representations, then the node-revision itself is pestified.

When all nodes have been pestified the transaction-anchor is pestified. To do this the changes
are read from the changes-file and added to the transaction-anchor as a hash. Then a new
vault rev object is created. The revision field is set to the base revision + 1, and
parent guid is set to the guid of the current youngest revision, and the guid set to the
guid of the transaction-anchor. The data attribute of the revision-anchor is set to the data of
the transaction-anchor. The revision-anchor is then written to a temporary file, which is then
added to pesto. This means that all new node-revisions, created in the transaction can now be
reached, which in turn means that the transaction is committed.

8.3.3 Aborting a transaction

Transactions can be aborted for several reasons. The client can simply abort the transaction,
because the user wants to abort the transaction, ie presses ˆC during commit with the standard
subversion client, svn. Or the transaction fails because some of the files it tries to change are

8.4. INTERFACING WITH PESTO 63

locked, or because the users working copy is out of data, and subversion is unable to merge it
with the newest revision. Or because the client crashes, or the server crashes.

All aborts except the server crash are easy to handle. Either they happen before the transaction
enters the commit-phase, or they happen after. If the abort comes after the transaction has
entered the commit-phase, it is simply ignored. If it happens before, it is easy to abort the
transaction. Since all of the transactions files are located inside the transaction directory, it is
a simple matter of deleting the transaction-directory for the transaction, and cleaning up the
memory used by the transaction.

If the transaction is aborted because of a server crash, things are slightly more complicated.
The transaction-directory will not be cleaned up, because there is no failsafe way to deter-
mine if a transaction is abandoned, i.e not needed by anybody in the future, or if it is a sus-
pended/paused transaction, or even in use. This is because subversion uses a model of several,
independent processes that access the same data without any direct communication between
themselves.

All of subversions filesystem-backends leave the abandoned transactions in place. To clean up
transactions an administrator, or at least a cleanup script is needed, that can check all transac-
tions in subversion, and delete any transaction older than a certain date.

It is worse yet, if the server crashed when a transaction has entered the commit-phase. Some of
the transactions-nodes will already be written to pesto, while others are not. The revision-root
will, however not have been written to pesto yet, since the transaction is still uncommitted.
This means that a transaction cannot be partially committed, since no-one can read the com-
mitted node-revisions. This will however clutter up disks-space, both on the repository host,
and on all hosts that replicate its pesto-objects.

A possible solution would be to try to re-commit a transaction after a crash. libpesto would
return an error if an object with the same GUID was written twice, and if pfs ignored this
errors and continued the commit, it would be possible to commit only the node-revisions and
representations that were not committed initially. Unfortunately this is not possible because of
subversions processes model. Other processes would not-be notified if one of the svn-server
processes fails, and there is no way of starting the recovery-process.

This is a limitation of subversion, and it is impossible to mitigate this presently. The only thing
we can do, is make sure that subversion does not crash, as it is done in both fsfs and bdb
backends.

8.4 Interfacing with pesto

The interface to libpesto that pfs uses is implemented in the pfs util module. The interface
provides functionality for finding a pesto object by its GUID, writing new pesto objects, creating
a new pesto backing directory and searching for a specific revision of a pesto object, only
knowing the GUID of one of the revisions.

8.4.1 Initializing the pesto backing directory

When creating a new pesto repository pfs util creates a new backing directory. To do this
pfs util generates a random owner-id, a random share-id and a user-key which it uses to

64 CHAPTER 8. IMPLEMENTATION

encrypt/decrypt its data. The owner-id and key are written to the pv file, and the share-id is
written to the ps file in the backing directory. Then libpesto initializes the rest of the directory,
creating the META , TMP , DATA and LEAF directories.

When a process at a later time accesses a pfs repository, pfs util initializes it by reading from
the backing directory, getting and setting the owner-id, share-id and keys right, and initializing
libpesto with the proper keys and path to the proper directory.

8.4.2 Writing an object

pesto objects consist of a number of key value pairs, kvps for short. Common for all kvps is that
a kvp can be decrypted separately from the rest of the object. Normally a pesto client only
sets the data, name and type kvps. pfs extends the kvps by creating its own kvp, the revision
kvp. When writing a pesto object pfs sets the revision-kvp to the revision to which the object
belongs. For revision-anchors this is the revision for which the revision-anchor is root for. For
node-revisions and representations it is the revision in which they were created/modified.

pesto supports reading from a file-descriptor or from memory. All pesto objects in pfs are
currently being written to an intermediate file before being added to pesto. Currently all pesto
objects from pfs are written to a file first, and only then added to pesto.

8.4.3 Accessing an object with a GUID

To access a pesto object with a known GUID is simple. pfs util simply does a lookup in
pesto for the GUID. If an object with a matching guid is found, then we have the correct object,
otherwise the object is either not created at all, not written, or hasn’t been transferred to the
host yet.

pesto supports decrypting object to either memory or file. However, currently, pfs only reads
from files. To read a pesto object, pfs util creates a temporary file to which the objects is
decrypted.

8.4.4 Accessing a version of an object

Sometimes it is useful to be able to access a revision of an object, without knowing the exact
guid of that revision. pesto organizes objects in a tree structure, the vtree, with the root in the
first created revision of the object. To find a specific revision of an object libpesto start with
a root-guid, which can be the root of the vtree, or be a root of a subtree of the vtree. libpesto
then iterates through the leafs of the tree, decrypting the revision kvp for the leafs. If there is a
matching revision pfs util decrypts that pesto-object. If the constant, PFS REVISION LAST
is given, pfs util instead searches through all objects in the vtree, recording the GUID of the
object with the highest revision, and then decrypts the object with the highest revision number.

8.4.5 Finding revision roots

What is common for revision-anchors, is that there is one version for each revision. Since
subversion creates a new revision each time a change is made to the repository the number of

8.4. INTERFACING WITH PESTO 65

vault_rev

+revnum = N+1

vault_rev

+revnum = N

lookup_data

+revnum = N+1

lookup_data

+revnum = N

vault_noderev

+created_path = /

+kind: svn_node_kind

+revision = N+1

+id: GUID

+original_id: GUID

+predecessor_id: GUID

+predecessor_count: int

+copyfrom_path: char *

+copyfrom_rev: int

+copyroot_path: char *

+copyroot_rev: int

vault_noderev

+created_path = /

+kind: svn_node_kind

+revision = N

+id: GUID

+original_id: GUID

+predecessor_id: GUID

+predecessor_count: int

+copyfrom_path: char *

+copyfrom_rev: int

+copyroot_path: char *

+copyroot_rev: int

vault_data

+properties: hash

+changes: hash

vault_data

+properties: hash

+changes: hash

= succeeds= contains

= f i les in rev N+1= files in rev N

Revision anchor

root-node

lookup table

Figure 8.8: The lookup-table with revsion anchors and the root node-revision.

66 CHAPTER 8. IMPLEMENTATION

revisions can quickly grow. Initial testing with 1000+ revisions showed that finding a particular
revision root by starting from the root of the revision-root vtree and looking for the particular
revision was very slow. This was due to the fact that each encrypted revision-anchor up to
the desired revision-anchor had to be read, and the revision kvp decrypted. As the size of
the repository grows the linear search performed worse and worse. To mitigate this several
approaches were tried.

Several caching variants were tried. The problem with caching is that the cache has to be pop-
ulated at some time. libpesto allows reading of a nodes vtree from the root or from the leafs.
Typical access patterns for subversion would be access to the HEAD of the repository, ie, the
latest revisions. Which could be easily accommodated by reading the revisions from the last
to the desired revision, caching all intermediate results to speed up access to those revisions
in the future. The problem, is that subversion wants to access the revision-information for re-
visions which are copy-roots, ie revisions in which a copy of a node has been made. If a copy
of a file currently being checked out was made in the 100th revision, and the current revision
is the 10000th, it would mean that 9900 revision-anchors had to be read from disk, and the
revision kvp decrypted. If there are “forks” in the revisions, the number would of course be
even larger.

The final solution was to use a lookup table that contains the revision-number and guid of the
corresponding revision-anchor. This revision lookup-table is stored in pesto each time a revi-
sion (including the 0th) is committed. Each subsequent lookup-table is added to pesto as the
successor of the lookup-table for the previous revision. If a fork happens, two tables will be
written, both containing the same-revisions up to the latest revision, which will have different
guids depending on which table is used1. To check for existence of new revisions, pfs simply
checks for any new leafs of the lookup-table, and reloads its lookup table with the highest
revision-number.

This approach is much faster than iteration through all nodes in the vtree for the revision
anchor, which is a O(N) operation, N being the number of nodes in the tree. Iterating through
only the leafs of the lookup table is a O(L) operation, where L is the number of leaf-nodes in
the vtree. libpesto caches the meta-data for any file that there is more than 7 revisions of. This
makes access to files a O(1) operation, once the guid is known. In other words, to find any
revision O(L*1) file access have to be done.

Note, that there is still some “painters algorithm” left in the code. The lookup-table will grow,
with one entry each time a revision is added, The time reading a lookup-table will therefore
grow with each committed revision. This can be reduced to a minimum, by having two tiers
of lookup-tables, where the upper layer is a meta lookup-table, containing guids for lookup-
tables, each holding 1000 revisions.

8.5 Functionality

Most of the functions defined in the subversion fs-api have been implemented in pfs. However,
some functions were not implemented. The implemented functions provide enough function-
ality for pfs, so that it can be used for almost all operations supported by subversion. Functions

1This is a Good Thing(TM), since the history of what data revisions are based on is clearly visible.

8.5. FUNCTIONALITY 67

for importing a repository and taking backup of a live repository were however not imple-
mented. Backup functions are unnecessary, because pesto can be used to automate the backup
process of a subversion/pfs repository. Pesto can replicate the data to backup storage without
any need to pause commits to the repository. Loading a existing repository is also not fully
supported. subversion tries to set the properties of a revision, after the revision has been com-
mitted when loading a repository dump-file via the svn load command. This is impossible
since the corresponding revision-anchor has already been created and written to pesto (and
possibly already been replicated to other nodes). This functionality is not critical, the commit-
log message and timestamp are written before the revision is committed. A warning is printed
every time the function is called, but svn load is allowed to continue.

68 CHAPTER 8. IMPLEMENTATION

Chapter 9

Testing

In this chapter we give a demonstration of how the pfs filesystem backend for subversion,
implemented in the last two chapter works.

9.1 Demonstration

9.1.1 Demo configuration

The setup used to test pfs consisted of two computers interconnected over the university LAN.
The machines were, hydra.td.org.uit.no and pastaws0.cs.uit.no. The individual configuration for
the hosts are illustrated in the tables 9.1 and 9.2.

pastaws0 hosts the repository and has the modified subversion installed, while hydra runs the
vanilla subversion, installed from the NetBSD package collection (pkgsrc), and acts as a client
accessing the repository on pastaws0. All cpu and disk-intensive processes were terminated
before doing performance tests.

9.1.2 Normal subversion operations

First we create the repository:

Host hydra
CPU Intel Pentium III 700MHz, 256KB L2 cache
Memory 384MB
Disk 2x IDE 7200RPM in Raid-2, mounted with

noasync
Network interface 10Mbit
Operating system NetBSD 3.0

Table 9.1: Configuration of hydra

69

70 CHAPTER 9. TESTING

Host pastaws0
CPU Intel Pentium IV 3.0GHz, 1024KB L2 cache
Memory 1024MB
Disk SATA, mounted with noasync
Network interface 100Mbit
Operating system NetBSD 3.1

Table 9.2: Configuration of pastaws0

oleg@pastaws0(˜)$ svnadmin create repo --fs-type pfs

Then we check-out the repository using the file protocol for local access.

oleg@pastaws0(˜WC/)$ svn co file:///home/oleg/repo
Checked out revision 0.

Note that pfs automatically creates a new pesto node for us. If we want to use an already
existing node, the META , DATA , TMP and LEAF directories in the db directory have to be
replaced with symlinks to the corresponding directories in the backing-store of the node, and
the keys, owner and share ids written to the pv and ps files.

When the repository is created, we add the project foo.

oleg@pastaws0(˜/WC/repo)$ cp -r ../../src/foo .
oleg@pastaws0(˜/WC/repo)$ svn add foo
A foo
A foo/bar.c
A foo/bar.h

And commit it as revision one.

oleg@pastaws0(˜/WC/repo)$ svn ci -m ‘‘Added foo to repository’’
Adding foo
Adding foo/bar.c
Adding foo/bar.h
Transmitting file data ..
Committed revision 1.

Then we modify the file /foo/bar.c , and add a new file, baz.c and commit.

oleg@pastaws0(˜/WC/repo/)$ svn add foo/baz.c
A foo/baz.c
oleg@pastaws0(˜/WC/repo/)$ svn ci -m ‘‘Added baz.c’’
Adding foo/baz.c
Transmitting file data .
Committed revision 2.

9.1. DEMONSTRATION 71

We then check out the repository from hydra, and verify that the directory structure of the WC’s
is the same.

oleg@hydra(˜/WC) svn co svn+ssh://pastaws0.cs.uit.no/home/oleg/repo
A repo/foo
A repo/foo/bar.c
A repo/foo/bar.h
A repo/foo/baz.c
U repo
Checked out revision 2.

oleg@hydra(˜/WC/repo)$ find ./ |grep -v .svn
./
.//foo
.//foo/bar.c
.//foo/bar.h
.//foo/baz.c

oleg@pastaws0(˜/WC/repo)$ find ./ |grep -v .svn
./
.//foo
.//foo/bar.c
.//foo/bar.h
.//foo/baz.c

We create the STABLE directory for stable branches, copy foo to the stable branch, edit foo/bar.c
and commit.

oleg@hydra(˜/WC/repo) svn mkdir STABLE
A STABLE
oleg@hydra(˜/WC/repo) svn copy foo STABLE/foo
A STABLE/foo
oleg@hydra(˜/WC/repo) vi foo/bar.c
svn ci -m ‘‘created stable-branch, before changing bar.c’’
Adding STABLE
Adding STABLE/foo
Sending foo/bar.c
Transmitting file data .
Committed revision 3.

We then check-out the repository on pastaws0, and look at the log history of STABLE/foo/bar.c .

olegj@pastaws0(˜/WC/repo) svn up
U foo/bar.c
A STABLE
A STABLE/foo

72 CHAPTER 9. TESTING

A STABLE/foo/bar.c
A STABLE/foo/bar.h
A STABLE/foo/baz.c
Updated to revision 3.
svn log -v STABLE/foo/bar.c

--
r3 | oleg | 2007-05-25 15:13:51 +0200 (Fri, 25 May 2007) | 1 line
Changed paths:

A /STABLE
A /STABLE/foo (from /foo:2)
M /foo/bar.c

created stable-branch, before changing bar.c
--
r1 | oleg | 2007-05-24 20:47:06 +0200 (Thu, 24 May 2007) | 1 line
Changed paths:

A /foo
M /foo/bar.c
M /foo/bar.h

Added foo to repository
--

9.1.3 Collaboration

We extract the GUID to the data of a file stored in the repository. An external program can then
be used to change the rights governing the file. Note that we ask for the information from the
repository, not the working copy. This is because the GUID-property is not updated, if the files
have been last modified locally.

oleg@pastaws0(˜/)$ svn pg svn:pfs:GUID file:///home/oleg/repo/foo/bar.c
e994af62d0a8f3f40ccce751cba876b6

e994af62d0a8f3f40ccce751cba876b6 is the GUID for foo/bar.c in the last revision.

We can also get the GUID of a previous revision of the file.

oleg@pastaws0(˜/)$ svn pg -r 1 svn:pfs:GUID file:///home/oleg/repo/foo/bar.c
08286d6d36a3ccf30464d3415f45df79

08286d6d36a3ccf30464d3415f45df79 is the GUID for foo/bar.c in revision 1.

9.1. DEMONSTRATION 73

9.1.4 Mirroring

In this test, we create a mirror repository, repo m, and transfer the pesto-files from repo to it.
Since the p2p functionality of pesto is not yet complete, we manually add the files.

Then we check out from repo m and verify that the directory structure of repo equals repo m.

oleg@pastaws0(˜/WC)$ svn co file:///home/helge/repo_m
A repo_m/foo
A repo_m/foo/bar.c
A repo_m/foo/bar.h
A repo_m/foo/baz.c
A repo_m/STABLE
A repo_m/STABLE/foo
A repo_m/STABLE/foo/bar.c
A repo_m/STABLE/foo/bar.h
A repo_m/STABLE/foo/baz.c
U repo_m
Checked out revision 3.

oleg@pastaws0(˜/WC/repo_m)$ find ./ |grep -v svn
./
.//foo
.//foo/bar.c
.//foo/bar.h
.//foo/baz.c
.//STABLE
.//STABLE/foo
.//STABLE/foo/bar.c
.//STABLE/foo/bar.h
.//STABLE/foo/baz.c

oleg@pastaws0(˜/WC/repo)$ find ./ |grep -v svn
./
.//foo
.//foo/bar.c
.//foo/bar.h
.//foo/baz.c
.//STABLE
.//STABLE/foo
.//STABLE/foo/bar.c
.//STABLE/foo/bar.h
.//STABLE/foo/baz.c

9.1.5 Decentralized subversion

Finally we see how the pfs backend performs in a decentralized setting. Note, that no consis-
tency control mechanism has yet been implemented. Meaning that the only test we can do,

74 CHAPTER 9. TESTING

is see that the changes done to one repository are propagated to all repositories. We reuse
the mirror repository from the previous test, but commit changes to it, instead of the main
repository.

We will discuss how consistency control, for a decentralized subversion, based on the pfs back-
end can be implemented in the “Future work” chapter.

oleg@pastaws0(˜/WC/repo_m/foo)$ echo ‘‘bah’’ > qux.dat
oleg@pastaws0(˜/WC/repo_m/foo)$ svn add qux.dat
A qux.dat
oleg@pastaws0(˜/WC/repo_m/foo)$ svn ci -m ‘‘added qux.dat’’
Adding foo/qux.dat
Transmitting file data .
Committed revision 4.

oleg@hydra(˜/WC/repo)$ svn up
A foo/qux.dat
Updated to revision 4.
oleg@hydra(˜/WC/repo/foo)$ find ./
./
.//bar.c
.//bar.h
.//baz.c
.//qux.dat
oleg@hydra(˜/WC/repo/foo)$ cat qux.dat
bah

9.2 Testing

The project has been self-hosting, eg. hosting the sources to subversion, libpesto, pfs and this
document, as of April the 20th 2007. This has hopefully been enough to weed out most of the
bugs from the code. Since the system does what is expected from it, and there are no known
bugs, we are left to evaluate the performance of the system, relatively to the other filesystem
backends. Hoping for a performance improvement in this part would be naive, pfs stores
all of its data encrypted, while the original backends store the data in plaintext. More-so,
pfs was not designed with performance in mind, since it is only a prototype, while the other
backends have a few tricks that give them better performance. What we hope to prove in the
performance tests is that pfs has acceptable performance, ie not an order of magnitude slower
than the other backends, and that the performance hit can be attributed to the extra disk i/o
and cpu-time used to encrypt/decrypt the files.

To test the performance we need some test data. Simply adding a few files to a repository and
measuring the speed of commits and checkouts, and the size of the repository, would not give
any meaningful data, because it would not reflect typical usage of a subversion repository,
and the update history of objects would be lost. This is crucial to how file-data is accessed in
the fsfs and bdb systems, and the size of the repository. Instead we take an already existing
project, stored in a CVS-repository, or to be exact, the pesto cvs-repository. This repository

9.2. TESTING 75

Total CVS Files: 2565
Total CVS Revisions: 20371
Total Unique Tags: 32
Total Unique Branches: 6
CVS Repos Size in KB: 173955
Total SVN Commits: 6779
First Revision Date: Mar 7 1996
Last Revision Date: May 24 2007

Table 9.3: Statistics for the pesto cvs repository, as reported by cvs2svn.

is well suited, since it is a non-trivial project running over many years, storing both text and
binary data. And create a subversion-dumpfile from it, with the cvs2svn utility. The statistics
for the cvs-repository can be seen in the table 9.3.

To test the performance of the system, we create two repositories, pesto pfs and pesto fsfs ,
using the pfs and fsfs backends respectively. The tests are as follows:

Efficiency
The first test is simply a comparison, of the space used by the different repositories.

Import
For the second test, we use the “svnadmin load” command to load the dumpfile into
the repositories, recording the time taken to complete the operation.

Export
For the third test, we export the revisions 100, 1000, 4000 and HEAD from each of the
repositories, recording the time taken. An “export” checks out the complete repository
as it was at that revision.

Checkout
For the forth test, we check out the HEAD revision of the whole repository. This is dif-
ferent from export HEAD, since the meta-information for files has to be read and written
to the working copy.

Commit (subversion source)
For the fifth test, we add the source tree of subversion to trunk/src in the working copy,
and commit. This test is done to see how well the backends can handle a large workload
when committing.

Update (get subversion)
In the sixth test we measure the time taken to retrieve the source tree, added in the pre-
vious test, this tests measures how well the backends can handle a large workload when
fetching updates.

Commit (single file)
In the seventh test we add a single file, foo.txt to trunk/src in the working copy, and
commit. This test shows us how well the backends can handle a small workload, which
is typical for normal use of a version control system.

76 CHAPTER 9. TESTING

fsfs pfs
Storage efficiency 213MB 2.3GB
Import 263 seconds 10653 seconds
Export R100 0 seconds 4 seconds
Export R1000 5 seconds 51 seconds
Export R4000 26 seconds 277 seconds
Export HEAD 39 seconds 373 seconds
Checkout HEAD 73 seconds 441 seconds
Commit (subversion source) 62 seconds 821 seconds
Update (get subversion source) 31 seconds 364 seconds
Commit (single file) 3 seconds 5 seconds
Update (get single file) 4 seconds 14 seconds

Table 9.4: Results from the tests

Update (single file)
In the eight and final test we update the repository, fetching foo.txt from test seven. This
test shows how well the repository can handle an update of a recent working copy.

All tests were performed on pastaws0.

Results

As we can see from table 9.2, pfs performs worse than fsfs in all aspects. It is approximately
10 times as slow as fsfs, still these results are not to bad, considering that no performance
optimizations have been made in pfs. Furthermore, as we can recall fsfs stores every revision
as a file, while pfs stores each file in each revision as three encrypted pesto objects; the node-
object, the data-object, and the properties-object. This means that pfs has to open/close a lot
of files, read the files, decrypt them, and write to temporary files. We can also see that the
difference for simple operations, commit/update a single file change is quite small between
pfs and fsfs, and it is this type of operations that constitute the typical use of a version control
system.

We can try to improve the performance of pfs by using a memory based filesystem for the
transaction in the repository in pfs. Such filesystem implementations exist for both Linux and
NetBSD, respectively tmpfs[15] and mfs[14]. These filesystems are temporary, ie they are not
persistent over a restart, and use the virtual memory/ram of the host instead of the disk, but
otherwise behave as any normal filesystem. Since only access to transaction-objects will be
improved, we just reran the tests that use transactions, ie import and commit.

As we can see in table 9.5, we have improved the time needed to commit changes to the repos-
itory, but importing a repository still takes quite some time. Using mfs does not improve
checkouts/updates, but we believe that the performance can be improved for these functions
to, and we therefore use the gnu-profiler[17] to find the bottlenecks in pfs 1. The profiler works
by adding a hook to the entry/exit-points of each function, and recording the time spent in

1The complete traces from gprof are available on the attached CD.

9.2. TESTING 77

pfs with mfs pfs
Import/load 10145 seconds 10653 seconds
Commit 524 seconds 821 seconds
Commit single file 4 seconds 5 seconds

Table 9.5: Results from using pfs over mfs and writing to disk

commit checkout
read() 61.17% 79.09%
open() 13.69% 2.10%
write() 8.13% 2.58%
decrypt() 0.04% 8.17%
crypt() 1.21% 0%

Table 9.6: The most used functions when committing and checking out from a pfs repository
as shown by gprof.

each function. We perform two tests, in the first test we create an empty pfs repository, and
add the source-tree of subversion to it, and commit. In the second test, we check out the repos-
itory created in the first test. This way we can see which functions are most used to write data
to the repository, and to read data from the repository.

As we can see in table 9.6, read() dominates both commit and checkout, and the cpu over-
head of decrypting/encrypting is not that severe. We can probably speed up the process by
keeping in-memory cache for the node and props object of the most accessed files, and prob-
ably also keep the data object in memory, at least for directories. pesto supports functions for
decrypting directly to memory, so further overhead can be saved there. This way the perfor-
mance of pfs can probably be brought closer to that of fsfs.

78 CHAPTER 9. TESTING

Chapter 10

Discussion

In the previous chapter we demonstrated that the pfs backend provides the same functionality
as the other backends, and that the performance of pfs, although worse than that of fsfs is
within acceptable limits. Performance of pfs can probably be improved beyond what it is now,
by simply caching some of the data, and using more efficient storage formats, both in pfs and
libpesto. Most important is it that the system scales as well as the official filesystem backend
when the repository grows in size. One should also keep in mind, that with a pfs repository it
is easy to set up several mirrors, so that the number of developers per repository goes down,
and as a result, performance increases. In the tests, the size of pfs repository turned out to
be 10 times the size of the fsfs repository, and we expect it to be even more for repositories
that have more file-updates. Delta compression could always be put back into pfs, but we
feel that the flexibility of storing the complete file for each version, outweighs the added costs
for disk-space. Disk space is, at the time of writing, very cheap, and the cost per gigabyte
will probably continue to fall. A 0.5TB SATA disk can now be had for as little as 1000NOK.
What about devices with limited storage space, like laptops? Adding several TB of storage to
developer-laptops does not seem as a reasonable investment for a software company to allow
developers to work from their cottage in the mountains. Thankfully, pfs does not require that.
Typically users of a version-control system will only be interested in the most recent revisions
of a file. pesto could easily be configured to only keep the leafs, and a few levels upstream
of the leaf nodes in the version tree on machines with limited storage, or it could start by
removing the oldest versions of files with many versions, when the device starts running out
of space. Should an operation require these files, pfs can be easily changed to try to retrieve
the files from a backup-server. if an operation should require them.

In the previous chapter we have also demonstrated the new functionality of subversion when
using a pfs backend. We have shown that pfs can be used to automate backups of a subversion
repository. A script that takes backups of a bdb-based repository will have no choice, but
to copy the complete repository, each time a backup is made. With the fsfs repository, it is
possible to be more clever about how the backup is done, by only copying the newest revision,
and revision properties files. Still, it is possible to create a repository with an inconsistent
state. With pfs, only the changed files and directories will be replicated. And they will only be
replicated when they are created. Pesto can also be used to set up more intelligent replication
policies, by giving another pesto-node responsibility for replicating the data. The repository
then sends the updated files to that node, which then distributes it to multiple backup-nodes.

79

80 CHAPTER 10. DISCUSSION

If we give some of the backup-nodes read access to the data, and install subversion/pfs on
those, it is possible to use the nodes as a backup-mirror. Pesto can be configured to prohibit
these nodes from making new versions of the stored files. By doing this we can avoid a situa-
tion where one of the backup mirrors has been compromised, and is used to corrupt the whole
repository. Like in the backup scenario, polling is not necessary, when using pfs, since updates
will be pushed to mirrors automatically. Several pesto-nodes can get the responsibility of dis-
tributing the updates to the mirrors, thereby offloading the main repository. These nodes can
even be organized as a tree, to further improve content distribution.

Files stored in a pfs repository can be accessed by other means than via the subversion client.
By getting the svn:pfs:GUID property of a file, it is as simple as giving another pesto-node
read access to the file with that GUID. The file will then be automatically sent to that node, and
its owner can read the file.

Finally, we have shown that pfs can also be used in a decentralized setting, with one exception,
updates that are made to an offline node, can “disappear”, if other updates are made at the
same time. This is clearly not good enough for use in a busy environment with many offline
users. We hope, that in the future, some sort of consistency control can be added to pfs, which
prevents this. However, a decentralized setting can be useful for a private repository used
by a single developer. The user could have one repository on his/hers main workstation,
one on hers/his laptop, and one at home, and storage/distribution nodes on the company’s
sever(s). The user can then access the repository from his/hers laptop, or at home, although
the workstation on which the latest changes were made, has gone offline. As long as a chain
of machines that can download and store the files can be constructed, so that at least two
machines at a time are online long enough to transfer the changes, the user gets the updates.
The user is assumed to know, that he/she changed the some file previously, and not edit it,
unless it is updated to the newest revision. However, should an accident happen, and the user
overwrites a file, or several files, it is a simple matter of getting the GUID of the current version
of the file, and use a pesto-client to view the different versions of the file, and fetch the correct
version, which will have the revision key-value-pair set to the previous revision, and get the
file outside of pesto, and merge the changes back into the repository.

Chapter 11

Future work

11.1 Performance improvements

The performance of pfs can be improved. Currently each time an immutable subversion node-
revision is read, it is first read from pesto storage, decrypted, and written to a file, and then
desereialized. Mutable node-revisions, are not read from pesto, but have to be read from the
transaction-directory and parsed. This process is done each time the node is accessed. Like-
wise, the revision anchor has to be read, decrypted and deserialized, and the transaction an-
chor has to be deserialized.

This creates a severe io overhead, results from gprof [17], shown in table 9.6, show that most of
the time is spent read()’ing from disk, both for commit and checkout. This hurts performance,
and should be avoided.

11.1.1 Caching

To solve this problem, we suggest that a multilevel cache is implemented.

The lowest cache-level is the pesto-cache, which caches pesto-files in plain-text. Each time a
pesto-file is accessed with a GUID, the cache checks if a decrypted version of the file exists,
and returns it, if it finds one. If not, it fetches the file from pesto, decrypts it, stores it in the
cache, and returns it. This cache saves io and cpu-time, since it is unnecessary to read files
from pesto and decrypt them. The pesto-cache could be implemented as part of libpesto, or be
a part of pfs, as a separate cache-module, and should store files to disk.

The middle cache-level is the noderev-cache, which caches subversion node-revisions, that have
already been deserialized in memory, as vault noderev objects. If the accessed node-revision
is not present, it is fetched from the pesto-cache, if it is part of a revision, ie immutable, and
stored in pesto, or it should be read from the transaction-directory, if it is a transaction node.
When a transaction-node is updated, it should be marked as dirty/flushed from the cache. The
noderev-cache should be implemented as part of the pfs vault module.

The upper cache-level, the directory-cache, caches directory data. When the directory-contents
for a given path is requested from pfs, the directory-cache should be checked first, and re-
turn the cached directory contents, or fetch the directory-contents from either the transaction-
directory, or the pesto-cache, depending on whether the node-revision is committed, or in a

81

82 CHAPTER 11. FUTURE WORK

transaction. When the directory-contents of a node-revision in a transaction are updated, it can
either be flushed from the cache, or the cache contents could be updated too. The directory-
cache should store its data in memory, and be implemented as part of the file-layer of pfs.

11.1.2 Ramfs

Another performance hack, that can be used in conjunction, or as replacement for caching, is to
write transaction-data, and temp-files to a ram-based filesystem. Both linux and NetBSD sup-
port ram-based filesystems, tmpfs[15] and mfs[14] respectively. As we have seen in the “testing”
chapter, mfs does improve the performance of pfs. What must be kept in mind though, is that
the size of all ongoing transactions is limited by the virtual-memory available at the server.

11.2 User-friendly features

pfs was implemented in a limited timeframe, and therefore lacks some “polish” to be usable
by non-developers.

11.2.1 Error handling

The standard-way for subversion to present users with error-messages, is to create a string
describing the error, and return it to the user. This depends on how the users accesses the
repository, ie, if svnserve encounters an error, it returns an error over the network to the
client, or it the apache web-dav module encounters the error, the error-message is given to the
user by the web-server.

If an error occurs in pfs, an assert condition is triggered, and a brief message describing
which line the error occurred on is printed to standard out, and the program dumps core, and
terminates. This is more useful for developers, since the exact location of the error, and the
condition under which the error occurred, including the stack-trace and core of the program is
preserved. However, this is not the best way to present users with errors, firstly because errors
wont be transmitted when the repository is accessed remotely, which would be the common-
case for normal use, and secondly because non-harmful errors, ie user-errors, like accessing a
non-existent revision will be viewed as a critical-program failure, and not as a user mistake.

Errors should be classified into groups, and propper error-messages should be returned. A
compile-time switch should be added to enable asserts instead of error-messages for debug-
ging.

11.2.2 Installation

The current way of building subversion/pfs is a hack to subversions original build-scripts. A
way of enabling/disabling libpesto and specifying the location of libpesto from the configura-
tion script has to be added. Installing subversion/pfs is at this time quite complicated, as can
be gathered from the installation guide (Appendix B).

11.3. DISTRIBUTED/DECENTRALIZED SUBVERSION 83

11.2.3 Repository creation

When the repository is created, with svnadmin create, it automatically creates a new backing-
store for pesto, and initializes a new node. This is not always what the user wants, and to
change the type of repository, the user has to manually create symlinks to his/hers pesto
backing-store, setup keys, node-ids and write the guid of the root-node. All this should be
controllable with parameters to svnadmin create. Unfortunately, subversion does not have
any mechanisms for passing parameters to the creation routine of the filesystem, so mecha-
nisms for this have to be added. Alternatively an interactive script could be created, to auto-
mate the repository creation process.

11.2.4 Policy interface

Currently, to change a policy of a file in pfs the user has to get the svn:pfs:GUID property of
the file from the repository and use an external tool to change the policy. Instead, properties
could be set on files, and their policies changed during the commit. But before doing that, we
have to consider a few pros and cons. This approach is more user-friendly for the user, since
policies are handled transparently. However this means that there is no single interface for
changing policies for files stored in pesto. It also means that the user gets no feedback on the
policy change before the file is committed.

11.2.5 Revision dependencies

When new pesto objects are created, they are usually distributed in a first in, first out, order.
Connection problems, or other transmission errors could disturb this order, and create a situa-
tion where a node gets objects out of order.

pfs does not see a revision, before its revision-anchor is accessible. During a commit, pfs writes
the revision-anchor last, so that it has the most chance of being received last. However, this
is not always the case. If a client tries to check out the revision, while some of the files in the
revision have not yet been received by the repository, the checkout will fail, missing one or
more files.

To solve this, each revision-anchor should carry with it a list of GUIDs that were created in
that revision. Before checking out a revision, pfs should verify that all files needed by a revi-
sion, and implicitly all files needed by previous revisions, are present. If not, it should give a
warning to the user that the operation might fail. The user could then either wait, for the prob-
lem to resolve itself, or if impatient, use the --force switch to try to complete the operation,
ignoring the missing files.

11.3 Distributed/decentralized subversion

Last, but not least, the distributed/decentralized subversion is still far from complete. Cur-
rently a pfs repository can be used for mirroring, with a single commit repository without
problems. Having multiple repositories that allow commits, is however more problematic.
Firstly, subversion locks are only supported per repository, so a locked file/directory, only

84 CHAPTER 11. FUTURE WORK

grants exclusive access to that file/directory for that repository. Secondly, all sorts of consis-
tency problems creep up with multiple commits, since updates committed to one of the repos-
itories, are not necessarily distributed to the other repositories before a commit at the other
repositories. While this most certainly can be useful to a developer committing to his/hers lap-
top while traveling, and then syncing the repository with a private repository at work/home,
this is not very useful for multiple developers.

To allow multiple developers to use a decentralized subversion, some sort of consistency con-
trol has to be implemented. Since we do not want to limit ourselves to nodes that are always
online, we have to assume that nodes can be offline for prolonged time. Ie, we cannot simply
say that all nodes have to be online for a commit to take place. We also state that all of the
repositories/nodes are equal, ie no single master repository/node.

11.3.1 Consistency control

What happens during disconnected operations, is that a node is unaware of any commits done
to the repository. This is not a problem for checkouts done from the disconnected node. The
users that have checked out data from it, will simply lag behind, until they check out from an
updated node. However users should still be allowed to commit to the disconnected node.
Suppose that two pesto nodes, A and B are used to access the same subversion repository. The
users a and b are using nodes A and B respectively. Suppose that both nodes are updated to
revision R. Then they become disconnected. User a commits, and A gets to the revision RA. b
commits and B gets to the revision RB . The revision R has now been forked.

Currently pfs chooses one of the committed revisions to be the official revision when A and B
become connected again, discarding the changes done in the other. To avoid this, updates done
to the offline repository should be merged with the updates done to the connected repositories.

To solve this problem, two approaches could be taken. One could only allow one user/node
to commit to the repository at a time (pessimistic consistency control), using some sort of dis-
tributed locking mechanism. The problem with this approach, is that it would be impossible
to commit to an offline/disconnected node. Distributed revision control systems are not used
to offload the central repository because of many commits. A scenario that big would involve
so many developers, that project management would be of greater concern, than revision con-
trol. Instead distributed revision control is used to allow developers to work with the code
when they are traveling or otherwise offline, or have bad connectivity. Pessimistic consistency
control, is therefor not the way to go. An optimistic consistency control mechanism should be
used instead. Users should be allowed to commit to the repository, not knowing for sure if the
commit can cause inconsistencies or not. When an inconsistency happens, ie two users commit
at the same time, and create two different revision anchors for the same revision, it should be
resolved automatically, if possible. It is possible to merge the namespace [5] more or less au-
tomatically, and subversion can merge files automatically. This can be used to create merged
files in the users working directory when the user checks out a “forked” revision. Subversion
should also forbid the user to commit before the conflicts have been resolved manually.

11.3. DISTRIBUTED/DECENTRALIZED SUBVERSION 85

11.3.2 Branching à-la git

An alternative to consistency control, is to let each node have its own repository, like it is done
in GIT [7] and DARCS [10]. A pesto-node can then be used by a group of developers, or even as
the private repository of a single developer. The updates created at other nodes, can be shown
in a separate directory, “/others” in the root of the repository. Users can then create their own
branches, which will show up under their name in the “/others” directory. Pesto can be used
to specify which nodes to send and receive updates from, to avoid having to many directories
in the “/others” directory. Subversion supports merging of data from two directories in the
same repository. Developers could therefore merge branches from the “/others” directory into
their own branch.

To implement this some changes have to be made to the filesystem backend. Instead of choos-
ing one of the revision-anchors at random, when there are several revision-anchors for a re-
vision, subversion can instead look at the creator of the revision-anchor. If the creator is the
local node, then the root of that revision, is used as “/” . If not, it is added under the “/oth-
ers” directory. Since the backing pesto-files for the subversion-nodes that are the same across
“branches” are the same, only the changed files have to be exchanged.

The user can then use his/hers personal repository when disconnected, and when connectivity
is again reestablished, the users branch is updated on all other connected repositories automat-
ically. Some sort of message could probably also be added, to notify interested parties that new
updates are available.

86 CHAPTER 11. FUTURE WORK

Chapter 12

Conclusion

We started this project with the task of creating a version-control system using pesto. We
specified the requirements for such a system in the “Requirements” chapter. Then we modified
the already existing storage backend for subversion, fsfs to create a new backend, pfs, which
we designed and implemented in the “Design” and “Implementation” chapters. In the “Testing”
chapter we evaluated the functionality and performance of the system, and concluded that the
system had all necessary functionality, and that the performance was acceptable, but could be
improved by utilizing caching and more efficient storage formats. In the “Future work” chapter
we outline what should be done next with pfs, and how we belive it should be implemented.

To summarize; we have shown that it is indeed feasible to use libpesto as the basis for a
version-control system. We have shown that, once the peer-to-peer functionality of pesto is
fully in place, the pfs backend can be used to create a decentralized version-control system.

We also been able to test how libpesto performs as the backend for a real-world application.
Originally files in pesto were only meant to have a few successors. The pfs backend stores each
file-update and revision as the successor of the previous file-update or revision. This means
that the number of successors to a file/revision can quickly grow to thousands. This uncovered
some serious performance bottlenecks and bugs in libpesto which have now been fixed.

87

88 CHAPTER 12. CONCLUSION

Bibliography

[1] Disconnected Operation In The Pesto Storage System
Doctorate dissertation
Feike W. Dillema

[2] The Taste of Pesto
Feike W. Dillema, Tage Stabel-Kulø

[3] Version Control with Subversion
C. Michael Pilato, Ben Collins-Sussman, Brian W. Fitzpatrick
Publisher: O’Reilly
ISBN 0-596-00448-6
http://svnbook.red-bean.com

[4] Pesto Flavoured Security
Feike W. Dillema, Tage Stabel-Kulø

[5] Conflict Resolution for User-Selected Names in Collaborative Systems
Simone Lupetti, Feike W. Dillema and Tage Stabell-Kulø
The 11th International Conference on CSCW in Design
April 26 -28, 2007, Melbourne, Australia

[6] Consistency in Partitioned Networks: a survey
Susan B. Davidson, Hector Garcia-Molina, Dale Skeen
Published in:
Computing Surveys, Vol. 13, No. 3, September 1986

[7] Collaborating With Git
John Loeliger
Linux Magazine June 2006
http://www.jdl.com/papers/Collaborating Using Git.pdf

[8] Pragmatic Version Control Using CVS
Dave Thomas, Andy Hunt
Publisher: The Pragmatic Programmers
ISBN 0-974-51400-4

89

http://svnbook.red-bean.com
http://www.jdl.com/papers/Collaborating_Using_Git.pdf

90 BIBLIOGRAPHY

[9] RCS — System for Version Control
Walter F. Tichy
Purdue University
Department of Computer Sciences
West Lafayette, Indiana 47907
http://agave.garden.org/ aaronh/rcs/tichy1985rcs/html/index.html

[10] darcs: distributed source code management system
Project homepage: http://www.darc.net

[11] The SVK version control system
http://svk.bestpractical.com/view/HomePage

[12] SVK visual guide
Russel Brown
http://pickscrape.woobling.org/svk-visual-guide.pdf

[13] Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference
Berkeley DB
Michael A. Olson, Keith Bostic, and Margo Seltzer

[14] A Pageable Memory Based Filesystem
Marshall Kirk McKusick, Michael J. Karels, Keith Bostic
http://fmg-www.cs.ucla.edu/classes/239 2.fall98/papers/pageable.html

[15] tmpfs: A Virtual Memory Filesystem
Peter Snyder
http://www.solarisinternals.com/si/reading/tmpfs.pdf

[16] The Pesto Library
Feike W. Dillema
Api-specifications for pesto, can be found on the attached CD.

[17] gprof, the GNU profiler
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html

[18] The NetBSD project
Project homepage: http://www.netbsd.org

[19] Unix inodes
http://www.bellevuelinux.org/inode.html

http://agave.garden.org/~aaronh/rcs/tichy1985rcs/html/index.html
http://www.darcs.net
http://svk.bestpractical.com/view/HomePage
http://pickscrape.woobling.org/svk-visual-guide.pdf
http://fmg-www.cs.ucla.edu/classes/239_2.fall98/papers/pageable.html
http://www.solarisinternals.com/si/reading/tmpfs.pdf
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html
http://www.netbsd.org
http://www.bellevuelinux.org/inode.html

Appendix A

The CDROM

The attached CDROM contains all material related to the work. This includes:

• The thesis itself in PostScript and PDF formats.

• The api-specification for pesto can be found in the pesto_api directory.

• The modified source-code for subversion, in the src directory.

• The changes to subversion in the changes directory. This is the source to the libsvn fs pfs
module itself, and the changes done to the build-scripts and other source-files to include
it in subversion.

• The required libraries to compile and run the project are in the required directory. The
directory contains:

– libpesto.

– modified c-web package to compile libpesto.

– The apache protability runtime, version 1.28.

– Subversion, version 1.4.2

– Apr-utilities, needed to compile apr.

1

2 APPENDIX A. THE CDROM

Appendix B

Installation instructions

We only provide installation instructions for Linux and NetBSD.

B.1 Building libpesto

Before subversion can be installed, libpesto has to be built. libpesto is written using literate
programming, and literate-programming tools are needed to build it. libpesto uses a modified
version of cweb, which is included in the required/cwebx directory.

B.1.1 Building cwebx

cwebx can be built by simply running bsd or gnu make in the cwebx directory. Only ctangle
is required to build libpesto, and any errors building cweave can be ignored.

B.1.2 Building libpesto

To build libpesto the makefile in the libpesto directory has to be changed, so that the CTANGLE
parameter is set to the correct path to ctangle. Then it is as simple as typing make to build
libpesto. Some of the test programs can fail to compile, but it is enough to verify that libpesto.a
has been created.

B.2 Building subversion

B.2.1 Required dependencies

To install subversion the Apache Portability Runtime (APR) has to be installed, we recommend
that it is installed from the package management system of the operating system, if not it
can be downloaded from http://apr.apache.org. APR is dependent on expat, which can be
downloaded from http://sf.net/projects/expat.

3

http:///apr.apache.org
http://sf.net/projects/expat

4 APPENDIX B. INSTALLATION INSTRUCTIONS

B.2.2 Building subversion with pfs

After all of subversions dependencies have been installed, we can install subversion. First we
edit “build.conf” file, located in the root-directory of the modified subversion sources. Look
for a section like this:

OLEG
[lpesto]
type = lib
external-lib = -L/full/path/to/libpesto -lpesto

And change external-lib to the full path where libpesto sources and the libpesto.a library
are located.

Then we edit “Makefile.in” in the root-directory of the modified subversion sources. Look for
a section like this:

OLEG
INCLUDES = -I$(top_srcdir)/subversion/include -I$(top_builddir)/subversion\

-I../path/to/libpesto\
@SVN_NEON_INCLUDES@ \
@SVN_APR_INCLUDES@ @SVN_APRUTIL_INCLUDES@ @SVN_SERF_INCLUDES@

And change ../path/to/libpesto to the path to libpesto, a full or relative path can be
used here.

Then the following commands should be run to install subversion from the subversion-source
directory.

./autogen.sh

./configure
make
make install

Optionally, the --prefix=INSTALL DIR argument can be given to the configure script, to
specify where subversion should be installed.

Appendix C

Usage

To get proper help on subversion, pleas use the “help” command for each subversion utility,
and read the subversion-book[3].

C.1 Creating a repository

C.1.1 Creating a repository

To create a subversion/pfs repository with the name “NAME” this command should be used:

svnadmin create --fs-type pfs NAME

C.1.2 Creating a mirror repository

To create a mirror repository for an existing repository with the pesto-backing store in /pesto
do the following: first create a new subversion/pfs repository, repo :

svnadmin create --fs-type pfs repo

Then link FAMS , LEAF , TMP , DATA and META directories to the directories in the backing
store.

(˜)$ cd repo/db
(˜/repo/db)$ rm -rf DATA FAMS LEAF META TMP
(˜/repo/db)$ ln -s ˜/pesto/{DATA,FAMS,LEAF,META,TMP} .

Setup the ownerid, ownerkey and shareid correctly:

(˜/repo/db)$ echo ($SHAREID) > ps
(˜/repo/db)$ echo ($OWNERID, $OWNERKEY) > pv

And write the correct identifier of the repository to the uuid and root files:

(˜/repo/db)$ echo $ROOTID > uuid
(˜/repo/db)$ echo ($ROOTID) > root

5

6 APPENDIX C. USAGE

C.2 Normal use

C.2.1 Checking out a repository

Checking out a subversion/pfs repository is no different from checking out a normal subver-
sion repository. We show an example using the “file” an “svn+ssh” protocols.

Using the file protocol:

(˜)$ svn checkout file:///path/to/repo

Using the svn+sah protocol:

(˜)$ svn checkout svn+ssh://host.holding.the.repo/full/path/to/repo

C.2.2 Updating a repository

Updating a subversion/pfs repository is no different from updating a standard subversion
repository:

(˜/repo)$ svn update

C.2.3 Committing changes to the repository

Again, committing changes to a pfs repository is no different from committing to a standard
repository.

(˜/repo)$ svn commit

C.2.4 Getting the log history of a file

Like in normal subversion, we can get the log history for a file/directory.

To get log of a directory:

(˜/repo/dir)$ svn log .

To get log of a file:

(˜/repo/dir)$ svn log file.dat

C.2.5 Get changes between two revisions for a file

We can get the delta between a revision, and the current working copy.

(˜/repo/dir)$ svn diff -r 2 file.dat

Or we can get the delta between two revisions of a file in the repository:

(˜)$ svn diff -r 1:2 file:///path/to/repo/dir/file.dat

C.3. GET THE GUID OF A FILE STORED IN AN PFS REPOSITORY 7

C.3 Get the GUID of a file stored in an pfs repository

To get the file of a file in a pfs repository we have to get the svn:pfs:GUID property. Note
that we have to get the property directly from the repository, since it might not be up-to-date
in the working copy.

(˜)$ svn pg svn:pfs:GUID file:///path/to/repo/dir/file.dat

We can even get the guid for a particular revision of the file by giving the revision switch (-r):

(˜)$ svn -r 1 pg svn:pfs:GUID file:///path/to/repo/dir/file.dat

	Introduction
	Background
	Problem statement
	Elaboration

	Methodology
	Outline

	Version control software
	Introduction
	Delta compression
	Storage model
	Terminology

	sccs and rcs
	cvs
	Subversion
	Darcs
	git

	Pesto
	Usage scenarios for pesto
	Architecture
	Files
	Policies
	Trusted bases
	p2p

	Subversion
	Features
	Layers
	Modules

	Requirements
	Usage scenarios
	Subversion server
	Replication
	Collaboration
	Policies
	Mirroring
	Decentralized source control
	Concurrency control

	Functional requirements
	commit
	checkout
	update
	propset
	propget
	add
	delete
	move
	copy
	lock
	diff
	log

	Non-functional requirements
	Target platform
	Alternatives

	The fsfs backend
	Nodes and node-revisions
	Skip-deltas and data storage
	Transactions
	Revisions
	fsfs layers
	The file-layer
	The dag-layer
	The tree-layer

	Design
	Nodes
	Noderevision meta-object
	node-properties
	node-data

	Revisions
	Transactions
	pesto abstraction
	Committing a transaction
	Checking out a revision

	Implementation
	Identifiers
	pfs_vault
	Transactions
	Revisions
	Node-revisions
	Representations
	Caching

	Working with transactions
	Locking
	Committing a transaction
	Aborting a transaction

	Interfacing with pesto
	Initializing the pesto backing directory
	Writing an object
	Accessing an object with a GUID
	Accessing a version of an object
	Finding revision roots

	Functionality

	Testing
	Demonstration
	Demo configuration
	Normal subversion operations
	Collaboration
	Mirroring
	Decentralized subversion

	Testing

	Discussion
	Future work
	Performance improvements
	Caching
	Ramfs

	User-friendly features
	Error handling
	Installation
	Repository creation
	Policy interface
	Revision dependencies

	Distributed/decentralized subversion
	Consistency control
	Branching à-la git

	Conclusion
	The CDROM
	Installation instructions
	Building libpesto
	Building cwebx
	Building libpesto

	Building subversion
	Required dependencies
	Building subversion with pfs

	Usage
	Creating a repository
	Creating a repository
	Creating a mirror repository

	Normal use
	Checking out a repository
	Updating a repository
	Committing changes to the repository
	Getting the log history of a file
	Get changes between two revisions for a file

	Get the GUID of a file stored in an pfs repository

