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Abstract

The validity of the linearized Boltzmann equation in describing the behaviour
of rarefied gas flows that deviate only slightly from a uniform equilibrium state
is discussed on the basis of several numerical examples. Various examples of the
above situation are analyzed numerically by the full nonlinear BKW equation and
also by its linearized version, with emphasis on the behaviour for small Knudsen
numbers, and the solutions of these equations are compared. When the Knudsen
number is comparable to or smaller than the degree of the deviation from the
uniform equilibrium state, the solution of the linearized equation generally differs
decisively from that of the nonlinear equation, however small the degree of the
deviation may be. Situations where the nonlinear effect degenerates are also
noted.

1. Introduction

The linearized Boltzmann equation, where the second and higher-order terms of the
perturbation from a uniform equilibrium solution are neglected, is widely used in analyz-
ing rarefied gas flow problems where the state of the gas deviates slightly from a uniform
equilibrium state at rest. The situation is usually encountered in gas dynamic problems of
a small system such as in aerosol science and micromachine engineering, where the Mach
number of the flow and the temperature variation, compared with the average temperature,
on the boundaries, which are close to each other, are both small. It is, however, known that
in some situations the linearized equation does not give a correct answer, however small the
deviation from a uniform equilibrium state may be ([Cercignani, 1968]; [Sone, 1978]; [On-
ishi & Sone, 1983]). They are related to infinite domain problems (e.g., Stokes paradox [C,
1968)). In the analysis of the asymptotic behaviour of steady flows of a rarefied gas for small
Knudsen numbers, Sone ([Sone, 1971,1984,1987,1991a,b]; [Sone & Aoki, 1987]) discussed
the applicability of the linearized Boltzmann equation and pointed out that the nonlinear
effect in the Boltzmann equation is, generally, not negligible for any small deviation from a
uniform equilibrium state if the Knudsen number of the system is comparable to or smaller
than the degree of the deviation. There are, of course, various situations where the effect
of nonlinearity degenerates. The above infinite domain examples are also understood by
the general statement if the situation is properly interpreted. Recently Aoki and Masukawa
[1994] considered the two surface problem of evaporation and condensation and showed a
decisive difference between the numerical solutions of the linear and nonhnear equations for
very small temperature difference of the two boundaries.

The example, however, is a special one, where the flow velocity is uniform in the limit
of small difference of the surface temperatures. For more general understanding, in the
present paper, we consider several different situations whose deviation from a uniform equi-
librium state is small and investigate the applicability of the linearized Boltzmann equation
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numerically. That is, we analyze the problem numerically by two ways, i.e., by the origi-
nal nonlinear equation and by its linearized version, compare the results, and confirm its
applicability with respect to the parameters: the Knudsen number (Kn) and the parameter
that represents the deviation from a uniform equilibrium state (say, nonuniformity param-
eter ¢). For simplicity of analysis, we adopt the BKW (or BGK) equation ([Bhatnagar, et
al., 1954]; [Welander, 1954]; [Kogan, 1958]) as the basic equation. For the present purpose,
this is legitimate from comparison of various results of the BKW equation and the standard
Boltzmann equation. In the analytical discussion of the applicability of the linearized Boltz-
mann equation, which is done in connection with the asymptotic analysis of the Boltzmann
system for small Knudsen numbers, the BKW equation shows the same behaviour as the
standard Boltzmann equation (e.g., [S & A, 1987]; [S, 1987]; [S, 1991a,b]). The results of the
linearized BKW equation are consistent with recent accurate numerical computations by the
linearized Boltzmann equation for hard-sphere molecules (e.g., [Sone et al., 1990]; [Ohwada
et al., 1989]; [S, 1991b]; [Takata et al., 1993]). On the boundary the Maxwell type condition
or the conventional boundary condition of evaporation and condensation (e.g., [Cercignani,
1987]; [S, 1987]) is adopted as the kinetic boundary condition.

2. Basic equation and notations

Let po and T be the pressure and the temperature of the uniform equilibrium state at
rest. When we consider problems with evaporation or condensation on a boundary, p, is
the saturated gas pressure at temperature 7. The density po and the velocity distribution
function f; of the equilibrium state are given by

(1) po=po/ RTy,
(2) f0=(?7r—}§7210—53/—2 exp(—€7 /2RT;),

where R is the specific gas constant and & is the molecular velocity. We are interested in
the behaviour of the gas for small deviations from this uniform state.

Let L be the characteristic length of the system and let £, be the mean free path of
the equilibrium state, which is the ratio of the mean molecular speed (8RTp/7)'/? and the
mean collision frequency. In the present paper, we use the following nondimensional variables
based on the above basic variables of the system: Kn = ¢y/L; z; L is the Cartesian coordinate
system of the physical space; (r, 6, z3) is the cylindrical coordinate system in the z; space
with the common z3 axis; (2RTp)Y/2¢; is the molecular velocity; ¢ = (¢})Y?; fo(1 + @) is
the velocity distribution function; po(1 4+ w) is the density of the gas; (2RT,)*/?y; is the
flow velocity; To(1 + 7) is the temperature; po(1 + P) is the pressure; n; is the unit normal
vector to the boundary, pointed to the gas; (2RT;)"/?u,; is the velocity of the boundary
with u,;n; = 0 (this is required in steady flow problems); To(1 + 7,,) is the temperature of
the boundary; po(1 + 04,) and po(1 + P,,) are, respectively, the saturation gas density and
pressure at temperature Ty(1 + 7,), determined by the Clausius-Clapeyron relation [Reif,
1965]; and E(¢) = 73/?exp(—¢?). Thus, fo = po(2RTo)~*2E(¢). The r and § components
of u; and u,,; are denoted by the subscripts r and 8, respectively (e.g., u,, Uyp)-

In these variables, the nondimensional BKW equation for a steady flow is written as

9 2
(3) Cia_m,- = \/7?Kn(1+w)(¢e_¢)’
_ 14w (¢ — w)?

W R
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where

(5a) W= /¢E d(y d(a d(s,

(5b) (14w = [ GEG dGd,

(5¢) SO +w)r= [(( =38 dGdés — (1+ W),

(5d) P=w+rT1+wr.

The Maxwell type boundary condition is written as follows:

(6) (23,, C!) (1 - a)¢($t1 Ct 2(]”]"3) + a¢e(w = Oy Uy = Uy, T = Tw);
(Cini > O))

1
(7) Ow = z1—+7'—w)1/_2 (1 - 2ﬁ/{,n,~<0 Gni¢E d dGe dCs) -1,

where « (0 < « < 1) is the accommodation coefficient of the boundary. The condition is
called diffuse reflection when o = 1, and specular reflection when o = 0. The conventional
condition of evaporation and condensation on an interface between a gas and its condensed
phase, which is also called a complete condensation condition, is as follows:

(8) ¢(-’Ei,Ci) = ¢e(w = Owsy Uy = Uy, T = Tw), (C{n,‘ > 0)

In the following analysis, P,, is preferred to 0, as a parameter. It is related to o,, and 7,
as
(9) Pw: =Ows + Tw + OuwsTw-

Let ¢E, the deviation from the uniform state given by Eq. (1), be O(¢). Needless to
say, Uy and 7, should be O(e) for such ¢FE to be the solution. Then, the macroscopic
variables w, u;, and 7 are also O(¢). Neglecting the second and higher-order terms of O(e)
in Eqs. (3)-(8), we obtain the linearized equations. The linearized BKW equation is:

(10) G = gl 2w+ (= Dr =]
where

(i1a) w= [ $BdG d6 dg,

(11b) w= [GopdGdGds,

(119) Sr= [ = DB G d des
(lld) P=uw + 7.

The linearized Maxwell type condition is:

(12) #(2i, G) = (1 — &) (x4, G — 2¢nym) + ofow + 2( uw; + (C — %)Tw], (Gn; > 0),
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1
(13) G = —= Ty — 27r1/2/ in ¢ B dCy déy ds.
2 (jn,' 0
The linearized complete condensation condition is:
3
(14) ¢($i) Cz) = Oys + 2<Juw] + (<-2 - 5)7-10: (Cini > 0)

The linearized form of Eq. (9) is
(15) Pws = Uws + Tw.

3. Plane Couette flow with evaporation or condensation on the boundaries

In this section we consider the steady behaviour of a gas in the region 0 < z, < 1
bounded by its two parallel plane condensed phases with different temperatures, one of
which is moving in its own plane. Let u,; =0, , = 0, and P,, = 0 at z; = 0, and let
Uyi = (£1,0,0), 7, = €3, and P,,, = £3 at z, = 1. We numerically solve the nonlinear system,
Egs. (3)- (Sd) subject to boundary condition (8) at z; = 0 and z; = 1, and the linear system,
Egs. (10)-(11d) with Eq. (14) at z; = 0 and z; = 1 and compare the solutions of the two
systems. Our interest is the behaviour of a slightly nonuniform state, i.e., for small values
of €1, €3, and €3. The method of numerical computation is a straightforward application of
that in [Aoki, et al., 1991]. Thus, it is not repeated here, and only the results of computation
are given.

The profiles of w, 7, u;, and u, of the two systems, linear and nonlinear systems, with
e; = 0.02, e, = 0.001, and e3 = 0.02 are shown in Fig. 1 for three Knudsen numbers
(Kn = 0.002, 0.02, and 0.2). Let ¢ = max|e,,|, then € is a measure of deviation from our
reference uniform equilibrium state at rest. This notation will also be used in the following
examples. When Kn = 0.2, where Kn is fairly larger than (= 0.02), the profiles of the two
systems in Fig. 1 are very close to each other, and the difference is bounded by £2. Thus,
the linear solution is well qualified as the first order approximation of the nonlinear system.
When Kn = 0.02, where Kn is comparable to ¢, the difference of the two solutions becomes
appreciable and it is fairly larger than ? [Fig. 1 (c)]. When Kn = 0.002, where Kn is fairly
smaller than &, the two solutions are markedly different, and the difference is obviously
larger than 2 by far. The linear solution cannot be considered to be an approximation of
the nonlinear solution. Incidentally, the negative temperature-gradient phenomenon ([Pao,
1971]; [Sone & Onishi, 1978]; [Aok1 & Cercignani, 1983]; [Hermans & Beenakker, 1986];
[Sone et al., 1991]; [A & M, 1994]) is seen in these examples [Fig. 1 (b)].

When there is neither evaporation nor condensation on the boundaries at z; = 0 and
Ty = 1, where u; = 0, the situation is different. Figure 2 shows the profiles of w, 7, and
u; in the case of diffuse reflection, Eqgs. (6) and (7) or Egs. (12) and (13) with o = 1, with
€1 = g = 0.02, ie., u,, =0 and , = 0 at z, = 0 and u,,; = (0.02,0,0) and 7, = 0.02
at 2 = 1. As in any closed domain problem without evaporation and condensation on the
boundary, the solution is not uniquely determined by the diffuse reflection condition; Another
condition relating to the mass of the gas in the domain is required for the uniqueness. Here
we have chosen the solution with o, = 0 at z; = 0. For three cases of Knudsen numbers,
i.e., Kn = 0.002, 0.02, and 0.2, the deviation of the solution of the linearized equation from
that of the nonlmea.r equatlon is uniformly very small with respect to the Knudsen number,
and the former solution is a good approximation to the latter solution.
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4. Cylindrical Couette flow with evaporation or condensation on the
boundaries

Here we consider the behaviour of a gas in the region 1 < r < 2 bounded by its two
coaxial circular cylindrical condensed phases with different temperatures, the outer one of
which is rotating with a constant angular velocity around its axis. Let u,, =0, 7, = 0, and
P,,=0at r =1, and let u,g = €1, Uy, = U3 =0, 7, = €9, and P,, = &5 at r = 2. We
numerically solve the nonlinear system, Egs. (3)-(5d) with Eq. (8) at r = 1 and r = 2, and
the linear system, Eqs. (10)—(11d) with Eq. (14) at » = 1 and r = 2 for various sets of the
parameters Kn, €1, €5, and €3. The method of computation is a straightforward application
of that in [Sugimoto & Sone, 1992], and only the results of computation are given here.

In Fig. 3, the profiles of w, 7, u,, and uy are shown for Kn = 0.005, 0.02, and 0.2 in
the case e; = 0.02, e, = 0.001, and e3 = 0.02. The difference of the linear and nonlinear
solutions obviously increases as the Knudsen number decreases (Fig. 3). When Kn = 0.2,
which is fairly larger than £ (= max|e,;|), the two solutions are very close; when Kn = 0.02,
which is comparable to ¢, the difference of uy is fairly larger than ¢?, and when Kn = 0.005,
the difference of uy is of the order of €. The relative difference of 7 increases in a similar
way to that of up, but the absolute difference is much smaller since ¢, (thus 7 itself) is much
smaller than ¢; (or up). Incidentally, the negative temperature-gradient phenomenon is seen
in these examples [Fig. 3 (b)].

In Fig. 4, the profiles of w, 7, u,, and ug are shown for Kn = 0.005, 0.02, and 0.2 in the
case g = 0.02, e, = 0.01, and €3 = 0.02. The feature of the difference of the two solutions
is similar to that of the previous example, but the difference of 7 is comparable to that of
up since €, is comparable to £. Incidentally, the negative temperature-gradient phenomenon
is not seen in these examples [Fig. 4 (b)].

An example without evaporation and condensation on the boundaries is shown in Fig. 5,
where the case of e = 0.02, e, = 0.01 and diffusely reflecting boundary are considered. As
in the corresponding problem in Sec. 3, we have chosen the solution with ¢, = 0 at r = 1.
Again, the linear solution is a good approximation to the nonlinear solution for the three
Knudsen numbers Kn = 0.005, 0.02, and 0.2.

5. Flow past an array of flat plates

Here we consider an example of flows past a body without evaporation and condensation.
In order to concentrate our interest on the behaviour in a finite region and to avoid the
difficulty [Sone & Takata, 1992] of numerical computation owing to the discontinuity of the
velocity distribution function around a convex body, we investigate the following somewhat
artificial problem in a rectangular domain (—a < z; < a, 0 < z, < b).

(1) Nonlinear problem: The basic equation is given by Egs. (3)~(5d). The boundary condition
is as follows: ¢((; > 0) on (z = 0, —a < z; < a) is given by Eqgs. (6) and (7) where u,,; = 0,
Tw = €2, and

(16a) o= -;—[1 + cos(2mz1)), (-1/2 < z; £ 1/2),

(16b) a = 0, (specular reflection), (ma<zy<—=1/2and 1/2 < z; < a);

#((z < 0) on (z2 = b, —a < z; < a) is given by Egs. (6) and (7) with a = 0 (specular
reflection); ¢(¢; > 0) on (z; = —a, 0 <z, < b) and #({ < 0) on (z; = a, 0 < z, < b) are
given by the corresponding parts ((;20) of ¢e(w = 0, u; = (¢1,0,0), 7 = 0).
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(i1) Linear problem: The basic equation is given by Egs. (10)—(11d). The boundary condition
is as follows: ¢(¢; > 0) on (z2 = 0, —a < z; < a) is given by Egs. (12) and (13) with
Uy = 0, 7, = &5, and Egs. (16a) and (16b); #({, < 0) on (22 = b, —a < z; < a) is given
by Egs. (12) and (13) with @ = 0; ¢(G; > 0) on (z, = —a, 0 < 35 < b) and ¢(¢; < 0) on
(z1 = a, 0 <z, < b) are the corresponding parts ((;20) of 2(;¢;.

The problem is a model of a uniform flow past an array of flat plates without an angle
of attack (—1/2 < z; < 1/2, z2 = 2mb, m = 0,%1,---). The upstream and downstream
regions are limited at z; = —a and a, since we want to examine nonlinear effects in a finite-
domain problem. According to [S & T, 1992], the discontinuity of a velocity distribution
function on a boundary at the tangential velocities propagates into the gas from convex
points of the boundary. The present choice, Eq. (16a), of the accommodation coefficient
avoids the discontinuity at the leading and trailing edges of the plate, which are the only
convex points of the boundary. Thus the velocity distribution function is continuous in the
gas.

The flow with the nonuniformity parameters ¢; = 0.1 and € = 0.1 in the domain a¢ = 1,
b= 1/2 is computed for three Knudsen numbers Kn = 0.02, 0.1, and 0.5. The profiles of w,
T, 4y, and u, along the sections z; = 0, £0.4, and £+0.725 are shown in Figs. 6a-6d. As
in the examples with evaporation and condensation in Secs. 3 and 4, the deviation of the
linear solution from the nonlinear solution increases as the Knudsen number decreases, and
the differences in w and 7 of the two solutions obviously exceed €? (¢ = max|e,,| = 0.1) for

Kn = 0.1 and 0.02, and are O(e) when Kn = 0.02.

6. Discussion

In this paper we considered various rarefied gas flows where the situation is very close
to a uniform equilibrium state at rest, and investigated the flows numerically on the basis
of two types of basic equations: the (original nonlinear) BKW equation and its linearized
version. The results are compared, and the validity of the solution of the linearized equation
in describing the flow is examined. The result depends on the Knudsen number of the system.

When the Knudsen number (Kn) is much larger than the nonuniformity parameter (¢),
the solution of the linearized equation is a good approximation to that of the nonlinear
equation. As the Knudsen number decreases, the deviation of the linear solution from the
nonlinear solution generally increases. It is fairly larger than ¢ when Kn ~ ¢, and the two
solutions are quite different when Kn < ¢. Thus for Kn $¢, the nonlinear solution cannot be
obtained by a simple perturbation analysis from the linear solution. In some cases, however,
the linear solution is a good approximation to the nonlinear solution irrespective of the
Knudsen number (see the second example of Sec. 3 and the last example of Sec. 4). This is
discussed below.

General theoretical discussion of the importance of the nonlinear term even in the case
where the system deviates slightly from a uniform state was made in [S, 1971] in connec-
tion with asymptotic analysis of the Boltzmann equation for small Knudsen numbers (see
also [S, 1978, 1984, 1991ab]). The present numerical computations give good examples of
the theoretical discussion. The ratio of the Knudsen number and the nonuniformity pa-
rameter determines the validity of the linearized Boltzmann equation. Since the case with
small nonuniformity parameters is concerned, the ratio takes various values only for small
Knudsen numbers. Therefore, the situation can be clarified by the analysis of the case with
small Knudsen numbers, which admits a macroscopic description. Thus, the degeneracy of
the nonlinear effect is easily surveyed by the macroscopic description. That is, the leading
nonlinear term in the macroscopic description is the convection term of the incompress-
ible Navier-Stokes system of equations (continuity, momentum, and energy equations), and
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therefore the linearized equation gives a good description in the case where the convection
term degenerates or is incorporated in the pressure term in the Navier-Stokes system.

The last statement is well exemplified in our numerical computation. In the Couette flow
under diffuse reflection in Sec. 3, the convection term vanishes, and in the cylindrical Couette
flow under diffuse reflection in Sec. 4, only non vanishing part of the convection term, u2/r,
can be incorporated in the pressure term. In both cases the deviation of the linear solution
from the nonlinear solution is at most of the second order of the nonuniformity parameter
(Figs. 2 and 5). In the example in Sec. 5, the flow is nearly in the z, direction, and therefore
the leading convection term of the incompressible Navier Stokes system is u;0u;/dz; in
the z;-momentum equation and u;87/8z; in the energy equation. The u;0u;/dz; can be
incorporated in the pressure term, but u;87/8z, is left as it is. Since the velocity field
can be solved independently from the temperature field in the incompressible Navier-Stokes
system, according to the statement the velocity field of the linear equation should be a good
approximation, but its temperature field may deviate considerably from that of the nonlinear
equation. Figures 6a—6d support this.

In some infinite-domain problems, the discrepancy of the linearized equation such as
Stokes paradox [C, 1968] is encountered for arbitrary Knudsen numbers. From the following
reason, this is also the same kind of difficulty of the linearized equation as that in the
present examples. In these problems, the solution is supposed to approach a uniform state
at infinity, and the length scale of the variation of the solution increases with the distance
from a body. Then the effective Knudsen number (the mean free path divided by the local
length scale of variation), which determines the variation of the variables, decreases to vanish,
and it becomes much smaller than the small nonuniformity parameter in the far field, and
therefore the criterion on discrepancy of linear solutions applies.

Finally, the computation was carried out by HP 9000 730 and MIPS RS 3230 computers
at our laboratory and by FACOM VP-2600 computer at the Data Processing Center of Kyoto
University.
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Fig. 6a. Flow past an array of flat plates (a = 1, b = 1/2, and e; = &, = 0.1) for three Knudsen numbers (Kn = 0.02, 0.1,
0.5) I: w field. The profiles along the sections z; = 0, £0.4, and +0.725 are shown at the corresponding places in the domain.
Here, indicates the solution of the nonlinear system, and ----- indicates that of the linear system. The sizes ¢ and &

(¢ = max |e,,| = 0.1) are shown for reference.




216

0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
0.5 T T T T T L i | T )
= [y a | - B |
et | L : L X -
—| | ” m m
e L : | X -
HAR._."O...WV _" _" _._pr Lm
0 ;
0.5 T T T ™ T T n
n T a1 - | - - :
. | L | I . ]
- L - ! - L .
: | L s - .
Kn=20.1 H
0 H
0.5 T T T T T T 7T h
zo [ B _" i B 1
L L : L L 4
Kn = 0.02 m i m
0

T T

Ty = -0.725 I = -04

z; =04 zy = 0.725

Fig. 6b. Flow past an array of flat plates (¢ = 1, b = 1/2, and &; = e; = 0.1) for three Knudsen numbers (Kn = 0.02,
0.1, 0.5) II: 7 field. The profiles along the sections z; = 0, £0.4, and +0.725 are shown at the corresponding places in the
domain. Here, indicates the solution of the nonlinear system, and ----- indicates that of the linear system. The sizes ¢ and
¢? (¢ = max |e,,| = 0.1) are shown for reference.
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Fig. 6c. Flow past an array of flat plates (a = 1, b = 1/2, and €, = ¢, = 0.1) for three Knudsen numbers (Kn = 0.02, 0.1, 0.5)
III: u; field. The profiles along the sections z; = 0, £0.4, and £0.725 are shown at the corresponding places in the domain. Here,
indicates the solution of the nonlinear system, and ----- indicates that of the linear system. The size €? (¢ = max |e,,| = 0.1)
is shown for reference.
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Fig. 6d. Flow past an array of flat plates (a = 1, b = 1/2, and &; = ¢; = 0.1) for three Knudsen numbers (Kn = 0.02, 0.1, 0.5)
IV: u, field. The profiles along the sections z; = 0, 0.4, and £0.725 are shown at the corresponding places in the domain. Here,
indicates that of the linear system. The size ¢? (¢ = max |e,| = 0.1)
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