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On uniformly convex functions and
uniformly smooth functions

ENRZELES HBER (NAoOK! SHION)

1 Introduction

In 1983, Zilinescu [10] studied the uniformly convex functions giving some characterizations
and examples of such functions. He showed that if a proper, lower semicontinuous and con-
vex function defined on a reflexive Banach space is uniformly convex on the whole Banach
space then its conjugate function is uniformly Fréchet differentiable on the interior of the
domain of the conjugate function and that the converse is true under some condition. Let
¥ : [0,00) — [0, 00] be a function. He also characterized the uniform convexity of the function

z / ) ¥(t) dt defined on bounded balls in a Banach space. On the other hand, it is well
0
known that in a Hilbert space H,

A2 + (1= Al = Ml + (1= )il = A1 = D}z — (11

for all z,y € H and 0 < A < 1. Lim [5], B. Prus and R. Smarzewski [6], R. Smarzewski {7]
and Xu [8, 9] have studied inequalities that are analogous to (1.1) in a Banach space. These
inequalities are related to uniform convexity and uniform Fréchet differentiability of the func-
tional z — ||z|}?. ‘

In this paper, we study uniformly convex functions and uniformly smooth functions in
the framework of the nonstandard analysis [3]. Let E be a real normed linear space, let
f: E — (—o00,00] be a function and let Y be a subset of E such that there exists £ > 0 with
Y+{zxe€F:|z|| <ec} Cdomf. We mean that f is uniformly smooth on Y if ‘

fim F¥ tu) — f(y)

1—0 t

exists uniformly for y € ¥ and v € E with |ju}| = 1. If f is convex and for each y € Y,
sup m}f(:w tu) — f(y)}

=1 =0 t
differentiability. We show that in a Banach space, a proper, lower semicontinuous and convex
function f is uniformly convex on the whole Banach space if and only if its conjugate function
is uniformly Fréchet differentiable on R(3f). Let ¢ : [0,00) — (—00, 00| be a function. We
characterize the uniform convexity and the uniformly smoethness of the function z — ¢(||z}])
on bounded balls in a normed linear space. We-also show sufficient conditions which ensure
the uniform convexity and the uniform smoothness of the function z — ¢(||z]|) on a whole

normed linear space.

< 0o, the uniform smoothness coincides with the uniform Fréchet



2 Nonstandard analysis

We adopt the notational conventions and the framework for the nonstandard analysis de-
scribed in [3]. For convenience, we state some definitions. We denote the set of all real
numbers and the set of all positive real numbers by R and R, respectively. Let ¢ and b be
elements in "R. We define symbols ~, 2, <, 2 and 5 as follows:

a~bif for any ¢ € Ry, |a — b| < ¢;
aZ2bifa>bora~b
aSbifa<boran~b;
azbifa>bandab
a§bifa<banda;>éb.

We recall that a is finite if there exists a standard positive real number ¢ with |a| < ¢ and a
is infinite if @ is not finite. Let E be a normed linear space and let  and y be elements in *E.
We write  ~ y if ||z — y|| ~ 0 and we denote by p(x) the set {z € *F : z ~ z}.

3 Preliminaries

Throughout this paper, all vector spaces are real, o denotes the origin of a vector space and
if E is a normed linear space then E# denotes its dual. Let E be a normed linear space. We
write (z#,z) in place of z#(z) for z € E and z# € E#. Let C and D be subsets of E. C + D
denotes the set {r +y € E : x € C,y € D}. C is said to be convex if Az + (1 — A)y € C
for all 2,y € C and 0 < XA < 1. For a positive real number a, Sg(a) and Bg(a) denote
{z € E:||z|| = a} and {z € E: ||z]| < a} respectively. E is said to be uniformly convex if
for any € € R, there exists § € R, such that for any z,y € Sg(1),

ly =2l > & implies |*5Y) <18

E is said to be uniformly smooth if

ety — el
t—0 t

exists uniformly for z,y € Sg(1). The modulus of convexity and smoothness of F are defined
respectively by

5(e) =int{1l || sz, y € Bollall = gl = Llle —yll 2 <}, 0<e<2,

and

Jztvll+l=z—9l

5 Liz,y€ Bzl =1,y =7}, >0

p(7) = sup



It is easy to see that E is uniformly convex if and only if §(¢) > 0 for any ¢ € (0,2] and

E is uniformly smooth if and only if lim M = 0. In the nonstandard representation, E
rjo T

is uniformly convex if and only if for any @,y € *E such that ||z|| and ||y|| are finite and

]l =~ llyll,

ity s |20 5 B
and E is uniformly smooth if and only if
lz +ull — Nzl Jle—ufl — ||
lJull I

for any « € *E such that ||z}| is finite and ||z|| % 0, and for any u € *E \ {o} with v ~ o. Let
f: E — (—o0,00] be a function. dom f denotes the set {z € E : f(z) < oo}. f is said to be
proper if dom f # 0. Let X be a convex subset of E. f is said to be convex on X if

FOz+ (1= Ny) < M)+ (1- N f(y)

for any z,y € dom f N X and for any A € [0,1). f is said to be strictly convex on X if
the above inequality is strict. Let g : E — (—o00,00] be a proper and convex function.
g” : E# — (—o0, 00| denotes the conjugate function of g which is defined by
g% (2%) = sup{(2¥,2) — g(2): 2 € E}, 2¥ ¢ E*
and g*# : E — (—~o0, 00| denotes the second conjugate function of g which is defined by
g"* (2) = sup{(z”,z) — g" (2¥) : 2¥ € E*}, z € E.

It is well known (cf. [1}) that ¢ = g## if and only if g is lower semicontinuous. The
subdifferential of g at « € E is the set

(8g)(z) = {«¥ € E* : g(y) > g(z) + (2¥,y — z) for all y € E}.

By Og, we mean the set {(z,2%) € E x E* : ¥ € (8g)(z)} and by R(dg), we mean
the set U{(0g)(z) : ¢ € E}. It is well known (cf. [1]) that (z,2#) € Og if and only if
(z#,z) = g(x) + g” (2¥). Let ¢ be a real valued convex function defined on an open interval
I of R. It is also well known (cf. [4]) that ¢ is continuous on I, and if ¢ is differentiable on I
then its derivative ¢’ is continuous on I.

4 Uniformly convex functions and uniformly smooth
functions
We start this section by some definitions. Let g : E — (—o0, 00} be a function and let X be

a convex subset of E. g is said to be uniformly convex on X if for any £ € R, there exists
6 € R, such that

ly — z|| > ¢ implies g(‘”;y) < g(w)-zfg(y) s



for any z,y € domgN X. Let h: E — (—00,00] be a function and let Y be a subset of E
such that there exists ¢ € R, with Y + Bg(¢) C domh. We define that h is uniformly smooth

onY if " . "
i 2+ tu) — h(y)
t—0 t

exists uniformly for y € Y and u € Sg(1). We recall that k is uniformly Fréchet differentiable

on Y if for any £ € R, there exists § € R, such that for any y € Y, there exists y* € E¥

such that

h(y + tu) — h(y)

; — (y*,u)| <.

0<|t| <8 and u € Sg(1) implies )

If h is convex and for each y € Y, sup m[ Ay +tu) - h(y)} < 0o, the uniform smoothness

lufj=1 =0 t
of h on Y coincides with what h is uniformly Fréchet differentiable on Y. In the nonstandard
representation, A is uniformly smooth on Y if and only if

h(y +tu) —h(y) _ h(y+su) — h(y)

t ~ 0 and s ~ 0 implies
t s

for all y € *Y, u € *Sg(1) and t,s € *R\ {0}. If k is convex then A is uniformly smooth on

Y if and only if
hiy +u) - h(y)  h(y—v) - h(y)
el - =l
for all y € *Y and u € *F \ {o}. Concerning uniform convexity and uniform smoothness, we
have the following propositions. The first one is Remark 2.6 in [10].

u ~ o implies

PROPOSITION 1 (Zilinescu). Let E be a normed linear space and let X be a convex
subset of E. Let f : E — (—00, 00| be a proper and convex function. Then the following are
equivalent;

(1) f is uniformly convex on X, i.e., for any z,y € *(dom f N X),

1’+y) < f@) + f(y)

y # ¢ implies f( 5 )% 5 ,

(i) for any ¢ € R, there exists § € R, such that for any z,y € dom fNX and 0 < A < 1,
ly — 2|l > ¢ implies f(Az + (1= A)y) < Af(2) + (1 - Ay)f(y) — A1 - A)S,
i.e., for any z,y € *(dom f N X) and for any A € *(0,1),

(z+(1-Ny) _ M) +(1 - V)

.o f
y % = implies M1— N > A1-2)




PROPOSITION 2. Let E be a normed linear space and let f : E — (—o0, o0| be a function.
Let Y be a subset of E such that there exists ¢ € R, with Y + Bg(¢) C dom f, and let f be
uniformly smooth on Y. Then for any y, z € *Y with y # z and for any A € *(0,1),
FOu+(1-N2) _ M) +(1- ()
ML-Ng =2 = AQ=N]y-z]

i.e., for any ¢ € R, there exists § € R, such that for any y,2 € Y and 0 < A < 1,
= —yll <6 implies |Af(y) + (1= \)F(z) — Oy + (1 = X)2)| < AL = Nelly — I
PRrOOF. Since f is uniformly smooth on Y, we have
flettu) ~ £(2) _ flo+ o)~ £(2)
t o s
for all z € *Y, u € "Sg(1) and ¢,5 € *R\ {0} with ¢ ~ 0 and s ~ 0. Let y and z be any

elements of *Y such that y # z and y ~ z, and let A be any element of *(0,1). We may
assume A € *(0, 7). From (4.1), we get

fo) - ) FEH =zl =) — 1@

y ~ z implies

(4.1)

ly—zl| lly — z||
£+ My =2l 5 =) - 1)
= Ny - 2]
_fOu+ (X2 ()
Ally — z|| ’

and hence we have _
fRy+(1-X22) AMy+Q-Nf(=)
Aly ==} Ally — 2| '

Since X # 1, we obtain
FOw+(A=X2) M@+ =N
Al = Ally — =]l A1 = Mlly — 2|l
By the transfer principle, we obtain the standard representation. O

Let ¢ be a real valued convex function defined on an open interval I of R. It is well
known that if ¢ is strictly convex on I then for any bounded and closed interval J(C I), ¢ is
uniformly convex on J, and if ¢ is differentiable on I then for any bounded and closed interval
J(C I), ¢ is uniformly smooth on J. Let ¢ : R — R be a function which is uniformly smooth
on R. It is easy to see that if t,s € *R \ {0}, ¢ # s and ¢ ~ s then ¢'(t) ~ wﬂ ~ ' (s).

Next, we show relation between a proper, lower semicontinuous convex function de-
fined on a Banach space and its conjugate function. The following was partly obtained
by Zalinescu {10]. In the following, the proofs of (i) = (ii) and (v) = (ii) are essentially same
as the proofs of Zilinescu.



THEOREM 1. Let E be a Banach space and let f : E — (—o0,00] be a proper, lower
semicontinuous and convex function. Then the following conditions are equivalent;

(i) f is uniformly convex on E,
(ii) for any (z,z#) € *(0f) and for any y € *E,
y#e implies (9) Z f(2) + (z*,y - 2),
(iii) for any (z,z%) € *(8f) and for any y € *E,

f@) - £(@) 5, @y -a)

ly—=| * lly—=|

y # & implies

(iv) for amy (z,z#) € *(8f), for any u¥ € *E¥# \ {o} with u# ~ 0 and for any y € *E,
(@* +u*,y —2) + f(2) > f(y) implies y~ a,
(v) *(R(8f)) + (o) C *(dom f), and for any (z,z*) € *(8f) and for any u* € *E¥* \ {o}

with u# ~ o,
f#(a# +u#) — f#(a#) ~ u# 2),
| flu# |}’

i.e., there exists £ € R, such that R(8f)+ Bg(c) C dom f, and f# is uniformly Fréchet
differentiable on R(3f).

PROOF. (i) = (ii). Let (z,2%) be any element of *(3f) and let y be any element of *F

with y % 2. We may assume y € *(dom f). Since y % z, we have f(*7¥) § f(”)”(”) Hence,
by (z,z%) € *(8f), we get

1w 220 (552) - f(@)

= 1) +2(f(*32) - 1)

> f(a) +2(a*, 21 - 2)
= f(@) +(

o y — ).

Therefore (ii) is valid.

(ii) = (iii). Let (=, 2%) be any element of *(8f) and let y be any element of *E with y % 2.
We may assume that y € (dom f). If |ly—z|| is finite, it is clear that (iii) is valid. Let ||y — z||
be infinite. Put u = = + =% ” Then we have |ju — :1:|| = 1 and, by the convexity of f,

fy) - f(=) _
o=z 2 f(u) = f(2).

%H



Hence, by (ii), we get

fly) — =) '
e > f(u) - f(=)
(¥, u — z)
(z#vy_z>
lly — ||

Therefore (iii) holds.

(iii) = (iv). Let (z,2%) be any element of *(8f), let u# be any element of *E# \ {0} with
u# =~ o and let y be any element of *E such that (z* + u¥*,y — z) + f(z) > f(y). Suppose
y # z. Then we get

(@ +ut,y—2) _ f(y) - f(2)

ly—=l = lly—=ll
> (m#ay - ﬁ)
* Jly -

So we have |lu¥|| > 0. This contradicts u# ~ o. Therefore y ~ .
(iv) = (v). Let (z,2%) be any element of *(3f) and let u# be any element of *E# \ {0}
with u# ~ o. First, we prove that 2# + u* € *(dom f). By the definition of f#, we have
f# (a2 +u?) = sup{(z¥ +u¥,y) — f(y) : y € "E,
(e +ut,y) — f(y) 2 (c* +uF,2) - F(@)}.

So, let y € *E be any element such that (z# +u¥*,y) — f(y) > (¥ +u¥,z) — f(z). Then, by
(iv), we get y ~ 2. Hence we obtain

(a* +u*,y) - f(y) = ((e*,9) — £(9)) + (u*,9)
< ) + ((ut,y - o) + (u#,2))
< F#@*) + Il |llly — 2l + (u#, 2)
< fH®) + 1+ (v, 2).
So we have f#(z# + u#) < f#(z#) + 1+ (u#,2) < 00, ie., 2¥ + u* € *(dom f). By the
definition of f#, we can choose z € *E which satisfies

fhat +uf) = (oF +ut,2) - £) o
[ .

and
(¥ + ¥, 2) — f(2) > (¥ + u¥,z) — f(2).



We have z ~ z by (iv). Since (z,2%) € *(0f), we get

(¥ +u¥,z — a) + f(z) — f(2)

< (m#+u#,z—:l:)+f(il:)—((I#,Z—ﬂ?)"'f(l'))
= (u¥,z — 2)

< Jlu#|lllz ~ |-

Hence we obtain

f#a* +u*) - f#(ah)

Il
(et ut ) - f(z) - fH ()
B [l ]l
_ {@* +ut,2) — f(2) - ((2%,2) — f(2))
[lw|
B ((z# +u¥, z—z)+ f(z) — f(z)) + (u#, )
- , Jlu#|
~lz—z (u¥, z)
~ <|T“T||’m>.

Therefore f# is Fréchet differentiable on R(Of).

(v) = (ii). Let (z,z#) be any element of *(f) and let y be any element of "E with y % z.
Since y % x, there exists a standard positive real number ¢ such that ly — || > 2¢. By the
transfer principle, there exists standard positive real number & such that for any u# € *E¥#,

FHE* +ub) — [HF) ~ (0, 2)

0 < |lu*|| < 6 implies <e.
Jlu#]

Hence we get

fy) = f*(y)

= sup{(y*,y) — f*(y*) : y* € E*}
> sup{{z* +u¥,y) — fF*(a¥ + u#):u* € *E*,0 < |ju?| < 6}

(% +u¥ y) — (f#(z#) + (u¥,z) + Ellu#”) cu# € *E*,0 < |lu?|| < 6}

— sup{(u*,y — z) — ellu*| : u* € E¥,0 < [u|| < 6} + (@¥,y) — fH(2¥)
= sup{(u*,y — 2) — et : u* € "E*,0 < |lu¥|| < 8} + (2%, ) — ((a*,2) — f())
> blly — z|| — €6 + f(z) + (¥, y — =)
2 f(2) + (*,y - 2).

> sup{



Therefore (ii) is valid.
(ii) = (i). Let y and z be any element of *(dom f) such that y % z. By Theorem 2 in [2],
there exists (z,z#) € *(8f) such that

f(y-;—z) ~ f(z) + <:c#, y2j - a:>

By (ii), we have % ~ z and hence y % z and z ¢ z. So we have f(y) 2 f(z) + (z#,y — )
and f(z) 2 f(z)+ (2#,2z — ). Hence we get

f(y+z)gf(x)+<x#,y’;’z_r>

2
f(@)+ (¥, y—z) + f(z) + (%, 2 — z)
2

I+

2

&

Therefore f is uniformly convex on E. O

REMARK. If a Banach space is reflexive, Zalinescu [10] showed that if f : E — (—o0, 0]
is a proper and lower semicontinuous function which is uniformly convex on FE, then f
is uniformly Fréchet differentiable on Int(dom f#). In the case, R(8f) is open and hence
R(8f) = Int(dom f#).

5 Characterization of uniform convexity and uniform
smoothness on bounded balls

In this section, we characterize the uniform convexity and uniform smoothness of (|| - ||) on
bounded balls in a normed linear space. The following is essentially same as Theorem 4.1.(ii)
in [10]. Compare these statements.

THEOREM 2 (Zilinescu). Let E be a normed linear space and let ¢ : [0,00) — [0, 00] be
an increasing function. Let M = sup(dom ¢) > 0. Then ¢(]|-||) is uniformly convex on Bg(a)
for any a € (0, M) if and only if ¢ is strictly convex on dom ¢ and E is uniformly convex.

PROOF. Let ¢ be strictly convex on dom ¢ and let E be uniformly convex. Let a be any
real number which satisfies 0 < a < M. We remark that ¢ is uniformly convex on [0,a]. Let
z,y € *Bg(a) such that = % y. If ||z]| # ||y, the uniform convexity of ¢ yields

W(H%"EH) < SO(llﬂ«'ll ;— HyII) < e(l=l) ;Lsa(llyll).

Next suppose that ||z]| ~ ||y||. Since  # y, the uniform convexity of E yields

12 ;— Y < &l -ZF llyll
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So we have

.

sy o (el el + el
(|57 s e (F5) =5

We show the necessity. Let ¢(|| - ||) be uniformly convex on Bg(a) for any a € (0, M). Fix

an element zy € E such that ||zo|| = 1. Let 7 and s be standard real numbers such that

r,5 € [0,M] and r # 5. Since r and s are different, we have r % s. Assume r,s < M. In

virtue of the uniformly convexity of ¢(|| - ||) on Bg(max{|t|,|s]|}), we get

o(FF2) = o (|2 2))

< ellirzoll) + ¢(llszoll)
* 2
_ er) +e(s)

2

Hence we obtain <p(’;’) < Ml;f@. If M # 0o, M € domy and 7 or s is equal to M, we

can also show 4,0(%‘3) < Ml;—@ from the convexity of ¢. Next we show that E is uniformly

convex. Suppose not. Let b be a standard real number such that 0 < b < M. Then there are
z,y € *Sg(b) such that = % y and ||23¥|| ~ b. The uniform convexity of ¢(|| - ||) on Bg(b)
yields

z+yy o ezl +ellgl) _
o7 2 =5 =
But, by the continuity of ¢ on Int(dom ¢), we have

o(|Z32]) = oo,

which is a contradiction. Therefore E is uniformly convex. O

Using our theorem and Proposition 1, we have the following. Compare this with Theorem 2
in [9].

THEOREM 3. Let E be a normed linear space and let a be a positive real number. Let
¢ : [0,00) — [0,00) be a function such that ¢(0) = 0 and strictly convex on [0,00). Then E
is uniformly convex if and only if there exists an increasing function g : [0,00) — [0, 00) such
that g(0) =0, g(¢) > 0 for all £ > 0 and

pliAz + (1 = Nyll) < Ap(llzll) + (1 = Ne(llyll) — A1 = Ng(llz - yll)

for all z,y € Bp(a) and 0 < A < 1.

The following is the dual version of Theorem 2, which characterizes the uniform Fréchet
differentiability of (]| - ||) on bounded balls.



"

THEOREM 4. Let E be a normed linear space and let ¢ : [0,00) — [0, 00] be a strictly
increasing and convex function such that ¢(0) = 0 and ¢'(0) = 0. Let M = sup(dom ¢) > 0.
Then ¢(|| - ||) is uniformly Fréchet differentiable on Bg(a) for any a € (0, M) if and only if ¢
is differentiable on (0, M) and E is uniformly smooth.

PROOF. Suppose that ¢ is differentiable on (0, M) and E is uniformly smooth. Let a be
any real number such that 0 < a < M and let z,u € *E such that ||z|| < a,u ~ 0 and u # o.
We remark that ¢ is uniformly smooth on [0,a]. If z ~ o, we get

e(llz +ull) — ellzl) _ ez +ul)) — (=] [z + ul| — |||
flull B (el 1B ll=li
~ ga'(l]w][)”w +u” - “w”

[l
~ 4'(0) llz + ull — =l
=0

[Jull

and similarly,

ellz = ul) — ellll) _ 0
~ ||| T

If z % o, we get
plllz +ul)) = ozl _ ¢l +ul) = () ll= + =]l - =

el llz +ul| — ||| Il
p(llz — ull) — e(ll=ll) llz — ull - ||=|
iz —ull = |l —lfll
_ ez = ul)) — e(l=)
=l '

Hence we have

plllz +ul)) — e(l2l)  elle - ul) — e(l2l)
fall - =l

On the other hand, it is easy to see that € Bg(a), u € *E \ {0} and u # o implies

Sl )= ol

Therefore (|| - ||) is uniformly Fréchet differentiable on Bg(a). Next we show the necessity.
Let (]| - ||) be uniformly Fréchet differentiable on Bg(a) for any a € (0, M). Fix an element
z¢ € E such that ||zo]| = 1. Let r be a standard real number with 0 < r < M and let s € *R
such that s ~ 0 and s # 0. Then we have

p(r+s) —o(r) _ plirzo + s2oll) — @(llr2o])

s l|sol|
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~ p(llrzo — szol) H o(llrzoll)
B —|lszo
_p(r—s) - 50(7’)’

—S

which shows that ¢ is differentiable on (0, M). Next we prove that E is uniformly smooth.
Let b be a standard real number such that 0 < b < M. Let z € *Sg(b), and let u € *E such
that u ~ o0 and u # o. Then we get

lz+ull -zl _ _ lle+u]—fle] ¢z +u]) - e(lzl)
[[ul e(llz +ul) — e(lll) [l
lz —ull = flzll  (lz — ul) — e(l=]))
— e(llz —ul)) = ezl = jll
o Nz =) — iz
I 1 .

Therefore E is uniformly smooth. O
By the same argument, we have the following.

THEOREM 5. Let E be a normed linear space and let a be a positive real number. Let
¢ :]0,00) — R be a function such that ¢(0) =0, ¢'(0) = 0 and ¢ # 0 on [0,a]. Then ¢(}|-||)
is uniformly smooth on Bg(a) if and only if ¢ is uniformly smooth on [0, a] and F is uniformly
smooth.

Using Theorem 4 and Proposition 2, we have the following. Compare this with Theorem 2’
in {9}.

THEOREM 6. Let F be a normed linear space and let a be a positive real number. Let
¢ : |0,00) — [0,00) be a strictly increasing and convex function such that ¢(0) = 0 and
¢'(0) = 0. Then E is uniformly smooth if and only if there exists an increasing function

g(t)

g :[0,00) — [0,00) such that ¢g(0) = 0, lim = 0 and
t10

e(llAz + (1 = Myll) 2 de(llzl]) + (1 = De(llyl) — A1 = Ag(llz - yl)
for all z,y € Bg(a) and 0 < A < 1.

6 On uniform convexity and uniform smoothness on
whole space
In this section, we show sufficient conditions which guarantee the uniform convexity and the

uniform smoothness of the function ¢(]| - ||) on a whole normed linear space. We begin with
uniformly convex case. We need the following lemma.
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LEMMA 1. Let ¢ :[0,00) — [0,00) be an increasing and convex function. If R, M, é,¢ be
real numbers such that 0 < R < M and 0 < § < ¢, then

o(R+ )~ pimy < PIHE) 2P0

PRrooOF. Let R, M, 6, ¢ be real numbers such that 0 < R < M and 0 < 6§ < . Since ¢ is
increasing, we have

go(R + g) —p(R) < <p(R+ E) — ¢(R).

By the convexity of ¢ and
S__ 3 V(12
Bty =arys—pM+y)+(0 M+§—R)R
M—-R € M-R
M = = 1-
M+§—R(M+2)+( M+§—R)R’
we get
PR+ D)< b oM 2) 4+ (1- i) e(R)
2" M+5—-R 2 M+£-R
M-—-R 3 M—-R
M M+ - 1-
(M) < 3 ——ge(M+3) +( g
Adding these inequalities, we obtain _
- 3 €
o(R+3) —o(R) < o(M+3) — o(M). (6-2)

Next, by the convexity of ¢, we get

go(l(M +e)+ %M)

If

o(M+7)

2 2

1 1
< 5e(M +e) + Se(M),

N2 |

and hence

o(M+5) —ptar) < AUX P00, (6.3)
Therefore (6.1), (6.2) and (6.3) yield '

) (M +¢) — p(M)
) < .
o(R+ 2) p(R) < 5
THEOREM 7. Let E be a normed linear space and let ¢ : [0,00) — [0, 00) be a function

such that it is uniformly convex on [0,00) and ¢(0) = 0. If for some positive real number c,
the modulus of convexity § satisfies §(¢) > cp(e) for any ¢ € [0,2] and

O

lim (p(t)¢(s) - ¢(ts)) > 0,

tlo

then (]| - ||) is uniformly convex on E.
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PROOF. Let ¢ be a positive real number such that 6(¢) > cyp(e) for any ¢ € [0,2] and let

lim (¢(t)¢(s) — p(ts)) > 0 - (6.4)

t10

be satisfied. Let ,y € *E such that = % y. If ||z|| 2 ||y, the uniform convexity of ¢ yields

(7)) < (I E ol o ol -+ i)

Next suppose ||z|| =~ ||y}|. If ||z]| and ||y|| are finite, by the uniform convexity of E, we have
1552 < l"';[yl . Hence we obtain

o(|Z2Y]) 5 ol bl o 2lle +elisl)

Let ||z|| and ||y|| be infinite. Without loss of generality we may assume ||z|} < ||y||. Put

HZH

M = ol M+ = il B = | Y ama 4 S = |2 HY).
Since § < ¢ and R < M, we have
z+y z+ 5y @(Hy!l) ~ ¢(lzIl)
o(|I757)) —e(l—3"") < (6:5)
by Lemma 1. If we prove ol |
o(| 50 5 el (6.6)

then this inequality and (6.5) yield

(p(“f%ll) < e(ll=l) ; <P(“y||)7

which completes the proof. Suppose (6.6) is false. Then the convexity of ¢, ¢(0) = 0 and
¢(t) > 0 for all ¢ > 0 yield

L=l
“+nyuy

z+ [ty |
o(|752]) < bt < el

and hence

I
”;” | p(llzll) ~ ¢(ll=l)-
On the other hand, é(¢) > cp(c) for any ¢ € [0, 2] yields

1 na1+uyn‘|_ (1

i
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So we have

ol
2t Y H

mmmzlul<mm+dm lly,,H)nn)
_wwm+wwmmﬂﬂmwww

0, it is clear that <p(” l ~ 0, then

Mﬂ il G

by (6.4), we get

oy = et 2 elle - pl) 20

Hence we have go(”:c”) 2 #(llz]|), which is a contradiction. Therefore (6.6) is valid. O

The following is due to Xu [9]. In his paper, he wrote p > 1, but if 1 < p < 2, there exists
no normed linear space such that || - ||? is uniformly convex on the whole space.

THEOREM 8 (Xu). Let p > 2 be a fixed real number. Let E be a normed linear space.
Then the following are equivalent;

(i) there exists a constant ¢ > 0 such that §(s) > c-c? forall 0 < e < 2,

(ii) the functional || - || is uniformly convex on E,

(iii) there exists a constant d > 0 such that
Az + (1 = Ayl” + AL = Ndlje — y|IP < All=|l” + (1 = Ayl
forall z,y € Eand 0 < A< 1.

ProOF. (i) = (ii). Put ¢ : [0,00) — [0,00) by ¢(t) = t* for t > 0. It is easy to see that
¢ is uniformly convex on [0, 00), ¢(0) = 0, and é(c) > cp(e) for all 0 < ¢ < 2. The definition
of ¢ implies p(t)p(s) — p(ts) = 0 for all t,s > 0. Hence, by our theorem, || - ||? is uniformly
convex on E.

(ii) = (iii). Let z and y be any elements of *F such that  # y and let A be any element

of *(0,1). Since || - || is uniformly convex, by Proposition 1,
P . |IP
Sl e P Mk S i
A1 — ) & M1- )

By the transfer principle, there exists a standard positive real number d such that

!f+a_A)
A(L =)

PE - Nl
A1 —A)

| == Fﬁﬂp

+d<
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for all z,y € E and A € (0,1), i.e.,
Az + (1~ Nyl + A1 = A)dflz — gl < Alle|lP + (1= A)lly]l?

fora]l:t,yeEandOS/\SL
(i) = (i). Let # and y be any elements of *Sg(1) with = # y. By (iii), we have

|24 + e ol < 1,

and hence

1 “ r+ y[
lz —ylp e - yH”
We claim that there exists a standard positive real number ¢ such that

1
‘ > 4d. (6.7)

1 u+v
e e

for all u,v € Sg(1l). Suppose not, i.e., there exist z,y € *Sg(1) such that

T sl
||z — yll? R yIIP

For any standard natural number n, we have

=52 - == 1 1=

| lz = wlir llz — yl!” | lle - yH" e — yll”

~ (.

Hence we obtain

: 1=
le =3l ~ flo - yli”
for any standard natural number n, which contradicts (6.7). Therefore (i) is valid. O

The dual version of Theorem 7 is the following.

THEOREM 9. Let E be a normed linear space and let ¢ : [0,00) — [0,00) be a function
- such that it is uniformly smooth on [0, o), ¢(0) = 0 and ¢'(0) = 0. If for some positive real
- number ¢, the modulus of smoothness p satisfies p(7) < cp(7) for all 7 > 0 and

lim |
al0
A— oo

=0,

(4)#(a)

then (]| -|}) is uniformly smooth on E. Moreover, if ¢ is convex then (]| - ||) is uniformly
Fréchet differentiable on E.
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PROOF. Let ¢ be a positive real number such that p(7) < ep(7) for all 7 > 0, and let

lim go'(A)“’—(}—)i ~0 (6.8)
alo A

A—oo

 be satisfied. Let z € *E, u € *Sg(1) and , s € *R\ {0} with ¢ ~ 0 and s ~ 0. First we assume
z = o. Then we get

p(llz +tull) — o(li=ll) _ #(t) — (0)

Hence we obtain

Pl + tuf)) — o(ll=l)  e(lz + sul)) — o(li])
t

s
Next we assume z # o. Then we get

p(llz + tul) — e(llzl) _ ¢(lz + sull) — o(l=l)

t s

_ ¢z +tul)) = o(liz|]) |z + tu)l — ll2]| _ oz + sull) — ¢(ll|]) llz + sull - |i=|
llz + tul| — ||=|] t [l + su|| - |zl J
, 4+ tul| — ||z T+ suj| — ||z

If ||z|| is finite, ¢'(]|2]|) is finite and hence we can derive
p(llz + tull) — o(l=ll) _ #(llz + sull) — (ll=]])
t - s
from the uniform smoothness of E. So we may assume that ||z| is infinite. Let o =
max{|t], |s|}. Since p(1) < cp(7) for all T > 0, we have

=il + e
2

~1<ep(=)s

* Iz + orul + flz — el — 2fe]) _

So (6.8) yields

(!

Iw+wll lzll _ ll= + sull - lwll

|z +aul| + |lo — au|| — 2|j=||

)| <[l :
(el 2

=l

< 2¢

~ 0.
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Therefore we obtain

o(llz + tul) — (lizl) _ ez + sull) - e(l=l)
t - s .
which implies that ¢(|| - ||) is uniformly smooth on E. O

The following is also due to Xu [9]. In his paper, he wrote g > 1, but if ¢ > 2, there exists
no normed linear space such that || - ||? is uniformly Fréchet differentiable on the whole space.

THEOREM 10 (Xu). Let g be a fixed real number with 1 < ¢ < 2. Let £ be a normed
linear space. Then the following are equivalent;

(i) there exists a constant ¢ > 0 such that p(7) < c-7%for all 7 > 0,
(ii) the functional || - ||¢ is uniformly Fréchet differentiable on FE,
(iii) there exists a constant d > 0 such that
Az + (1 = Nyl + A1 = A)d|z - y]|* > Al2]|* + (1 = My])*
forallz,y€e Fand 0 < A< 1.

PROOF. (i) = (ii). Put ¢ : [0,00) — [0, 00) by ¢(t) = t? for £ > 0. It is easy to see that
¢ is uniformly smooth on [0, 00), ¢(0) = 0 and ¢'(0) = 0. The inequality p(7) < ¢ 77 for all
7 > 0 implies that p(7) < cp(7) for all 7 > 0. By the definition of ¢, we have

tim () 242
all

A— oo

=limga? ! = 0.
al0

A

So, by our theorem, || - ||? is uniformly Fréchet differentiable on E.
(i) = (iii). Let M be any infinite element of *R,. Let 2 and y be any elements of *E with

z #y. Then g —r ~ ¥—. Let A € *(0,1). Since | -||? is uniformly Fréchet differentiable
on E, by Proposition 2, we have
e + o I” o, Mgzl + (= Va7l
A1 =) A1 =) ‘

Hence we obtain

Alzll* + (1 = Mligll* - [Az + (1 = Ayl)* 1 N
Al =A) Mifjz —yljr —

So we have

Allzll® + (1 = Mllgll* - 1Az + (1 - Myl 1 <1
AL =2) Ml —ylle =
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- Allzll* + (1= Mgl — Az + (1 = Ayl < MIAL = V) jz — y]le.

Therefore, by the transfer principle, (iii) is valid.
(i) = (i). Let z € Sg(1) and v € E \ {o}. Since ||z + u)| > 1 or ||z — u]| > 1, we have
|z +ul| + ||z — u|| < ||z + u||? + ||z — u||?. From (iii), we can derive

2 +ull +|lz —uf] _ Jlz+u)? + ||z - u|)?

2 - 2
(z+u)+(z—u)ye 1 1
<| 5 |"+3 5 diie+u) = (@~ w)
= ||2]|? + 297 %d|Ju||".
Hence we obtain
Jot e =l g
which implies that p(7) < 297 2d -9 forall 7 > 0. O
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