
QoS applied to security in mobile computing�

Terje Fallmyr and Tage Stabell-Kulø
Department of Computer Science

N-9037 University of Tromsø
NORWAY

e-mail: terje@cs.uit.no and tage@acm.org

Keywords: Mobile computing, Quality of service (QoS),
adaptability, reconfiguration, notification,

security, trust management.

June 30, 1997

Abstract

Hand-held mobile computers have the potential to become important commu-
nication tools for roaming users. As such, they will also become very personal.
They will be used under a wide range of operating conditions, and tight user con-
trol will be enforced on issues like power consumption, consistency control, and
trust management. Their ability to adapt will be the key to their success.

In this paper we outline our notion and use of Quality of Service (QoS) to
the design of adaptive software systems for mobile computers. They have been
developed in the MobyDick and GDD projects. We do not emphasize on the pro-
vision of QoS guarantees. In stead, our notion of QoS is used to convey relevant
and timely management information between service users and providers on the
correct abstraction level. It structures adaptability management in the hand held
machine, and it captures adaptability to changes both stemming from the hosting
environment and user commands.

As an example of how the architecture works, the importance of adaptivity of
security services for personal companions are explained, and we show how our
notion of QoS may realize adaptable security services.

�This work was supported by the MobyDick (ESPRIT LTR 20422) and GDD projects (NFR 112577/431)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392160364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

A Personal Companion is a very personal, small, portable computer and communica-
tions device. It may replace many of the items that people carry around, like cash,
credit cards, keys, diary, cellular phone, and pager. It is a roaming, battery driven and
relatively resource poor computer. The quality of the services it offers, as well as how
they actually are executed best, will vary with the machine’s current capabilities. This
is to a large extent determined by its current hosting environment at any time.

As personal companions become ubiquitous [Weiser91], they also become impor-
tant to the owner. They will contain the keys and information that is needed for many
everyday actions. Given their importance, we must expect that users want the ability
to control them to a much greater extent than is usual with ordinary desktop or note-
book computers. This spans a wide range that includes control over how and when
the limited power is consumed, and determining which parties to trust in transactions
that require security. Therefore, they should be adaptive and work predictively under a
wide range of conditions.

The personal companion’s close affiliation to the personal sphere, places new and
challenging demands on security. The fact that a personal companion is trusted, makes
the user (as an individual) vulnerable to all sorts of attacks, ranging from theft of the
machine to Trojan horses. Security must be handled with the outmost care in order
to use the personal companion to purchase goods from a foreign, and possible non-
friendly provider. At the same time, the security scheme must be flexible. In a setting
where denial of service is not tolerated, insufficient resources may dictate that a costly
but safe security scheme is traded for a less costly but less secure scheme with a greater
chance of success, an example of which will be shown in Section 5.3.

In security, trust is difficult to manage. This is so since it is a feeling, and as such
can not be measured or treated algorithmically. Therefore, any decision that relies on
trust must ultimately be made by a human. This is true regardless of what “purpose” the
trust plays (binding a key to a person or trusting the internal clock in a machine to show
the correct time, or whatever). As humans we can draw on many sources to become
confident that some statement is true. For example, based on experience, you trust your
watch to show the (more or less) correct time although you can neither prove it to run
correctly, nor that it has not been tampered with. Furthermore, you are confident that
you will notice if it goes wild, and do not believe it will engage in a scheme to trick
you into believing it is night at noon. This might seems trivial, but as we will see, trust
is an important resource that can be exploited. In particular, trust is closely tied to the
“quality” of any security scheme, and is thus a natural component in a system based on
the notion of QoS.

Key design issues for the software system of personal companions are their ability
to provide predictable service levels and behaviors in the face of varying operating
conditions and user controls. Their ability to adapt, both at the application and system
levels, will be key to their success. The importance of adaptability has been pointed out
several places, e.g. [Davies93, Satyanarayanan94, Imielinski94, Forman94, Schilit94,
Kaashoek94].

We present a software architecture that is a part of the MobyDick and GDD projects,
and which takes a novel approach to meet the demands for adaptability in personal,
mobile computers. Our notion of Quality of service (QoS) does not emphasize on the

2

provision of QoS guarantees. In stead, QoS is used to convey non-functional service
information as well as relevant and timely management information between service
users and providers, and to provide it on the correct abstraction level. The architecture
structures adaptability management in the mobile computer, and handles adaptability
to changes stemming both from the hosting environment and from user commands.

The QoS architecture is outlined in Section 2. Section 3 explains integrated QoS-
based management, while Section 4 presents the software architecture. Adaptable se-
curity is presented in Section 5. We sum up in 6.

2 A QoS architecture for adaptability

(QoS) is an attractive model for resource allocation and sharing, and has gained much
attention in the transfer of multi-media documents. QoS based resource allocation is
closely linked to the service model and is based on service users requesting a resource
or service on some level of quality from a service provider.

2.1 Quality of service in statically connected systems

In statically connected systems, the service provider normally verifies (end-to-end) if
the request can be granted. If the service provider grants the request (possibly after ne-
gotiation), the two parties enter a QoS contract that gives the service user a “guarantee”
that the service level stated in the contract shall be sustained.

On a long time scale, the service provider may apply admission control to limit
resource usage to fulfill the obligations in the existing contracts. On a short term scale,
fluctuations may be handled by the transport channel [Huard96]. Service users may
normally rely on the guarantee, and that they are being granted the resources stated in
the contract until they release them. This model relies on the stability of the service
provider and the resources and services it requires.

2.2 Quality of service in mobile systems

Availability and quality of resources in a mobile computer are in general unpredictable,
so a service provider in a mobile computer cannot assume the same kind of stability as
its peer in a static system. Therefore, it cannot normally issue QoS guarantees that a
service user can rely on1. QoS-based resource management in a mobile computer must
take this fundamental difference into account.

As QoS-based approaches for static systems focus on the provision of guarantees,
they tend to pay less attention to the situations that occur when the contract actually
is violated by the service provider for some reason. A roaming computer, however,
will often enter not foreseeable situations and new environments, In some of them the
current QoS level in one or more contracts cannot be sustained. The user may also
decide to turn the machine off, or issue a control action that suddenly alters the way
resources are allocated throughout the system. These situations are not errors, but are
modus operandi for mobile computers.

Given sufficient resources, the software entities in our architecture request and re-
lease resources as in statically connected systems. But when resources degrade, the

1There are exceptions, like when the mobile computer is well connected, and behaves like a small ordi-
nary computer.

3

system will exhibit a potentially high portion of resource revocations that cannot be
anticipated either by service users or providers. Hence, we do not emphasize on the
provision of QoS guarantees. In stead, our notion of QoS is designed to convey rele-
vant and timely management information between service users and providers, and on
ensuring that it is presented at the correct abstraction level.

2.3 The building blocks

The software system of the personal companion is composed of modules whose internal
activity is not externally visible or accessible. Each module contains both service and
management operations.

Qualitative aspects associated with a sequence of operations—e.g. security level,
consistency requirements, or data stream quality—are expressed in terms of QoS pa-
rameters. The sequence of operations may for instance pertain to a network connection
(from connect to disconnect), or operations on a file (from open to close), or
a transaction.

The first operation in the sequence will trigger a negotiation phase during which
the invokee will request (end-to-end) the necessary contracts and resources it needs.
When the two modules agree on which QoS parameter values that is to be supported
by the invokee, they have a QoS contract.

In an adaptive system, the invoker needs the possibility to get information about
relevant states and events concerning ongoing service operations that is normally con-
sidered internal to the invokee. This may happen asynchronously with respect to the
state of the invoker’s current underlying computation or the ongoing service operation.
The set of management operations are used for this. It contains operations for the ex-
change of notifications and control operations between the invoker and the invokee, and
for the invoker to fetch relevant management information from the invokee. They give
the invoker timely and controlled access to invokee-intrinsic information when needed
and according to the agreement stated in the QoS contract between the two parties. The
QoS contract states what information the invoker had requested. Thereby both scope
and abstraction level of the information is limited to the invoker’s needs and abilities.

2.4 The QoS contract

A QoS contract in the architecture consists of several parts, including a contract type,
a set of QoS parameters, a contract identifier (CID) and a monitoring method.

The contract type identifies what “topic” the contract is about (e.g. multi-media,
audio, video, security, consistency) and makes it possible for adaptability management
to take actions that are suited for that type, and to make priorities between types. For
instance, telephony may get higher priority than file transfer or e-mail.

Each QoS parameter consists of a value pair, one representing the low end and the
other the high end, of what is called a tolerable range (the two values may be equal).
As long as the delivered QoS parameter values during service stay within the tolerable
range, the provider is said to behave according to the contract. When a value falls
outside the tolerable range, the contract may be violated. However, it is not certain
that a contract is violated when the delivered value is outside the tolerable range. In
a networking context, a contract would normally be violated if a QoS parameter value
throughput falls below the low end, but not when it exceeds the high end. The

4

opposite is true for the QoS parameter value cost (in terms of monetary value per
bit).

The contract identifier (CID) is used to identify contracts that belong together and
whose resources should be treated in unison. A service user suggests which CID should
identify this contract when initiating the negotiation phase. The service provider will
use the same CID in the resource requests it issues to sustain the contract. When this
is applied end-to-end, all the resource reservations that origin from to the same initial
request are identified with the same CID. This allows the CID to be used as a guide for
handling of resource grants and revocations in order to obtain the effects stated in what
is the current resource management policy.

The modules holding contracts that are identified with the same CID, form a sub-
graph in a resource management graph that connects service users and providers in the
system, through all abstraction levels. The modules are the vertices of the graph while
the relation “have QoS contract with” forms the edges. Each subgraph is directed, and
has an application as root. QoS contracts allow resources belonging to each subgraph to
be treated in unison, and the resource management policies decide what the treatment
will be.

For instance, assume that the network service has several contracts, and that two
of them have the same CID, one with an application and one with the file service.
The contract with the file service is a consequence of a contract (with the same CID)
between the application and the file service, and is necessary for the file service to
carry out its service for the application. If network QoS suddenly drops so that the
network service is forced to violate some of its contracts, it may group contracts by
CID according to which subgraph they belong to, and only violate contracts within
the same subgraph until the resource situation eventually forces it to choose another
subgraph as well. This policy will revoke resources from one application at a time,
such that as few applications as possible are affected. A priority associated with each
subgraph may be applied when choosing the order in which subgraph contracts will be
violated.

Figure 1: Resource subgraphs

Figure 1 shows that low level service D has four contracts, two of which origin
at application A and two at B. The contracts are internally identified with CID A and
CID B respectively. Those that origin at A are shown with solid lines and those fromB
are shown with dotted lines. If D is forced to violate some contracts, the architecture
ensures that violating contracts tagged with CID A by itself will not affect contracts
stemming from B or B itself.

5

The monitoring method may either be poll or notify, and gives the invoker the
possibility to specify how the internal information from the invokee is to be conveyed.
The poll option gives the invoker the responsibility to poll the invokee at points in
time appropriate for it, while the notify option gives the invokee the responsibility to
notify the invoker upon contract violation. Since the invoker may decide which mon-
itoring method it prefers, it may also change methods as part of an adaptation action
(including re-negotiation of the contract), if that would suit a new situation better. This
will give a user the possibility to choose between adaptivity schemes that favor stability
over agility, or vice versa.

The service user may request re-negotiation of a contract at any point in time. The
service provider only has that possibility if notify is the current monitoring method.
Otherwise, re-negotiation that is wanted by the invokee may occur after the next poll
by the invoker.

Modules, when acting as service providers, are expected to support both the ability
to notify and to handle poll requests. As service users, they are not required to use the
management operations of service providers, which enables possibilities for best effort
service.

Since monitoring information from the invokee is based on the QoS contracts, it is
limited to the parameters included in the contract. It is the invoker’s privilege to decide
which parameters are to be included in the contract, and thereby limiting the scope of
feedback to the parameters it finds important.

3 Integrated QoS-based management

Our architecture consists of modules, where QoS management is integrated into every
software module. Each modules is responsible for the collection of the QoS manage-
ment information it requires. In the design of a module, it is important to emphasize the
resources it needs from other modules, how to express those needs, and how to adapt
to what it actually gets. Considerations about what service level a module can provide
to other modules under varying conditions is also important. The design of software
modules would therefore focus on cooperation and adaptation issues rather than per-
formance. A module is not required to use the management operations, and may leave
the QoS parameters void during invocation in order to use best effort service.

All software modules may be considered as both service users and service providers2.
At the lowest level, hardware, device drivers or other low level system software, will
detect changes in the form of low level basic events. Their service users will be notified
about relevant events—as determined by their contracts, and will map them to higher
level events. Upon receipt of a notification, the service user takes the responsibility for
internal re-configuration, re-negotiation of the contract, or other control actions. The
service user will then determine its own new quality of service level, and notify any of
its service users with whom it now holds a violated contract, see figure 2.

The architecture provides no central management body (QoS manager external to
the modules) with system wide responsibility for QoS management, for several rea-
sons. Firstly, that does not comply with our notion of integrated QoS management.
Secondly, the “end-to-end argument” [Saltzer84] implies that QoS management should
be done on the highest possible abstraction level to utilize the highest level of semantic

2Except the lowest and highest levels of the software hierarchy.

6

Figure 2: Management processing in every module

information. This level is at the operation invoker (or the user) and not in a separate
QoS manager outside the modules. Thirdly, a QoS manager becomes a separate entity
that must be kept informed about contracts, events and states, and will therefore add
complexity to the architecture and make it harder to implement.

This does not preclude the provision of a QoS helper that is a repository for man-
agement information and that makes the provision of QoS management information
and execution of actions more efficient. The responsibility for QoS management is still
with the modules that make up the system.

4 The software architecture

The software system of a personal companion will contain a number of resident appli-
cations, a number of “volatile” applications that are down loaded from the environment,
system support software (including “middleware”), and a multi-tasking operating sys-
tem that supports processes and threads.

An overview of the structure of the architecture is given in figure 3. Layers are
used to describe grouping of functions or services on a similar level of abstraction.
The term should not be interpreted too strict since our architecture leans itself towards
cooperation between modules rather than towards strict hierarchies.

The middelware layer contains libraries that underpin specific high level abstrac-
tions and policies that are shared between a number of applications and therefore not
replicated in each application. These abstractions and policies are however considered
too specialized to be system services.

The application layer contains the ordinary applications. Each application provides
a functional interface and (optionally) a management interface for QoS information
and control pertinent to the application. The QM-UI is a special application that im-
plements the user interface to the user controllable QoS management that is not done
directly with each application. It provides a system-wide view over QoS management
information as well as provide system-wide control commands, and enables user con-
trol commands.

The QH is a special entity that spans all software layers and contains QoS man-

7

Figure 3: Overview of MobyDick software architecture

agement information and resource utilization information, based on information made
available by the modules in the system. Its task is to collect QoS management infor-
mation across software layers so that they efficiently can be made available to the user
through the QM-UI. Modules will register with the QH upon creation so that is has
access to all operations in their management interface. Notifications from one module
to another are sent to the QH as well.

The QH is not responsible for QoS management, and all modules including the
QM-UI could perform their task without it. Its primary task is to offer services and
abstractions directly to the QM-UI, and might be considered a performance optimiza-
tion. It could be situated in the middleware layer, but its special status with system
wide access makes it not properly placed at any level.

We have presented our architecture for managing adaptability in mobile systems.
The architecture is general in that is embraces all kinds of resources, and captures
adaptability both stemming from the hosting environment and the user. In the following
we will outline adaptable security and show an example of how it can be handled in the
architecture.

5 Adaptable security

In most settings one will strive for the best security possible. Denial of service due
to lack of security resources (certificates or credentials) is normal. However, a truly
personal machine is trusted, and this resource is valuable indeed, in fact, a personal
machine excels over other tools in its resoursfullness: trust. The personal companion
can be made such that it can be trusted by its owner, and in a distributed system this is
a valuable resource indeed.

8

Due to short or long term lack of resources, some secure communication may only
be completed after a more secure but more costly security scheme is traded for a less
costly and less secure scheme. The gain is less risk of denial of service. Cost is usually
measured in messages that has to be transmitted. The fundamental problem in adapt-
able security is that trust can not be quantified, and thus not treated algorithmically.
In other words, changes of security policy cannot be done by the software systems
alone. Only the user, who is responsible for “trust management”, should take decisions
based on his feeling of trustworthiness and knowledge of the environment in which the
personal companion is running at the moment.

There is a path of QoS mappings that crosses several abstraction levels between
resources and security issues. Our architecture allows dynamic security issues to be
expressed and treated in the same way as other qualitative issues.

5.1 Security requirements for a personal companion

If the personal companion is to replace items like cash, cheque book, credit cards, pass-
port, keys, diary, etc., it must be able to communicate securely with foreign services.
What constitutes security (privacy or integrity, or both) will depend on the particular
service. That is, the user evaluates the environment, the trust relations and the actual
service, and then decides on the “level” of security. Coupled with a resource-poor ma-
chine, we obtain an unique environment where security must be adaptable in the same
way as the other user oriented services that the personal companion provides.

Since the personal companion will be trusted by its owner, the user will store private
data (secrets) in it. This makes it valuable in a very personal way.

In other words, two forces pull in opposite directions at small personal machines.
On one hand, their nature implies interaction with unknown and untrusted service
providers. On the other, the “closeness” to the user makes them very vulnerable. This
is the crux of the security problem.

5.2 Security and QoS

Engagement in secure communication requires assumptions about requirements for en-
cryption, secrecy of keys, and so on. In a system that is designed for a well known and
stable mix of principals, the assumptions can be evaluated once to determine whether
they are reasonable. In systems where personal companions are used, this approach
can not be used. For example, in the office, communication with infrared in probably
not problematic since eavesdroppers must be in “line of sight”. However, infrared or
other broadcast networking technologies are not at all tolerable in public areas, at least
without encryption.

Systems employing strong security generally do not permit the user to lower the
security. Less security might seem undesirable, but in a situation with lack of resources,
like no connectivity, there might be a choice between low security and denial of service,
which may be totally unacceptable. In general, secure systems pay little attention to
the way resources affect security, and vice versa.

Another scenario is one where a clear-text session is underway, and the user is
asked to supply a piece of sensitive information. In order to reply, authentication and
exchange of a session key must take place, which requires resources. Flexibility is
crucial for smooth operation.

We use QoS as the method to manage changes in a system and thus how, and when,
to change from one strategy to another. Whatever policy is changed to or from, the

9

available alternatives must be solid and argued for based on their quality. The different
policies by themselves has nothing to do with QoS.

Lowering the level of security is not done by changing to a shorter encryption key.
Such algorithmic “tricks” have only marginal effects on the overall power consumption
and communication. To us, the largest effect can be seen by exploiting trust, and the
user’s knowledge. At best, software can verify that a signature is created with some
key, or that a certificate has not expired. Users, on the other hand, must answer difficult
questions, such as “Do you believe that this key belongs to the person with this name.”
The gap between a key and a person must be bridged by trust. By making this bridge
longer, the user can significantly lower the effort needed by the personal companion;
this is how the notion of QoS is used.

Security not only “uses” resources in the form of computation, storage and commu-
nication bandwidth, it also provide services to other parts of the system. Examples of
such a service is authentication. This is why we are convinced that a successful design
of a personal companion must enable not only communication services, but security as
well to be adaptable, and hence be included in the notion of QoS. And, thus, security
must be designed with adaptability in mind.

5.3 An Example

By means of an example, we will argue that adaptable security is not only useful, but
also feasible. Assume that a user, by means of his personal companion, is in the process
of extracting money from an ATM (Automatic Teller Machine). The machine wants
proper authentication of the human, while the human wants all communication to be
encrypted in order to hide sensitive information such as account numbers. Any non-
trivial authentication scheme can be used [Liebl93, Lampson92]. Here, we will not
dwell with the details of any particular protocol, but instead remark that a large number
of protocols exists precisely because there are a large variety of possible assumptions
that can be made. Here, we assume the protocol in use is a simple one, as we will
now describe. After an initial exchange of messages where the identity of each party
is claimed, the personal companion receives a certificate stating that a particular public
key is controlled by the ATM. The certificate is signed with the bank’s public key, and
the validity is limited (by an explicit expire time). Furthermore, the certificate requires
on-line verification to make revocation possible

All actions and messages from this point on, is to strengthen the user’s confidence
in the ATM’s public key. First, by fetching the bank’s public key, the user can verify
that the certificate was indeed correctly signed. Then, the user fetches and verifies,
by means of the bank’s key, the public key of the on-line verification service. A new
exchange of messages follows, after which the user can be confident that the ATM’s
key is still valid. At last, the exchange of nounces can take place to ensure that the
ATM is present now [Burrows90].

The actual number of messages can be high, depending on the actual protocols
and how the infrastructure is organized (how is naming implemented, for example).
However, the user might also use other means to verify that the received key is indeed
controlled by the ATM. If he is inside one of the bank’s branches, chances are high
that the ATM is indeed owned and operated by the bank. In this case, the user might
trust his own judgment, and skip all the messages required to verify the certificates.
This way, the user can act on notifications from the machine on low battery status, for
example.

10

Withdrawing (real) money from an ATM is, of cource, an extreme example. How-
ever, in general, it demonstrates that the user is able to adapt the security “on the fly” by
changing what is trusted. Such an ability is precisely what is needed to include security
in a personal companion where QoS is used to convey changes is the system itself or
the environment.

The number of assertions that can be trusted, and thus are interesting in an adaptive
system, includes time, public keys, whether a principal is capable of generating good
keys, whether communication is private, and so on. All of these can change, and give
rise to a different communication pattern (and thus energy consumption). To sum up,
security is a well suited service to manage by means of QoS mappings.

6 Conclusion

We have outlined our notion of Quality of service and its use in the structuring of adap-
tive software systems for mobile computers. Rather than emphasizing on providing
QoS guarantees, i.e. how to schedule the available (stable) resources to meet the total
amount of demands, our notion of QoS is used to convey relevant and timely manage-
ment information between service users and providers on the correct abstraction level.
Moreover, it captures adaptability both stemming from the hosting environment and
user commands.

As an example of how to employ QoS we have chosen to focus on security. We have
shown how to use trust to adopt security to changes stemming from the environment.

In the scope of the MobyDick and GDD projects, full QoS architectures covering
diverse areas like power management and consistency, are being worked out. Selected
test applications with necessary system services, conforming to the QoS architecture
is being developed. Key parts of the system support, like seamless switching between
network technologies [Brattli96], is already implemented.

Acknowledgments

The collaboration with the members of the MobyDick and GDD projects, in Pisa,
Twente, and Tromsø, has been invaluable for this work. We thank you all.

References

[Brattli96] Dag Brattli. The Software Network, Providing Continous Network Connec-
tivity for Multihoming Mobile Hosts. PhD thesis. December 1996.

[Burrows90] Michael Burrows, Martı́n Abadi, and Roger Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, 8(1):18–36, February 1990.
Also available in the Proceeding of the 12th SOSP., Litchfield Park, AZ, USA,
3–6 Dec. 1989. Published as ACM Operating System Review, Vol. 23, No. 5, pp.
1–13, December 1989. A fuller version was published as DEC System Research
Senter Report No. 39, Palo Alto, California, USA, February 1989. Also presented
in Proceedings of the Royal Society of London, Series A, 426:233–271, 1989.

11

[Davies93] N. Davies, G. Coulson, and G. S. Blair. Supporting Quality of Service
in Heterogenous Networks: From ATM to GSM. Internal Report MPG-93-26.
Department of Computing, Lancaster University, Bailrigg, Lancaster, Nov. 1993.

[Forman94] G. H. Forman and J. Zahorjan. The challenges of mobile computing.
IEEE Computer, 27(4):38–47, Apr. 1994.

[Huard96] J.-F. Huard, I. Inoue, A. A. Lazar, and H. Yamanaka. Meeting QOS Guar-
antees by End-to-End QOS Monitoring and Adaptation. Proceedings of the Fifth
IEEE International Symposium On High Performance Distributed Computing
(HPDC-5), Aug. 1996.

[Imielinski94] T. Imielinski and S. Viswanathan. Adaptive Wireless Information Sys-
tems. Proceedings of the SIGDBS Conference (Tokyo, Japan), Oct. 1994.

[Kaashoek94] M. F. Kaashoek, T. Pinckney, and J. A. Tauber. Mobisaic: An Informa-
tion System for a Mobile Wireless Computing Environment. Proceedings of the
1st IEEE Workshop on Mobile Computing Systems and Applications (Santa Cruz,
CA, USA), Dec. 1994.

[Lampson92] Butler Lampson, Martı́n Abadi, Michael Burrows, and Edward Wobber.
Authentication in distribued systems: theory and practice. ACM Transactions on
Computer Systems, 10(4):265–310, November 1992. Also available as a tech-
nical report from ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/SRC-
083.ps.gz. A preliminary version of this paper appeared in the Proceedings of the
Thirteenth ACM Sypomsium on Operation Systems Principles.

[Liebl93] Armin Liebl. Authentication in distributed systems: A bibliography. Oper-
ating Systems Review, 27(4):31–41. ACM, October 1993.

[Saltzer84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in
System Design. ACM Transactions on Computer Systems, 2(4):277-288, Nov.
1984.

[Satyanarayanan94] M. Satyanarayanan, B. Noble, Puneet Kumar, and Morgan Price.
Application-Aware Adaptation for Mobile Computing. 6th ACM SIGOPS Euro-
pean Workshop (Dagstuhl Castle, Wadern, Germany, Sept. 1994), pages 1–4, Sep.
1994.

[Schilit94] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing ap-
plications. Proceedings of the 1st IEEE Workshop on Mobile Computing Systems
and Applications (Santa Cruz, CA, USA), Dec. 1994.

[Weiser91] Mark Weiser. The computer for the twenty-first century. Scientific Ameri-
can, 265(3):94–104, Sept. 1991.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

