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Abstract. Scalability, reliability and adaptability are among the key 
requirements for the enactment of distributed workflows. In addition, system 
resources should be efficiently utilized. Central workflow engines and static 
analysis of workflow specifications are some of the important obstacles to 
meeting these requirements. We propose a fully decentralized approach to 
workflow enactment that is not subject to these obstacles. In addition, it 
supports automatic recovery. The approach is of continuation-passing style, 
where continuations, or the reminder of the executions, are passed along with 
asynchronous messages for workflow enactment. Two continuations are 
associated to an execution: a success continuation and a failure continuation. 
Recovery plans for workflows are automatically generated at runtime and 
included in failure continuations. A prototype is implemented. 

 

 

1 Introduction 
The workflow technology is now increasingly applied to areas beyond traditional 
business process automation. Examples include general software construction [22], 
enterprise-wise and inter-enterprise application integration [20], grid computing [28], 
e-commerce [30], and Web service composition [4][7][8]. Basically, a workflow, 
corresponding traditionally to a business process, consists of a number of loosely 
dependent activities and the control flows among them. Workflows, therefore, 
constitute the control concern of applications and their integrations. Applications 
constructed with the separation of their control concern from other concerns are more 
amenable to fast development and changes [22]. 

For serious applications, workflows should be recoverable in the sense of logic 
atomicity [19]. Every activity in a workflow is an atomic unit of execution whose 
effect is immediately committed after successful execution. If necessary, for example 
when the execution of some subsequent activity fails, the committed effect must be 
logically undone by a compensation activity. 

Workflow enactment is the process of controlling the correct and reliable execution of 
activities by different processing entities. Traditionally, workflow enactment is 
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carried out by a central server known as the workflow engine. For example, if a 
workflow W consists of activity A at site a followed by activity B at site b, the 
workflow engine at site w invokes A, waits for the result of A from a and then invokes 
B. This central workflow engine can become a potential processing and 
communication bottleneck as well as a central point of failure. This centralized 
approach thus suffers from poor scalability to large number of concurrent workflows 
and vulnerability to failures either as server crashes or disconnections to it [1]. In 
addition, in some new distributed computing areas, such as dynamic Web services 
composition, there even hardly exists any central workflow engine. 

With decentralized workflow enactment, the processing entities may communicate 
directly with each other (e.g. from a to b) to transfer data and control when necessary 
(e.g., after A finishes) in an asynchronous manner (e.g., without a return message 
from b to a). Several approaches to decentralized workflow enactment have been 
proposed. Common to most of these, a workflow specification is analyzed before 
execution, and proper resources and control are pre-allocated in the distributed 
environment. These approaches inevitably allocate resources even for the part of the 
workflow that is not executed. They also tend to have limited adaptability at runtime. 

We propose an approach that is fully decentralized and does not involve static 
analysis of workflow specifications. There is no central point of performance 
bottleneck and failure. Unnecessary pre-allocation of resources is avoided. 
Furthermore, the approach is inherently more suitable for dynamic composition and 
adaptable execution of workflows. The approach is of continuation-passing style, 
which is common practice in the functional programming community. Basically, a 
continuation represents the rest of an execution at a certain point of the execution. 
They are automatically derived during the execution. By knowing the continuation of 
the current execution, the control can be passed to the proper processing entities 
without the involvement of a central workflow engine. 

In addition, our approach also supports automatic recovery of workflows. To achieve 
this, two continuations are associated to any particular point of execution. The success 
continuation represents the path of execution towards the success completion of the 
workflow. The failure continuation represents the path of execution towards the 
proper compensation of committed activities after certain failure events. 

The rest of this paper is organized as follows. Section 2 describes the core workflow 
model used to explain the principle of our approach. Section 3 presents the abstract 
CEKK machine that represents states and state transitions for workflow enactment. 
Section 4 presents the CEKK rules for decentralized and recoverable enactment of 
workflows. The approach is further explained using an example in Section 5. The 
implementation of a prototype is briefly described in Section 6. Section 7 is a 
comprehensive account of related work. Section 8 consists of a conclusion of our 
contributions and directions for future work. 

2 The Core Flow Model 
Only a core model is presented here, since our goal is not a new model but rather a 
new enactment approach. A full-fledged model (such as one that includes a complete 
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list of workflow patterns [31]) is out of the scope of this paper. We choose to use the 
notation that is suitable for describing our approach throughout the paper. 

The key abstraction in our model is flow. A flow corresponds to a workflow (business 
process or sub-process) commonly defined in the various traditional business process 
models. A flow has a hierarchical structure that is defined recursively below: 

Flow ::= Empty Flow | Activity | Blackbox Flow 

| seq(Flow*)| fork(join-agent, Flow*) | or(Flow*)  

| if(Condition, Flow, Flow) | loop(Condition, Flow*) 

Figure 1 shows an example of a flow and its tree structure. The flow at the root of a 
flow tree is a top-level flow. All other flows in the tree are sub-flows. The leaves of 
the tree are primitive constructs. 

seq

fork

or

Aa

Bb Cc

Dd

Ee
seq(Aa, fork(e, or(Bb, Cc), Dd), Ee) 

A: reservation at training course AdBeans 
B/C: booking at hotel BedBreakfast/Continental 
D: booking of airline ticket 
E: approval by manager 
 

a. The flow specification b. The tree structure  

Figure 1. An example flow  
 

At the primitive level, a flow can be an empty flow, an activity or a blackbox flow. 
An empty flow means there is nothing to do. It can be used, for example, to indicate 
the completion of the execution of a flow. We use ┴ to denote an empty flow. 

An activity can be either manual or automatic. A manual activity is performed by a 
human agent. An automatic activity is a program or service with specific interfaces. 
Here we restrict to automatic activities, because the treatment of manual activities is 
very similar, as briefly mentioned in Section 6 that describes our prototype. An 
activity consists of a number of elements, including the agent that is in charge of its 
execution, the program to be executed, as well as eventually the compensation 
program, the input and output data, etc. In this paper, an agent is the processing entity 
of the activity and is synonymous with the site at which the activity program runs. In 
what follows, Aa denotes an activity A to be executed by agent (at site) a. For activity 
Aa that can be logically undone, we use A-1

a to denote the corresponding 
compensation activity. 

A blackbox flow is a flow whose internal structure is only known by its own agent. 
Blackbox flows are useful for modular composition of flows and for integration of 
existing ones. They can be used for autonomy, privacy or security reasons. They also 
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allow different enactment mechanisms to be used for a single flow. For example, a 
blackbox flow can be managed by a central workflow engine while the rest of the 
flow is managed by the mechanism described in this paper. For the other agents, a 
blackbox flow behaves the same as an activity. In the rest of the paper, we treat 
blackbox flows as activities. 

seq defines a sequence of sub-flows. fork spawns multiple parallel branches of 
sub-flows. The branches will be executed in parallel and then join at a join agent after 
their successful executions. The join agent can be automatically chosen if it is not 
explicitly specified. or enables execution from multiple alternative sub-flows, such 
that if the execution of a chosen sub-flow fails, one of the other alternative sub-flows 
can be chosen and executed. if defines a logical choice of execution according to a 
condition. A condition is defined on either flow-relevant data or execution status of 
the workflow. We defer the definition of condition on execution status to the next 
section. The sub-flow within a loop is repeated until the condition is evaluated to be 
false. 

The example scenario in Figure 1 shows a flow for the arrangement of a trip for an 
employee to attend a training course AdBeans. The flow consists sequentially of an 
activity (or a blackbox sub-flow) for the reservation at the training course (A at a), 
followed first by a complicated sub-flow for the booking of airline tickets and a hotel 
room, and then by an activity (or a blackbox sub-flow) for the approval of the trip 
details by the manager of the employee (E at e). The complicated sub-flow consists of 
two parallel branches: an or sub-flow for the reservation of a room at either hotel 
BedBreakfast (B at b) or Continental (C at c), and an activity (or a blackbox sub-flow) 
for the reservation of airline tickets (D at d). The two branches will join at agent e. 
The join agent e can be automatically generated. Here it is explicitly specified for 
better readability. 

3 The CEKK Machine 
We introduce an abstract state machine called CEKK for distributed and recoverable 
flow enactment. The enactment of a flow is the process of interpreting the state 
transitions with the CEKK machine. This section describes the CEKK machine. The 
state transition rules are described in the next section. 

A global CEKK machine defines the possible global states of a flow and the possible 
transitions among them. It consists of a number of local CEKK machines that define 
possible states and their possible transitions locally at agents. Every active branch of 
the flow has a corresponding local CEKK machine. The global state of the flow is the 
aggregation of the local states and the global state transitions are defined solely by the 
local state transitions. This important property, which will be clear when the state 
transitions rules are presented, assures that no global coordination among the agents is 
needed for global state transitions. 

A state of a local CEKK machine at agent p is a quadruple <c, e, ks, kf>p, where c is 
called a control expression, e an environment, and ks and kf two continuations (thus 
the name CEKK with C for control, E for environment and K for continuation). 
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The control expression and the continuations together represent the work yet to be 
carried out. 

A control expression c represents the next (sub-)flow to be enacted immediately. It is 
an expression in the core flow model extended with automatically generated 
continuation frames, to be described below. 

A continuation is the reminder of execution after the control expression. ks, the 
success continuation, is the continuation towards the successful end of the flow. kf, 
the failure continuation, is the continuation towards the compensated end of the flow, 
after some eventual failure in the subsequent execution of the flow. A continuation is 
represented as a stack of continuation frames. A continuation frame is itself a flow as 
defined in the core flow model, extended with constructs automatically generated 
during enactment. For a continuation k = fn: …f1:f0:┴, we write k.head = fn and k.tail = 
fn-1: …f1:f0:┴. When k ≠ ┴, the last ┴ in k is normally omitted. When a continuation k is 
applied, k.head, i.e. the continuation frame at the top, becomes the control expression 
of the new state. 

Formally, a continuation frame is of the form: 

Continuation Frame ::= Flow | orc(or(Flow*), ks, kf) 

| join(join-agent, condition) 

where orc (for or-closure) and join frames are automatically generated during 
the enactment of or and fork flows respectively. A join is successful only when its 
condition is evaluated to be true. 

An environment e is the runtime context of the flow. Information contained in e 
includes flow-relevant data and knowledge of status of the current execution so far. 
The execution status consists of a set of primitive status: 

Primitive Status = Activity Status | Blackbox Flow Status | Join Status 

For every primitive flow F, which is uniquely identified within the flow tree, we use 
succ(F), fail(F), none(F) and unknown(F) to denote a success, failure (aborted), not-
enacted and unknown status of F. 

A condition, included in if flows or join frames, can be evaluated in an 
environment. Of particular interest are the conditions on the current execution status: 

Condition ::= Primitive Status | and(Condition*) | or(Condition*) 

4 Distributed Workflow Enactment with CEKK 
The enactment of a flow in our approach is the process of transitions of CEKK states 
performed by the agents. Before the individual state transition rules are presented, it is 
useful to note that the state transitions appear in one of the following four forms: 

1. Local ongoing — a state transition within a local CEKK machine is 
performed locally at agent p: 

 <c0, e0, ks0, kf0>p → <c1, e1, ks1, kf1>p 
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2. Remote forwarding — a state of a local CEKK machine at agent p is passed 
to a state of another local CEKK machine at agent q: 

<c, e, ks, kf>p → <c, e, ks, kf>q 

In other words, the local CEKK machine at p terminates and a new local 
CEKK machine starts at q with the same state. In terms of flow enactment, 
this corresponds to a message <c, e, ks, kf> from p to q. 

3. Local divergence — multiple parallel branches are spawned at agent p: 

<c0, e0, ks0, kf0>p →  

{<c1, e1, ks1, kf1>p, <c2, e2, ks2, kf2>p , …, <cn, en, ksn, kfn>p } 

where c0 is a fork flow. That is, a single local CEKK machine turns now 
into multiple local CEKK machines at agent p. 

4. Local convergence — multiple parallel branches are joined into one at agent 
p:  

{<c1, e1, ks1, kf1>p, <c2, e2, ks2, kf2>p , …, <cn, en, ksn, kfn>p } →  

<cu, eu, ksu, kfu>p

where c1, c2, …, cn are join frames. That is, multiple local CEKK machines 
are converged into one at agent p. 

Notice that remote forwarding is the only case of message sending, which is 
asynchronous and direct between agents. In all other cases, state transitions are 
carried out locally at individual agents. This explains why global coordination is not 
needed among the agents. 

Below are the state transition rules of the CEKK machine: 

<Ap, e, ks, kf>q → <Ap, e, ks, kf>p  if p ≠ q (A1) 

<Ap, e, ks, kf>p → 

<ks.head, succ(Ap):e, ks.tail, A-1
p:kf>p  if succ(Ap) (A2) 

<kf.head, fail(Ap):e, kf.tail, kf>p if fail(Ap) (A3) 

<seq(fs), e, ks, kf>p → 

<fs.head, e, ks, kf>p if |fs| = 1 (S1) 

<fs.head, e, seq(fs.tail):ks, kf>p otherwise (S2)  

<if(t, ft, ff), e, ks, kf>p → 

<ft, e, ks, kf>p if eval_cond(t, e) (I1) 

<ff, e, ks, kf>p otherwise (I2) 

<loop(t, f), e, ks, kf>p → 

<f, e, loop(t, f):ks, kf>p if eval_cond(t, e) (L1) 
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<ks.head, e, ks.tail, kf>p otherwise (I2) 

<or(fs), e, ks, kf>p → 

<fs.head, e, ks, kf>p if |fs| = 1 (O1) 

<fs.head, e, ks, orc(or(fs.tail), ks, kf)> p  otherwise (O2) 

<orc(or(fs), orcks, orckf), e, ks, kf>p → 

 <or(fs), e, orcks, orckf> p (O3) 

<fork(q, f1, f2, …, fn), e, ks, kf>p → (F1) 

{<f1, e, join_succ:ks, join_fail:kf> p, 

  <f2, e, join_succ:ks, join_fail:kf> p, 

  …, 

  <fn, e, join_succ:ks, join_fail:kf> p } 

where 

join_succ = join(q, and(succ(f1),  succ(f2),  …, succ(fn))) 

join_fail = join(p, and(or(fail(f1), succ(f -11)), 

         or(fail(f2), succ(f -12)), …, 

    or(fail(fn), succ(f -1n)))) 

<join(p, jc), e, ks, kf>q → <join(p, jc), e, ks, kf>p if p ≠ q (J1) 

<join(p, jc), e, ks, kf>p → (J2) 

<ks.head, succ(joinp):ejoin, ks.tail, kfjoin > p if eval_cond(jc, ejoin) 

where 

ejoin = joinp.merge_env(e) 

kfjoin = joinp.merg_kf(kf) 

The transition rules are first grouped based on the control expressions of the CEKK 
states. For example, rules A1 to A3 apply to activities (or blackbox flows), rules S1 
and S2 apply to seq flows, etc. 

Applying rule A1, the execution of an activity is forwarded to the agent of that 
activity. If the execution of an activity Ap succeeds, rule A2 is applied; otherwise, rule 
A3 is applied. Rule A2 can be read like this: the environment is updated with the 
successful execution of Ap; the compensation activity A-1

p of Ap is pushed to the 
failure continuation, so that if some failure event occurs later with the flow, the 
committed effect of Ap will be logically undone by executing the compensation 
activity A-1

p; the success continuation is applied. With rule A3, the failure 
continuation is applied when the execution of Ap fails. There could be different ways 
to cope with failures of the compensation activity. Here we adopt a simple strategy in 
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which the compensation activity is repeated forever. So in rule A3, failure 
continuation remains unchanged. 

If a sequential flow consists of only one sub-flow, that sub-flow is enacted (rule S1). 
Otherwise (rule S2), the first sub-flow is enacted and the other sub-flows are pushed 
to the success continuation, i.e., they will be enacted after the successful execution of 
the first sub-flow. 

For an if flow, the proper sub-flow is selected after the evaluation of the selection 
condition (rules I1 and I2). 

For a loop flow, if the loop condition is evaluated to be true, the sub-flow is enacted 
and same loop flow is pushed to the success continuation for later iterations. 
Otherwise, the loop flow has ended successfully and the success continuation is 
applied. 

If an or flow consists of only one sub-flow, that sub-flow is enacted next (rule O1). 
Otherwise (rule O2), the first alternative sub-flow will be enacted next, and the failure 
continuation will consists of only one orc frame (the or-closure) that encapsulates 
the other alternative sub-flows as well as the success and failure continuations before 
the or flow is enacted. The failure continuation will be applied when the execution of 
the first alternative sub-flow fails. When applied (rule O3), the other alternative sub-
flows will be enacted with the encapsulated continuations. 

Enacting a fork flow spawns multiple parallel branches, each being represented with 
a local CEKK machine (rule F1). Upon creation, all branches have the same success 
and failure continuations. With the new success continuation, the remaining of the 
flow will be enacted after a successful join join_succ of the branches at the join agent. 
The success of the join is defined by the join condition, which states that all branches 
must be completed successfully. With the new failure continuation, before the old 
failure continuation is enacted, the join join_fail at the agent that originated the fork 
will guarantee that all braches will either fail (and their effects aborted) or their 
committed effects be successfully compensated. 

A join is forwarded to the join agent (J1). To enforce rule J2, the join agent maintains 
a join environment ejoin. When a branch completes and is to be joined, its 
environment e is merged into ejoin. If the join condition is evaluated to be true in 
ejoin, the success continuation will be applied; otherwise, the join agent waits for 
other branches to be joined. The new failure continuation kfjoin is generated by 
merging the failure continuations of the branches, as the following: 

The failure continuation of branch i (i = 1, 2, .., n) is of the form: 

kfi:join_fail:kfcommon

where kfi is the failure continuation of the branch, join_fail was generated with rule 
F1, and kfcommom is the failure continuation before the fork was enacted. The merge of 
the failure continuations of the branches is of the form: 

fork(p, kf1, kf2, … kfn):kfcommon
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where p is the agent that spawned the branches. That is, if some failure occurs later, 
the successfully executed fork sub-flow will be compensated by this automatically 
generated fork sub-flow. 

5 Running the Example 
We now illustrate how the example flow in Figure 1 is enacted. Figure 2 shows the 
sequence diagram of the enactment process when no failure occurs. Notice that in the 
diagram, only the necessary messages are sent between the agents. The messages are 
asynchronous in the sense that there are no synchronous return messages. 

c s b d e a 

join

join

A 

B
D

E

Figure 2. Sequence diagram of an enactment of the example flow 
 

We assume that the flow is initiated at site s, which is, for instance, the desktop of the 
employee. We ignore flow relevant data in the environment. The initial global CEKK 
machine of the flow consists of only one local CEKK machine at agent s, with the 
seq flow as initial control expression, initial environment ε and empty success and 
failure continuations. 

The first part of the flow is the reservation at the training course. 

<seq(Aa, fork(j, or(BBb, Cc), Dd), Ee), ε, ┴, ┴>s

→(S2) < Aa, ε, seq(fork(j, or(B Bb, Cc), Dd), Ee), ┴> s

→(A1) < Aa, ε, seq(fork(j, or(B Bb, Cc), Dd), Ee), ┴> a

→(A2) < seq(fork(j, or(B Bb, Cc), Dd), Ee), succ(Aa):ε, ┴, A-1
a> a

First the initial seq flow is enacted using rule S2, followed by a remote forwarding 
according to rule A1, because activity A for reservation at the training course is to be 
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executed by agent a at a remote site. Suppose now that the reservation is successful 
and its effect is committed. Rule A2 is now applied, so succ(Aa) is registered in the 
environment and the compensation activity A-1

a for canceling the reservation is 
pushed to the failure continuation. 

The second part of the flow is the booking of a hotel room and airline tickets in two 
parallel branches. 

→(S2) < fork(j, or(B Bb, Cc), Dd), succ(Aa):ε, seq(Ee), A-1
a> a  

→(F1) {< or(BBb,Cc), succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a ,  

 < Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a } 

 where 

 js = and(or(succ(BBb), succ(Cc)), succ(Dd))  

 jf = and(or(succ(B-1
b), fail(Cc), succ(C-1

c)), 

             or(fail(Dd), succ(D-1
d)))  

After rule S2 is applied, the control expression becomes a fork flow. Two parallel 
branches are spawned by applying rule F1, which is a local divergence. The branches 
have identical success and failure continuations, each with a new join frame. The 
success continuation states that the branches will join at the join agent j when they are 
successfully executed. The failure continuation states that the branches that either 
failed or are successfully compensated for will join at agent a where the branches 
were spawned. 

The first branch is an or flow for hotel room booking. 

< or(BBb, Cc), succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a  

→(O2) < BBb, succ(Aa):ε, orcks, orc(or(Cc), orcks, orckf)> a   

 where 

 orcks = join(j,js):seq(Ee) 

 orckf = join(a,jf):A-1
a

→(A1) < BBb, succ(Aa): ε, orcks, orc(or(Cc), orcks, orckf) > b   

→(A2) <join(j,js),succ(BBb):succ(Aa):ε,seq(Ee), B-1
b:orc(or(Cc),orcks, orckf)>b   

→(J1) <join(j,js),succ(BBb):succ(Aa):ε,seq(Ee), B-1
b:orc(or(Cc),orcks, orckf)> j   

Applying rule O2, the control expression becomes BBb for booking at BedBreakfast. It 
is then forwarded to agent b according to rule A1. Assume a room is successfully 
booked at BedBreakfast. After applying rule A2, the control expression becomes the 
join frame that was generated with the enactment of the fork flow. This is 
forwarded to the join agent j applying rule J1. 

The second branch consists of only Dd for booking of airline tickets.  
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< Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a  

→(A1) < Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> d  

→(A2) < join(j,js), succ(Dd):succ(Aa):ε, seq(Ee), D-1
d:join(a,jf):A-1

a> d  

→(J1) < join(j,js), succ(Dd):succ(Aa):ε, seq(Ee), D-1
d:join(a,jf):A-1

a> j  

After the successful execution of Dd, the state with the join frame as the control 
expression is forwarded to the join agent, similar to the first branch. 

When one branch completes and reaches the join agent j, rule J2 is applied. The 
successful completion of the branch is registered in the join environment at j, but the 
join condition is not true yet, so j waits for the completion of the other branch. When 
the last branch reaches j, the join condition is evaluated to be true and the enactment 
will carry on as local convergence. 

→(J2) < seq(Ee), succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> j  

 where kfj = fork(a, B-1
b, D-1

d):A-1
a

The last part of the flow is the approval of the trip details. 

→(S1) < Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> j  

→(A1) < Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> e  

→(A2) < ┴, succ(Ee): succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, E-1
e:kfj> e  

Finally when the trip details are approved, the successful executions of all activities 
are registered in the environment and the control expression becomes an empty flow. 
The enactment terminates. 

Next, we explain with two cases how automatic recovery works when some failure 
events occur. 

In the first case, BBb for booking at BedBreakfast fails. 

< BBb, succ(Aa):ε, orcks, orc(or(Cc), orcks, orckf) > b

→(A3)<orc(or(Cc),orcks,orckf),fail(BBb):succ(Aa):ε,┴,orc(or(Cc),orcks,orckf)> b   

→(O3) < or(Cc), fail(BBb):succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> b

→(O1) < Cc, fail(BBb):succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> b

Rule A3 is now applied instead of rule A2. After the failure continuation is applied, 
the control expression becomes an orc frame. The orc frame encapsulates the 
alternative sub-flow for booking at Continental as well as the success and failure 
continuations, so that the flow can be enacted either forward when the alternative sub-
flow succeeds or backward when the alternative sub-flow also fails. 

In the second case, Ee for approving the trip details fails. 

< Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> e 

→(A3) <fork(a,B-1
b,D-1

d),fail(Ee):succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, A-1
a,kfj> e 
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Rule A3 is now applied and the booking of the airline tickets and the hotel room will 
be cancelled in parallel followed by the cancellation of the reservation at the training 
course 

6 Implementation 
We have implemented a prototype for distributed flow enactment based on the state 
transition rules of the CEKK machine. The local architecture of the prototype at each 
site is shown in Figure 3. A CEKK state is represented in a message. The flows to be 
enacted at the site are first put in the message queue of that site (1). An agent is a 
thread (or a pool of threads) of control that performs the enactment of flows delivered 
to this site. To enact a flow, it dequeues a message from the message queue (2), 
decides the next action according to the control expression and updates the message 
based on the state transition rules. For a local activity, it invokes the program of the 
activity (3). For a manual activity, the activity program manages a worklist and 
interacts with human users. The return message from the activity program is put back 
into the message queue (4). The state transition rules A2 and A3 are applied later 
when the return message is dequeued (2 again). For a state transition of the form local 
ongoing, divergence or convergence, the updated messages are enqueued back to the 
message queue (5). For a remote forwarding, the message is sent to the site of the 
corresponding agent (6). 

message 
queue 

from 
network 

activity 
program 

to 
network 

enactment agent 
applying CEKK 

state transition rules 

Figure 3. Local architecture at a site for flow enactment 
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For the joining of multiple parallel branches, the enactment agent maintains a 
persistent join state to build the new environment and failure continuation according 
to rule J2. The persistent join state is updated when a join message of a branch is 
processed. A join is successful when the join message of the last branch is processed. 
Currently, timeout at join agents is used for the detection of failures in parallel 
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branches. More sophisticated failure detection mechanisms are needed when timeout 
is inappropriate. 

In the current implementation, messages are in the form similar to the notation used 
throughout this paper. This could be enhanced by BPEL4WS specifications extended 
with continuations. For our proof-of-concept prototype to be practically useful, some 
further extensions are necessary. For example, recoverable message queues [5], which 
have been successfully used for distributed workflow executions in logically 
centralized approaches [2][21], can be used for reliable message transmission and 
message queuing. The two-phase commit protocol used in recoverable message 
queues makes the system tolerant to communication failures and partial system 
crashes during remote forwarding. In a dynamic environment, the agent of an activity 
might not be known. Instead, it may be described by a number of properties. In such 
cases, some activity discovery mechanisms (similar to [4][7]) must be adopted to 
locate the agent before a message is sent for enactment. 

7 Related Work 
We first discuss related work on workflow enactment and then on applications of 
continuations. 

The concept of workflow can be used as a methodology for software development, 
because it separates the control concern from the other concerns of the applications. 
Micro-workflow [22] provides a software framework to achieve this. The framework 
uses the trampolined continuation-passing style [12] for workflow enactment, similar 
to our work. There is limited support for distribution: remote workflows are enacted 
using proxies, similar to synchronous remote procedure calls. There is no support for 
recovery of workflows. 

More often, workflows are used in distributed environments. Workflow enactment is 
typically achieved by workflow engines on dedicated centralized nodes, although this 
is generally regarded as neither scalable nor reliable [1]. In a typical implementation 
[20], all information about a workflow is stored in a database at the workflow engine. 
Information stored include: workflow specifications, workflow and activity instances 
and their execution states. Workflow enactment is the process of receiving messages 
from agents, consulting and updating the database, and sending messages to the 
appropriate agents for further execution. Some workflow engines adopt rule-based 
approaches. 

To cope with the demanding requirements of scalability and reliability, some 
techniques are applied to the logically centralized approach, such as replication or hot 
pooling. For example, in [16], the execution of a workflow engine is spread on a 
cluster of servers coordinated via a shared tuple space. 

Apart from the logically centralized approaches, decentralized workflow enactment 
has also received much attention in research. We classify them into two groups: 
compile-time distribution and run-time distribution. 

With compile-time distribution, the workflow specification is analyzed and 
instantiated before execution. During a workflow instantiation, the necessary 
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resources and control are allocated in the distributed environment based on the 
analysis. The distribution of the enactment mechanisms either forms a hierarchy of 
sub-engines (Aurora [23], γ-calculus [26]), coordinating peer sub-engines based on a 
partitioning of the original specification ([8], flowcharts [10], METUflow [13], 
Mentor [25], SwinDew [32]) or directly down to the agents or other primitive units 
(Excotica/FMQM [2], Self-Serv [4], ORBwork [18]). As a common problem to these 
approaches, resources are allocated even for the part of the workflow that is actually 
not executed (such as some of the alternative paths or when a workflow rolls back at 
an early stage). They also tend to have limited adaptability at run time, because the 
control is mostly already in place before the execution started. 

With run-time distribution, the information about the control of execution is carried 
along with the messages at runtime, as what happens with our approach. In AltaVista 
Works [6] and WORM [28], part of the static specification of the workflow (as 
mobile code in [28]) is sent from agent to agent for further enactment.  This 
inherently disallows the kinds of processing that depend on runtime information, such 
as automatic recovery. In [14], the information passed along to the agents is very 
similar to the CEKK states: the part to be processed now (like control expression) and 
the unprocessed part (like success continuation). However, only the sequential 
structure is presented. Nested parallel branches are converted into a sequence 
structure, which seriously limited its general usage. INCA [3] is a rule-based system 
that has many properties very closed to our approach. An information carrier (INCA), 
which is sent from agents to agents, contains a log of the execution so far and rules 
for further enactment. Thus the rules and the log play the role of success and fail 
continuations of our approach. Besides the principle difference between the 
approaches (rule-based versus continuation-passing), there are some subtle 
differences in what can be achieved. INCA rules only prescribe one level of control. 
For nested structures, a new INCA is created for the enactment of a next-level sub-
flow, which, after execution, will return the control back to the invoking agent. That 
is, message passing between different levels in the nested structure occurs in a 
synchronous manner. 

INCA is the only work in the second group that supports automatic recovery of 
workflows. Automatic recovery is based on the log contained in the INCA and per-
step rules (such as “if stepi aborts, execute step-1

i-1”). It is not obvious if more 
complicated rules can be generated (such as “if this is a compensation step of an 
alternative path within a parallel branch”). 

The distinct features of our approach, as compare to the related approaches for 
decentralized workflow enactment, are: (1) It does not involve an analysis of the 
workflow specification before execution (as opposed to the approaches in the first 
group), so it does not unnecessarily pre-allocated resources for the part of the 
workflow that is not executed and it is inherently more suitable for fast development 
and dynamic adaptation. (2) It builds on a theoretically elegant abstraction, 
continuation, so it can treat the whole workflow with different structures in a uniform 
manner. Consequently, our approach does not require global coordination and only 
asynchronous messages are sent when necessary, whereas other approaches typically 
involve synchronous return messages á la remote procedure calls. (3) It provides 
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automatic recovery of workflows (as opposed to all approaches in the second group 
except INCA). 

Continuation has a long history [27], with applications in language theory, compiler 
and interpreter design, and web server implementations. Here we relate only to the 
applications and extensions most relevant to our work. 

Continuations have been used in efficient implementations of web servers “to invert 
back the inversion of control” ([9] provides a comprehensive account of this work). 
This provides better scalability of web servers, because a server, by keeping the 
continuation in some shared data structure, does not have to hold a thread waiting for 
the next call from the same client. Links [9] extends this approach in the so-called 
resumption-passing style.  In Links, the continuation is passed to the client, which is 
later passed back to the server for the next call (like a cookie). This provides even 
better scalability when there is a pool of servers, because another server can resume 
execution from the next call. 

Our CEKK machine is built on CEKT [17] and PCKS [24], which are extensions to 
the CEK machine [11]. With the communication-passing style based on the CEKT 
machine [17], a distributed program can be executed asynchronously. A continuation 
is passed to the agent with a procedure call, which, after execution, will apply the 
continuation to the next agent instead of returning the control back to the caller. In 
[17], however, only one (distributed) thread of control is supported. The PCKS 
machine supports parallel executions of functional programs in a shared-memory 
environment [24].  

Success and failure continuations have been applied in the execution (with 
backtracking) of logical programs [29] and the description of denotational semantics 
of stateflows [15]. There, the use of success and failure continuations is similar to the 
treatment of or flows in our work. To our knowledge, there has been no use of failure 
continuations for the purpose of recovery. 

Our contributions to the work on continuations are: (1) its application is extended to 
distributed enactment of workflows (as opposed to distributed or parallel functional 
programs) and (2) success and failure continuations are introduced for automatic 
recovery. 

8 Conclusion and Future Work 
Workflows are increasingly applied in various new areas of distributed computing 
where scalability, reliability and adaptability are among the key requirements. 
Traditionally, and still with current commercial products, workflow enactment is 
realized with centralized workflow engines, which introduce a performance 
bottleneck and a central point of failure. In areas like Web services composition, 
assuming the existence of central workflow engines is sometimes impractical. 

There have been increasing research efforts on decentralized (distributed) workflow 
enactment. These approaches can be classified as either compile-time distribution or 
run-time distribution. In the compile-time distribution approaches, the workflow 
specification is analyzed, and the necessary control information and resources are pre-
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allocated before execution. Resources are thus allocated or consumed even for the 
part of the workflow that is not executed. There is also limited adaptability at runtime. 
In the run-time distribution approaches, the control information is passed along with 
messages during execution. Run-time distribution approaches are potentially more 
scalable (no central performance bottleneck), more reliable (no central point of 
failure), more adaptable (no static analysis) and have better utilization of system 
resources (no routing through a central engine, no unnecessary pre-allocation of 
resources etc.). 

Our contribution is a new run-time distribution approach to distributed workflow 
enactment. The approach is of continuation-passing style. That is, the continuations, 
or the reminder of executions, are passed along in messages as part of the control 
information. This makes workflow enactment as local operations rather than global 
coordination. Furthermore, our approach allows for automatic workflow recovery by 
automatically generating recovery plans into failure continuations. 

Our current results are promising but still preliminary. There remain a number of 
interesting open issues: 

Although it is widely believed that decentralized workflow enactment is more 
scalable and reliable, a detailed performance study is needed to confirm this. The 
performance study should also include comparisons between compile-time and run-
time distribution approaches. Typically, the choice of an appropriate mechanism 
would be dependent on runtime context such as workload and QoS requirements. This 
calls for a dynamically adaptable and re-configurable approach, for example, by using 
the blackbox flows in our core flow model. 

Our approach does not require global coordination for workflow enactment. Some 
other tasks for workflow management, for example, monitoring and query of 
workflows, may still need distributed global coordination among parallel branches of 
a workflow. We are currently working on a scheme for delegating these tasks to fork 
and join agents. 

Our approach has some special requirements on security and privacy, since the 
control information as continuations is now passed along. Part of the solutions might 
lie in the use of blackbox flows in the core flow model, because control information 
within the blackbox flow is unknown outside the agent of the blackbox flow. 
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