
Continuation-Passing Enactment of
Distributed Recoverable Workflows

Weihai Yu and Jie Yang

Department of Computer Science
University of Tromsø, Norway
{weihai,jie}@cs.uit.no

Abstract. Scalability, reliability and adaptability are among the key
requirements for the enactment of distributed workflows. In addition, system
resources should be efficiently utilized. Central workflow engines and static
analysis of workflow specifications are some of the important obstacles to
meeting these requirements. We propose a fully decentralized approach to
workflow enactment that is not subject to these obstacles. In addition, it
supports automatic recovery. The approach is of continuation-passing style,
where continuations, or the reminder of the executions, are passed along with
asynchronous messages for workflow enactment. Two continuations are
associated to an execution: a success continuation and a failure continuation.
Recovery plans for workflows are automatically generated at runtime and
included in failure continuations. A prototype is implemented.

1 Introduction
The workflow technology is now increasingly applied to areas beyond traditional
business process automation. Examples include general software construction [22],
enterprise-wise and inter-enterprise application integration [20], grid computing [28],
e-commerce [30], and Web service composition [4][7][8]. Basically, a workflow,
corresponding traditionally to a business process, consists of a number of loosely
dependent activities and the control flows among them. Workflows, therefore,
constitute the control concern of applications and their integrations. Applications
constructed with the separation of their control concern from other concerns are more
amenable to fast development and changes [22].

For serious applications, workflows should be recoverable in the sense of logic
atomicity [19]. Every activity in a workflow is an atomic unit of execution whose
effect is immediately committed after successful execution. If necessary, for example
when the execution of some subsequent activity fails, the committed effect must be
logically undone by a compensation activity.

Workflow enactment is the process of controlling the correct and reliable execution of
activities by different processing entities. Traditionally, workflow enactment is

 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392160352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

carried out by a central server known as the workflow engine. For example, if a
workflow W consists of activity A at site a followed by activity B at site b, the
workflow engine at site w invokes A, waits for the result of A from a and then invokes
B. This central workflow engine can become a potential processing and
communication bottleneck as well as a central point of failure. This centralized
approach thus suffers from poor scalability to large number of concurrent workflows
and vulnerability to failures either as server crashes or disconnections to it [1]. In
addition, in some new distributed computing areas, such as dynamic Web services
composition, there even hardly exists any central workflow engine.

With decentralized workflow enactment, the processing entities may communicate
directly with each other (e.g. from a to b) to transfer data and control when necessary
(e.g., after A finishes) in an asynchronous manner (e.g., without a return message
from b to a). Several approaches to decentralized workflow enactment have been
proposed. Common to most of these, a workflow specification is analyzed before
execution, and proper resources and control are pre-allocated in the distributed
environment. These approaches inevitably allocate resources even for the part of the
workflow that is not executed. They also tend to have limited adaptability at runtime.

We propose an approach that is fully decentralized and does not involve static
analysis of workflow specifications. There is no central point of performance
bottleneck and failure. Unnecessary pre-allocation of resources is avoided.
Furthermore, the approach is inherently more suitable for dynamic composition and
adaptable execution of workflows. The approach is of continuation-passing style,
which is common practice in the functional programming community. Basically, a
continuation represents the rest of an execution at a certain point of the execution.
They are automatically derived during the execution. By knowing the continuation of
the current execution, the control can be passed to the proper processing entities
without the involvement of a central workflow engine.

In addition, our approach also supports automatic recovery of workflows. To achieve
this, two continuations are associated to any particular point of execution. The success
continuation represents the path of execution towards the success completion of the
workflow. The failure continuation represents the path of execution towards the
proper compensation of committed activities after certain failure events.

The rest of this paper is organized as follows. Section 2 describes the core workflow
model used to explain the principle of our approach. Section 3 presents the abstract
CEKK machine that represents states and state transitions for workflow enactment.
Section 4 presents the CEKK rules for decentralized and recoverable enactment of
workflows. The approach is further explained using an example in Section 5. The
implementation of a prototype is briefly described in Section 6. Section 7 is a
comprehensive account of related work. Section 8 consists of a conclusion of our
contributions and directions for future work.

2 The Core Flow Model
Only a core model is presented here, since our goal is not a new model but rather a
new enactment approach. A full-fledged model (such as one that includes a complete

 2

list of workflow patterns [31]) is out of the scope of this paper. We choose to use the
notation that is suitable for describing our approach throughout the paper.

The key abstraction in our model is flow. A flow corresponds to a workflow (business
process or sub-process) commonly defined in the various traditional business process
models. A flow has a hierarchical structure that is defined recursively below:

Flow ::= Empty Flow | Activity | Blackbox Flow

| seq(Flow*)| fork(join-agent, Flow*) | or(Flow*)

| if(Condition, Flow, Flow) | loop(Condition, Flow*)

Figure 1 shows an example of a flow and its tree structure. The flow at the root of a
flow tree is a top-level flow. All other flows in the tree are sub-flows. The leaves of
the tree are primitive constructs.

seq

fork

or

Aa

Bb Cc

Dd

Ee
seq(Aa, fork(e, or(Bb, Cc), Dd), Ee)

A: reservation at training course AdBeans
B/C: booking at hotel BedBreakfast/Continental
D: booking of airline ticket
E: approval by manager

a. The flow specification b. The tree structure

Figure 1. An example flow

At the primitive level, a flow can be an empty flow, an activity or a blackbox flow.
An empty flow means there is nothing to do. It can be used, for example, to indicate
the completion of the execution of a flow. We use ┴ to denote an empty flow.

An activity can be either manual or automatic. A manual activity is performed by a
human agent. An automatic activity is a program or service with specific interfaces.
Here we restrict to automatic activities, because the treatment of manual activities is
very similar, as briefly mentioned in Section 6 that describes our prototype. An
activity consists of a number of elements, including the agent that is in charge of its
execution, the program to be executed, as well as eventually the compensation
program, the input and output data, etc. In this paper, an agent is the processing entity
of the activity and is synonymous with the site at which the activity program runs. In
what follows, Aa denotes an activity A to be executed by agent (at site) a. For activity
Aa that can be logically undone, we use A-1

a to denote the corresponding
compensation activity.

A blackbox flow is a flow whose internal structure is only known by its own agent.
Blackbox flows are useful for modular composition of flows and for integration of
existing ones. They can be used for autonomy, privacy or security reasons. They also

 3

allow different enactment mechanisms to be used for a single flow. For example, a
blackbox flow can be managed by a central workflow engine while the rest of the
flow is managed by the mechanism described in this paper. For the other agents, a
blackbox flow behaves the same as an activity. In the rest of the paper, we treat
blackbox flows as activities.

seq defines a sequence of sub-flows. fork spawns multiple parallel branches of
sub-flows. The branches will be executed in parallel and then join at a join agent after
their successful executions. The join agent can be automatically chosen if it is not
explicitly specified. or enables execution from multiple alternative sub-flows, such
that if the execution of a chosen sub-flow fails, one of the other alternative sub-flows
can be chosen and executed. if defines a logical choice of execution according to a
condition. A condition is defined on either flow-relevant data or execution status of
the workflow. We defer the definition of condition on execution status to the next
section. The sub-flow within a loop is repeated until the condition is evaluated to be
false.

The example scenario in Figure 1 shows a flow for the arrangement of a trip for an
employee to attend a training course AdBeans. The flow consists sequentially of an
activity (or a blackbox sub-flow) for the reservation at the training course (A at a),
followed first by a complicated sub-flow for the booking of airline tickets and a hotel
room, and then by an activity (or a blackbox sub-flow) for the approval of the trip
details by the manager of the employee (E at e). The complicated sub-flow consists of
two parallel branches: an or sub-flow for the reservation of a room at either hotel
BedBreakfast (B at b) or Continental (C at c), and an activity (or a blackbox sub-flow)
for the reservation of airline tickets (D at d). The two branches will join at agent e.
The join agent e can be automatically generated. Here it is explicitly specified for
better readability.

3 The CEKK Machine
We introduce an abstract state machine called CEKK for distributed and recoverable
flow enactment. The enactment of a flow is the process of interpreting the state
transitions with the CEKK machine. This section describes the CEKK machine. The
state transition rules are described in the next section.

A global CEKK machine defines the possible global states of a flow and the possible
transitions among them. It consists of a number of local CEKK machines that define
possible states and their possible transitions locally at agents. Every active branch of
the flow has a corresponding local CEKK machine. The global state of the flow is the
aggregation of the local states and the global state transitions are defined solely by the
local state transitions. This important property, which will be clear when the state
transitions rules are presented, assures that no global coordination among the agents is
needed for global state transitions.

A state of a local CEKK machine at agent p is a quadruple <c, e, ks, kf>p, where c is
called a control expression, e an environment, and ks and kf two continuations (thus
the name CEKK with C for control, E for environment and K for continuation).

 4

The control expression and the continuations together represent the work yet to be
carried out.

A control expression c represents the next (sub-)flow to be enacted immediately. It is
an expression in the core flow model extended with automatically generated
continuation frames, to be described below.

A continuation is the reminder of execution after the control expression. ks, the
success continuation, is the continuation towards the successful end of the flow. kf,
the failure continuation, is the continuation towards the compensated end of the flow,
after some eventual failure in the subsequent execution of the flow. A continuation is
represented as a stack of continuation frames. A continuation frame is itself a flow as
defined in the core flow model, extended with constructs automatically generated
during enactment. For a continuation k = fn: …f1:f0:┴, we write k.head = fn and k.tail =
fn-1: …f1:f0:┴. When k ≠ ┴, the last ┴ in k is normally omitted. When a continuation k is
applied, k.head, i.e. the continuation frame at the top, becomes the control expression
of the new state.

Formally, a continuation frame is of the form:

Continuation Frame ::= Flow | orc(or(Flow*), ks, kf)

| join(join-agent, condition)

where orc (for or-closure) and join frames are automatically generated during
the enactment of or and fork flows respectively. A join is successful only when its
condition is evaluated to be true.

An environment e is the runtime context of the flow. Information contained in e
includes flow-relevant data and knowledge of status of the current execution so far.
The execution status consists of a set of primitive status:

Primitive Status = Activity Status | Blackbox Flow Status | Join Status

For every primitive flow F, which is uniquely identified within the flow tree, we use
succ(F), fail(F), none(F) and unknown(F) to denote a success, failure (aborted), not-
enacted and unknown status of F.

A condition, included in if flows or join frames, can be evaluated in an
environment. Of particular interest are the conditions on the current execution status:

Condition ::= Primitive Status | and(Condition*) | or(Condition*)

4 Distributed Workflow Enactment with CEKK
The enactment of a flow in our approach is the process of transitions of CEKK states
performed by the agents. Before the individual state transition rules are presented, it is
useful to note that the state transitions appear in one of the following four forms:

1. Local ongoing — a state transition within a local CEKK machine is
performed locally at agent p:

 <c0, e0, ks0, kf0>p → <c1, e1, ks1, kf1>p

 5

2. Remote forwarding — a state of a local CEKK machine at agent p is passed
to a state of another local CEKK machine at agent q:

<c, e, ks, kf>p → <c, e, ks, kf>q

In other words, the local CEKK machine at p terminates and a new local
CEKK machine starts at q with the same state. In terms of flow enactment,
this corresponds to a message <c, e, ks, kf> from p to q.

3. Local divergence — multiple parallel branches are spawned at agent p:

<c0, e0, ks0, kf0>p →

{<c1, e1, ks1, kf1>p, <c2, e2, ks2, kf2>p , …, <cn, en, ksn, kfn>p }

where c0 is a fork flow. That is, a single local CEKK machine turns now
into multiple local CEKK machines at agent p.

4. Local convergence — multiple parallel branches are joined into one at agent
p:

{<c1, e1, ks1, kf1>p, <c2, e2, ks2, kf2>p , …, <cn, en, ksn, kfn>p } →

<cu, eu, ksu, kfu>p

where c1, c2, …, cn are join frames. That is, multiple local CEKK machines
are converged into one at agent p.

Notice that remote forwarding is the only case of message sending, which is
asynchronous and direct between agents. In all other cases, state transitions are
carried out locally at individual agents. This explains why global coordination is not
needed among the agents.

Below are the state transition rules of the CEKK machine:

<Ap, e, ks, kf>q → <Ap, e, ks, kf>p if p ≠ q (A1)

<Ap, e, ks, kf>p →

<ks.head, succ(Ap):e, ks.tail, A-1
p:kf>p if succ(Ap) (A2)

<kf.head, fail(Ap):e, kf.tail, kf>p if fail(Ap) (A3)

<seq(fs), e, ks, kf>p →

<fs.head, e, ks, kf>p if |fs| = 1 (S1)

<fs.head, e, seq(fs.tail):ks, kf>p otherwise (S2)

<if(t, ft, ff), e, ks, kf>p →

<ft, e, ks, kf>p if eval_cond(t, e) (I1)

<ff, e, ks, kf>p otherwise (I2)

<loop(t, f), e, ks, kf>p →

<f, e, loop(t, f):ks, kf>p if eval_cond(t, e) (L1)

 6

<ks.head, e, ks.tail, kf>p otherwise (I2)

<or(fs), e, ks, kf>p →

<fs.head, e, ks, kf>p if |fs| = 1 (O1)

<fs.head, e, ks, orc(or(fs.tail), ks, kf)> p otherwise (O2)

<orc(or(fs), orcks, orckf), e, ks, kf>p →

 <or(fs), e, orcks, orckf> p (O3)

<fork(q, f1, f2, …, fn), e, ks, kf>p → (F1)

{<f1, e, join_succ:ks, join_fail:kf> p,

 <f2, e, join_succ:ks, join_fail:kf> p,

 …,

 <fn, e, join_succ:ks, join_fail:kf> p }

where

join_succ = join(q, and(succ(f1), succ(f2), …, succ(fn)))

join_fail = join(p, and(or(fail(f1), succ(f -11)),

 or(fail(f2), succ(f -12)), …,

 or(fail(fn), succ(f -1n))))

<join(p, jc), e, ks, kf>q → <join(p, jc), e, ks, kf>p if p ≠ q (J1)

<join(p, jc), e, ks, kf>p → (J2)

<ks.head, succ(joinp):ejoin, ks.tail, kfjoin > p if eval_cond(jc, ejoin)

where

ejoin = joinp.merge_env(e)

kfjoin = joinp.merg_kf(kf)

The transition rules are first grouped based on the control expressions of the CEKK
states. For example, rules A1 to A3 apply to activities (or blackbox flows), rules S1
and S2 apply to seq flows, etc.

Applying rule A1, the execution of an activity is forwarded to the agent of that
activity. If the execution of an activity Ap succeeds, rule A2 is applied; otherwise, rule
A3 is applied. Rule A2 can be read like this: the environment is updated with the
successful execution of Ap; the compensation activity A-1

p of Ap is pushed to the
failure continuation, so that if some failure event occurs later with the flow, the
committed effect of Ap will be logically undone by executing the compensation
activity A-1

p; the success continuation is applied. With rule A3, the failure
continuation is applied when the execution of Ap fails. There could be different ways
to cope with failures of the compensation activity. Here we adopt a simple strategy in

 7

which the compensation activity is repeated forever. So in rule A3, failure
continuation remains unchanged.

If a sequential flow consists of only one sub-flow, that sub-flow is enacted (rule S1).
Otherwise (rule S2), the first sub-flow is enacted and the other sub-flows are pushed
to the success continuation, i.e., they will be enacted after the successful execution of
the first sub-flow.

For an if flow, the proper sub-flow is selected after the evaluation of the selection
condition (rules I1 and I2).

For a loop flow, if the loop condition is evaluated to be true, the sub-flow is enacted
and same loop flow is pushed to the success continuation for later iterations.
Otherwise, the loop flow has ended successfully and the success continuation is
applied.

If an or flow consists of only one sub-flow, that sub-flow is enacted next (rule O1).
Otherwise (rule O2), the first alternative sub-flow will be enacted next, and the failure
continuation will consists of only one orc frame (the or-closure) that encapsulates
the other alternative sub-flows as well as the success and failure continuations before
the or flow is enacted. The failure continuation will be applied when the execution of
the first alternative sub-flow fails. When applied (rule O3), the other alternative sub-
flows will be enacted with the encapsulated continuations.

Enacting a fork flow spawns multiple parallel branches, each being represented with
a local CEKK machine (rule F1). Upon creation, all branches have the same success
and failure continuations. With the new success continuation, the remaining of the
flow will be enacted after a successful join join_succ of the branches at the join agent.
The success of the join is defined by the join condition, which states that all branches
must be completed successfully. With the new failure continuation, before the old
failure continuation is enacted, the join join_fail at the agent that originated the fork
will guarantee that all braches will either fail (and their effects aborted) or their
committed effects be successfully compensated.

A join is forwarded to the join agent (J1). To enforce rule J2, the join agent maintains
a join environment ejoin. When a branch completes and is to be joined, its
environment e is merged into ejoin. If the join condition is evaluated to be true in
ejoin, the success continuation will be applied; otherwise, the join agent waits for
other branches to be joined. The new failure continuation kfjoin is generated by
merging the failure continuations of the branches, as the following:

The failure continuation of branch i (i = 1, 2, .., n) is of the form:

kfi:join_fail:kfcommon

where kfi is the failure continuation of the branch, join_fail was generated with rule
F1, and kfcommom is the failure continuation before the fork was enacted. The merge of
the failure continuations of the branches is of the form:

fork(p, kf1, kf2, … kfn):kfcommon

 8

where p is the agent that spawned the branches. That is, if some failure occurs later,
the successfully executed fork sub-flow will be compensated by this automatically
generated fork sub-flow.

5 Running the Example
We now illustrate how the example flow in Figure 1 is enacted. Figure 2 shows the
sequence diagram of the enactment process when no failure occurs. Notice that in the
diagram, only the necessary messages are sent between the agents. The messages are
asynchronous in the sense that there are no synchronous return messages.

c s b d e a

join

join

A

B
D

E

Figure 2. Sequence diagram of an enactment of the example flow

We assume that the flow is initiated at site s, which is, for instance, the desktop of the
employee. We ignore flow relevant data in the environment. The initial global CEKK
machine of the flow consists of only one local CEKK machine at agent s, with the
seq flow as initial control expression, initial environment ε and empty success and
failure continuations.

The first part of the flow is the reservation at the training course.

<seq(Aa, fork(j, or(BBb, Cc), Dd), Ee), ε, ┴, ┴>s

→(S2) < Aa, ε, seq(fork(j, or(B Bb, Cc), Dd), Ee), ┴> s

→(A1) < Aa, ε, seq(fork(j, or(B Bb, Cc), Dd), Ee), ┴> a

→(A2) < seq(fork(j, or(B Bb, Cc), Dd), Ee), succ(Aa):ε, ┴, A-1
a> a

First the initial seq flow is enacted using rule S2, followed by a remote forwarding
according to rule A1, because activity A for reservation at the training course is to be

 9

executed by agent a at a remote site. Suppose now that the reservation is successful
and its effect is committed. Rule A2 is now applied, so succ(Aa) is registered in the
environment and the compensation activity A-1

a for canceling the reservation is
pushed to the failure continuation.

The second part of the flow is the booking of a hotel room and airline tickets in two
parallel branches.

→(S2) < fork(j, or(B Bb, Cc), Dd), succ(Aa):ε, seq(Ee), A-1
a> a

→(F1) {< or(BBb,Cc), succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a ,

 < Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a }

 where

 js = and(or(succ(BBb), succ(Cc)), succ(Dd))

 jf = and(or(succ(B-1
b), fail(Cc), succ(C-1

c)),

 or(fail(Dd), succ(D-1
d)))

After rule S2 is applied, the control expression becomes a fork flow. Two parallel
branches are spawned by applying rule F1, which is a local divergence. The branches
have identical success and failure continuations, each with a new join frame. The
success continuation states that the branches will join at the join agent j when they are
successfully executed. The failure continuation states that the branches that either
failed or are successfully compensated for will join at agent a where the branches
were spawned.

The first branch is an or flow for hotel room booking.

< or(BBb, Cc), succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a

→(O2) < BBb, succ(Aa):ε, orcks, orc(or(Cc), orcks, orckf)> a

 where

 orcks = join(j,js):seq(Ee)

 orckf = join(a,jf):A-1
a

→(A1) < BBb, succ(Aa): ε, orcks, orc(or(Cc), orcks, orckf) > b

→(A2) <join(j,js),succ(BBb):succ(Aa):ε,seq(Ee), B-1
b:orc(or(Cc),orcks, orckf)>b

→(J1) <join(j,js),succ(BBb):succ(Aa):ε,seq(Ee), B-1
b:orc(or(Cc),orcks, orckf)> j

Applying rule O2, the control expression becomes BBb for booking at BedBreakfast. It
is then forwarded to agent b according to rule A1. Assume a room is successfully
booked at BedBreakfast. After applying rule A2, the control expression becomes the
join frame that was generated with the enactment of the fork flow. This is
forwarded to the join agent j applying rule J1.

The second branch consists of only Dd for booking of airline tickets.

 10

< Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> a

→(A1) < Dd, succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> d

→(A2) < join(j,js), succ(Dd):succ(Aa):ε, seq(Ee), D-1
d:join(a,jf):A-1

a> d

→(J1) < join(j,js), succ(Dd):succ(Aa):ε, seq(Ee), D-1
d:join(a,jf):A-1

a> j

After the successful execution of Dd, the state with the join frame as the control
expression is forwarded to the join agent, similar to the first branch.

When one branch completes and reaches the join agent j, rule J2 is applied. The
successful completion of the branch is registered in the join environment at j, but the
join condition is not true yet, so j waits for the completion of the other branch. When
the last branch reaches j, the join condition is evaluated to be true and the enactment
will carry on as local convergence.

→(J2) < seq(Ee), succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> j

 where kfj = fork(a, B-1
b, D-1

d):A-1
a

The last part of the flow is the approval of the trip details.

→(S1) < Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> j

→(A1) < Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> e

→(A2) < ┴, succ(Ee): succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, E-1
e:kfj> e

Finally when the trip details are approved, the successful executions of all activities
are registered in the environment and the control expression becomes an empty flow.
The enactment terminates.

Next, we explain with two cases how automatic recovery works when some failure
events occur.

In the first case, BBb for booking at BedBreakfast fails.

< BBb, succ(Aa):ε, orcks, orc(or(Cc), orcks, orckf) > b

→(A3)<orc(or(Cc),orcks,orckf),fail(BBb):succ(Aa):ε,┴,orc(or(Cc),orcks,orckf)> b

→(O3) < or(Cc), fail(BBb):succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> b

→(O1) < Cc, fail(BBb):succ(Aa):ε, join(j,js):seq(Ee), join(a,jf):A-1
a> b

Rule A3 is now applied instead of rule A2. After the failure continuation is applied,
the control expression becomes an orc frame. The orc frame encapsulates the
alternative sub-flow for booking at Continental as well as the success and failure
continuations, so that the flow can be enacted either forward when the alternative sub-
flow succeeds or backward when the alternative sub-flow also fails.

In the second case, Ee for approving the trip details fails.

< Ee, succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, ┴, kfj> e

→(A3) <fork(a,B-1
b,D-1

d),fail(Ee):succ(join j):succ(BBb):succ(Dd):succ(Aa):ε, A-1
a,kfj> e

 11

Rule A3 is now applied and the booking of the airline tickets and the hotel room will
be cancelled in parallel followed by the cancellation of the reservation at the training
course

6 Implementation
We have implemented a prototype for distributed flow enactment based on the state
transition rules of the CEKK machine. The local architecture of the prototype at each
site is shown in Figure 3. A CEKK state is represented in a message. The flows to be
enacted at the site are first put in the message queue of that site (1). An agent is a
thread (or a pool of threads) of control that performs the enactment of flows delivered
to this site. To enact a flow, it dequeues a message from the message queue (2),
decides the next action according to the control expression and updates the message
based on the state transition rules. For a local activity, it invokes the program of the
activity (3). For a manual activity, the activity program manages a worklist and
interacts with human users. The return message from the activity program is put back
into the message queue (4). The state transition rules A2 and A3 are applied later
when the return message is dequeued (2 again). For a state transition of the form local
ongoing, divergence or convergence, the updated messages are enqueued back to the
message queue (5). For a remote forwarding, the message is sent to the site of the
corresponding agent (6).

message
queue

from
network

activity
program

to
network

enactment agent
applying CEKK

state transition rules

Figure 3. Local architecture at a site for flow enactment

1

5

4 3

2

6

For the joining of multiple parallel branches, the enactment agent maintains a
persistent join state to build the new environment and failure continuation according
to rule J2. The persistent join state is updated when a join message of a branch is
processed. A join is successful when the join message of the last branch is processed.
Currently, timeout at join agents is used for the detection of failures in parallel

 12

branches. More sophisticated failure detection mechanisms are needed when timeout
is inappropriate.

In the current implementation, messages are in the form similar to the notation used
throughout this paper. This could be enhanced by BPEL4WS specifications extended
with continuations. For our proof-of-concept prototype to be practically useful, some
further extensions are necessary. For example, recoverable message queues [5], which
have been successfully used for distributed workflow executions in logically
centralized approaches [2][21], can be used for reliable message transmission and
message queuing. The two-phase commit protocol used in recoverable message
queues makes the system tolerant to communication failures and partial system
crashes during remote forwarding. In a dynamic environment, the agent of an activity
might not be known. Instead, it may be described by a number of properties. In such
cases, some activity discovery mechanisms (similar to [4][7]) must be adopted to
locate the agent before a message is sent for enactment.

7 Related Work
We first discuss related work on workflow enactment and then on applications of
continuations.

The concept of workflow can be used as a methodology for software development,
because it separates the control concern from the other concerns of the applications.
Micro-workflow [22] provides a software framework to achieve this. The framework
uses the trampolined continuation-passing style [12] for workflow enactment, similar
to our work. There is limited support for distribution: remote workflows are enacted
using proxies, similar to synchronous remote procedure calls. There is no support for
recovery of workflows.

More often, workflows are used in distributed environments. Workflow enactment is
typically achieved by workflow engines on dedicated centralized nodes, although this
is generally regarded as neither scalable nor reliable [1]. In a typical implementation
[20], all information about a workflow is stored in a database at the workflow engine.
Information stored include: workflow specifications, workflow and activity instances
and their execution states. Workflow enactment is the process of receiving messages
from agents, consulting and updating the database, and sending messages to the
appropriate agents for further execution. Some workflow engines adopt rule-based
approaches.

To cope with the demanding requirements of scalability and reliability, some
techniques are applied to the logically centralized approach, such as replication or hot
pooling. For example, in [16], the execution of a workflow engine is spread on a
cluster of servers coordinated via a shared tuple space.

Apart from the logically centralized approaches, decentralized workflow enactment
has also received much attention in research. We classify them into two groups:
compile-time distribution and run-time distribution.

With compile-time distribution, the workflow specification is analyzed and
instantiated before execution. During a workflow instantiation, the necessary

 13

resources and control are allocated in the distributed environment based on the
analysis. The distribution of the enactment mechanisms either forms a hierarchy of
sub-engines (Aurora [23], γ-calculus [26]), coordinating peer sub-engines based on a
partitioning of the original specification ([8], flowcharts [10], METUflow [13],
Mentor [25], SwinDew [32]) or directly down to the agents or other primitive units
(Excotica/FMQM [2], Self-Serv [4], ORBwork [18]). As a common problem to these
approaches, resources are allocated even for the part of the workflow that is actually
not executed (such as some of the alternative paths or when a workflow rolls back at
an early stage). They also tend to have limited adaptability at run time, because the
control is mostly already in place before the execution started.

With run-time distribution, the information about the control of execution is carried
along with the messages at runtime, as what happens with our approach. In AltaVista
Works [6] and WORM [28], part of the static specification of the workflow (as
mobile code in [28]) is sent from agent to agent for further enactment. This
inherently disallows the kinds of processing that depend on runtime information, such
as automatic recovery. In [14], the information passed along to the agents is very
similar to the CEKK states: the part to be processed now (like control expression) and
the unprocessed part (like success continuation). However, only the sequential
structure is presented. Nested parallel branches are converted into a sequence
structure, which seriously limited its general usage. INCA [3] is a rule-based system
that has many properties very closed to our approach. An information carrier (INCA),
which is sent from agents to agents, contains a log of the execution so far and rules
for further enactment. Thus the rules and the log play the role of success and fail
continuations of our approach. Besides the principle difference between the
approaches (rule-based versus continuation-passing), there are some subtle
differences in what can be achieved. INCA rules only prescribe one level of control.
For nested structures, a new INCA is created for the enactment of a next-level sub-
flow, which, after execution, will return the control back to the invoking agent. That
is, message passing between different levels in the nested structure occurs in a
synchronous manner.

INCA is the only work in the second group that supports automatic recovery of
workflows. Automatic recovery is based on the log contained in the INCA and per-
step rules (such as “if stepi aborts, execute step-1

i-1”). It is not obvious if more
complicated rules can be generated (such as “if this is a compensation step of an
alternative path within a parallel branch”).

The distinct features of our approach, as compare to the related approaches for
decentralized workflow enactment, are: (1) It does not involve an analysis of the
workflow specification before execution (as opposed to the approaches in the first
group), so it does not unnecessarily pre-allocated resources for the part of the
workflow that is not executed and it is inherently more suitable for fast development
and dynamic adaptation. (2) It builds on a theoretically elegant abstraction,
continuation, so it can treat the whole workflow with different structures in a uniform
manner. Consequently, our approach does not require global coordination and only
asynchronous messages are sent when necessary, whereas other approaches typically
involve synchronous return messages á la remote procedure calls. (3) It provides

 14

automatic recovery of workflows (as opposed to all approaches in the second group
except INCA).

Continuation has a long history [27], with applications in language theory, compiler
and interpreter design, and web server implementations. Here we relate only to the
applications and extensions most relevant to our work.

Continuations have been used in efficient implementations of web servers “to invert
back the inversion of control” ([9] provides a comprehensive account of this work).
This provides better scalability of web servers, because a server, by keeping the
continuation in some shared data structure, does not have to hold a thread waiting for
the next call from the same client. Links [9] extends this approach in the so-called
resumption-passing style. In Links, the continuation is passed to the client, which is
later passed back to the server for the next call (like a cookie). This provides even
better scalability when there is a pool of servers, because another server can resume
execution from the next call.

Our CEKK machine is built on CEKT [17] and PCKS [24], which are extensions to
the CEK machine [11]. With the communication-passing style based on the CEKT
machine [17], a distributed program can be executed asynchronously. A continuation
is passed to the agent with a procedure call, which, after execution, will apply the
continuation to the next agent instead of returning the control back to the caller. In
[17], however, only one (distributed) thread of control is supported. The PCKS
machine supports parallel executions of functional programs in a shared-memory
environment [24].

Success and failure continuations have been applied in the execution (with
backtracking) of logical programs [29] and the description of denotational semantics
of stateflows [15]. There, the use of success and failure continuations is similar to the
treatment of or flows in our work. To our knowledge, there has been no use of failure
continuations for the purpose of recovery.

Our contributions to the work on continuations are: (1) its application is extended to
distributed enactment of workflows (as opposed to distributed or parallel functional
programs) and (2) success and failure continuations are introduced for automatic
recovery.

8 Conclusion and Future Work
Workflows are increasingly applied in various new areas of distributed computing
where scalability, reliability and adaptability are among the key requirements.
Traditionally, and still with current commercial products, workflow enactment is
realized with centralized workflow engines, which introduce a performance
bottleneck and a central point of failure. In areas like Web services composition,
assuming the existence of central workflow engines is sometimes impractical.

There have been increasing research efforts on decentralized (distributed) workflow
enactment. These approaches can be classified as either compile-time distribution or
run-time distribution. In the compile-time distribution approaches, the workflow
specification is analyzed, and the necessary control information and resources are pre-

 15

allocated before execution. Resources are thus allocated or consumed even for the
part of the workflow that is not executed. There is also limited adaptability at runtime.
In the run-time distribution approaches, the control information is passed along with
messages during execution. Run-time distribution approaches are potentially more
scalable (no central performance bottleneck), more reliable (no central point of
failure), more adaptable (no static analysis) and have better utilization of system
resources (no routing through a central engine, no unnecessary pre-allocation of
resources etc.).

Our contribution is a new run-time distribution approach to distributed workflow
enactment. The approach is of continuation-passing style. That is, the continuations,
or the reminder of executions, are passed along in messages as part of the control
information. This makes workflow enactment as local operations rather than global
coordination. Furthermore, our approach allows for automatic workflow recovery by
automatically generating recovery plans into failure continuations.

Our current results are promising but still preliminary. There remain a number of
interesting open issues:

Although it is widely believed that decentralized workflow enactment is more
scalable and reliable, a detailed performance study is needed to confirm this. The
performance study should also include comparisons between compile-time and run-
time distribution approaches. Typically, the choice of an appropriate mechanism
would be dependent on runtime context such as workload and QoS requirements. This
calls for a dynamically adaptable and re-configurable approach, for example, by using
the blackbox flows in our core flow model.

Our approach does not require global coordination for workflow enactment. Some
other tasks for workflow management, for example, monitoring and query of
workflows, may still need distributed global coordination among parallel branches of
a workflow. We are currently working on a scheme for delegating these tasks to fork
and join agents.

Our approach has some special requirements on security and privacy, since the
control information as continuations is now passed along. Part of the solutions might
lie in the use of blackbox flows in the core flow model, because control information
within the blackbox flow is unknown outside the agent of the blackbox flow.

9 References
[1] Alonso, G., A. Agrawal, A. El Abbadi, C. Mohan, “Functionality and Limitations

of Current Workflow Management Systems”, IEEE Expert 12(5), 1997.

[2] Alonso, G., C. Mohan, R. Guenthoer, D. Agrawal, A. El Abbadi, M. Kamath,
“Exotica/FMQM: A Persistent Message-Based Architecture for Distributed
Workflow Management”, Proc. IFIP WG8.1 Working Conference on Information
Systems for Decentralized Organizations, Trondheim, August 1995.

 16

[3] Barbara, D., S. Mehrotra and M. Rusinkiewicz, “INCAs: Managing Dynamic
Workflows in Distributed Environments”, Journal of Database Management,
Special Issues on Multidadatabases, 7(1), 1996.

[4] Benatallah, B., M. Dumas and Q. Z. Sheng, “Facilitating the Rapid Development
and Scalable Orchestration of Composite Web Services”, Distributed and
Parallel Databases, 17(1), pp 5-37, 2005.

[5] Bernstein, P. A. and E. Newcomer, Principles of Transaction Processing for
Systems Professional, Morgan Kaufmann, 1996.

[6] Böszörményi, L., R. Eisner and H. Groiss, “Adding Distribution to a Workflow
Management System”, 10th International Workshop on Database & Expert
Systems Applications (DEXA 99), pp. 17-21, September, 1999.

[7] Casati, F. and M.-C. Shan, “Dynamic and Adaptive Composition of e-Services”,
Infornation Systems, 26(3), pp 143-163, 2001.

[8] Chafle, G., S. Chandra and V. Mann, “Decentralized Orchestration of Composite
Web Services”, 13th international World Wide Web conference (Alternate track
papers & posters), pp 134-143, May, 2004.

[9] Cooper, E., S. Lindley, P. Wadler and J. Yallop, “Links: Web Programming
Without Tiers”, submitted to ICFP 2006.

[10] Dong, G., R. Hull, B. Kumar, J. Su and G. Zhou, “A Framework for Optimizing
Distributed Workflow Executions”, 7th International Workshop on Database
Programming Languages, LNCS 1949, Springer-Verlag, September, 1999, pp
152-167.

[11] Felleisen, M. and D. P. Friedman, "Control operators, the SECD-machine, and
the lambda-calculus". 3rd Working Conference on the Formal Description of
Programming Concepts, August 1986.

[12] Ganz, S. E., D. P. Friedman and M. Wand. "Trampolined Style". International
Conference on Functional Programming (ICFP 99), September 1999.

[13] Gokkoca, E., M. Altinel, I. Cingil, N. Tatbul, P. Koksal, and A. Dogac, “Design
and Implementation of a Distributed Workflow Enactment Service”, 2nd IFCIS
International Conference on Cooperative Information Systems (CoopIS 97), pp.
89-98, June, 1997.

[14] Guo, L., D. Robertson and Y.-H. Chen-Burger "A Novel Approach For Enacting
Distributed Business Workflows Using BPEL4WS on the Multi-Agent Platform",
IEEE Conference on E-Business Engineering (ICEBE 2005), October, 2005.

[15] Hamon, G., “A Denotational Semantics for Stateflow”, ACM Conference on
Embedded Software (EMSOFT 05), pp 164-172, September, 2005.

[16] Heinis, T., C. Pautasso and G. Alonso, “Design and Evaluation of an Autonomic
Workflow Engine”, 2nd International Conference on Autonomic Computing
(ICAC 05), pp 27-38, June, 2005.

 17

[17] Jagannathan, S., “Communication-Passing Style for Coordination Languages”,
2nd International Conference on Coordination Models and Languages, LNCS
1282, Springer-Verlag, September 1997.

[18] Kochut, K. J., A. P. Sheth, and J. A. Miller, “ORBWork: A CORBA-based Fully
Distributed, Scalable and Dynamic Workflow Enactment Service for METEOR".
Technical Report UGA-CS-TR-98-006, Dept. of Computer Science, Univ. of
Georgia, 1998.

[19] Korth, H. F., E. Levy and A. Silberschatz, “A Formal Approach to Recovery by
Compensating Transactions”, 16th International Conference on Very Large Data
Bases (VLDB 90), pp 95-106 August, 1990.

[20] Leymann, F. and D. Roller Production Workflow: Concepts and Techniques,
Prentice Hall, 2000.

[21] Leymann, F. and D. Roller, “Building A Robust Workflow Management System
With Persistent Queues and Stored Procedures”, International Conference on
Data Engineering (ICDE 1998), February 23-27, 1998, pp 254-258.

[22] Manolescu, D. A., “Workflow Enactment with Continuation and Future Objects”,
Proceedings of the 2002 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, November, 2002, pp 40-51.

[23] Marazakis, M., D. Papadakis and C. Nikolaou, “Aurora: An Architecture for
Dynamic and Adaptive Work Sessions in Open Environments”, 9th International
Conference on Database and Expert Systems Applications (DEXA 98), pp. 480-
491, LNCS 1460 Springer-Verlag, August, 1998.

[24] Moreau, J., “The PCKS-machine: An Abstract Machine for Sound Evaluation of
Parallel Functional Programs with First-Class Continuations". European
Symposium on Programming (ESOP'94), LNCS 788, Springer-Verlag, April
1994.

[25] Muth, P., D. Wodtke, J. Weißenfels, A. K. Dittrich and G. Weikum, “From
Centralized Workflow Specification to Distributed Workflow Execution”,
Journal of Intelligent Information Systems, 10(2), pp 159-184, 1998.

[26] Németh, Z., C. Pérez and T. Priol, “Workflow Enactment Based on a Chemical
Metaphor”, 3rd International Conference on Software Engineering and Formal
Methods (SEFM’05), September, 2005.

[27] Reynolds, J. C., “The Discoveries of Continuations”, Lisp and Symbolic
Computation 6(3-4), pp 233-248, 1993.

[28] Schneider, J., B. Linnert and L.-O. Burchard, “Distributed Workflow
Management for Large-Scale Grid Environments”, Symposium on Applications
and the Internet (SAINT 06), January, 2006.

[29] Todoran, E. and N. Papaspyrou, “Continuations for Parallel Logic
Programming”, 2nd International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP 2000), pp 257-267, September,
2000.

 18

[30] Van der Aalst, W. M., “Process-Oriented Architectures for Electronic Commerce
and Interorganizational Workflow”, Information Systems, 24(18), pp 639-671,
December, 1999.

[31] Van der Aalst, W. M., A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros,
“Workflow Patterns”, Distributed and Parallel Databases, 14(1), pp 5-51, 2003.

[32] Yan, J., Y. Yang, and G. Raikundalia, “Enacting Business processes in a
Decentralised Environment with p2p-Based Workflow Support”, 4th
International Conference on Web-Age Information Management (WAIM 03),
LNCS 2762, pp 290-297, Springer-Verlag, September, 2003.

 19

	1 Introduction
	2 The Core Flow Model
	3 The CEKK Machine
	4 Distributed Workflow Enactment with CEKK
	5 Running the Example
	6 Implementation
	7 Related Work
	8 Conclusion and Future Work
	9 References

