
Engineering Push-Based Web Services

Lars Brenna
Dept. of Computer Science

University of Tromsø, Norway
larsb@cs.uit.no

Dag Johansen
Dept. of Computer Science

University of Tromsø, Norway
dag@cs.uit.no

Abstract

Much of the content of popular Internet information
sources is highly dynamic: urgent in nature and some-
times relevant only for a short time. The typical ap-
proach to querying such dynamic sources is polling for
updates often.1 This strains the traditional pull-based
Internet and wastes network resources on transmitting
redundant information.

This paper focuses on how to structure the Inter-
net to avoid the unnecessary client-server interactions
dominating the Internet. To that end, we extend the
API of popular existing Internet services trough Web
service wrappers. These wrappers use the API of,
for instance, Google, but provide functionality that is
richer. Initial experience shows that major perfor-
mance gains can be achieved through this approach.

1 Introduction

The existing Internet has serious scaling limitations.
The main reason for this is related to the widely de-
ployed client-server model where users pull data down
from remote web servers. Typically, a user issues a re-
quest to some remote web server through a browser.
Next, he waits for a response, before he can parse
and validate the received data. This is a simple, but
adequate model for pulling down a few static HTML
pages. Nevertheless, Internet data are now much more
dynamic, and it might have relevance for just a short
time window upon publication. A user can not know in
advance when an important remote data item is chang-
ing. One obvious example is, for instance, a stock value
that exceeds a certain threshold.

To alleviate this problem, a more frequent pulling
scheme can be applied. However, RSS feeds demon-
strate how this poses a scaling problem due to more
traffic. RSS suffers from the inability to express indi-
vidual user interests, often referred to as subscriptions,

1We define pulling as an unconditional get operation. Similar,
we define polling as a check for updated content, without actually
getting the data.

close to the data sources. For every pull, the entire
feed is sent even if there are none or few changes since
the previous pull. Hence, a huge amount of RSS data
is unnecessarily transmitted over the wire [10, 13].

Added pulling also comes with a high cost for the
end user because he has to validate the additional in-
coming data. He is in the client-server loop, while our
goal is to place him above the loop.

We conjecture that a push-based interaction scheme
is more appropriate in this situation. That is, if data
are validated close to its source, less data has to be
moved over the wire due to less pulling. It is only
when data changes, that it is potentially transmitted.
Thus, less data needs to be evaluated by the end user.

In the WAIF [9] project2, we build extensible medi-
ator structures [16] between existing Internet services
and clients. The idea is to extend existing services
with push-based intermediaries. We provide new APIs
to existing services, in this case push-based interfaces
validating data close to its source. This way, we trans-
form existing Internet services into publishers through
an expressive interface. Similarly, we turn traditional
browsing clients, into asynchronous subscribers.

The rest of the paper is organized as follows. In
section 2, we discuss our architectural goals for push-
based web service wrappers. Next, in section 3, we
present our wrapper implementation, the WAIF Proxy.
Section 4 is a case study of two proxy deployments.
Experiments with these two deployments are described
in section 5. Before we conclude, section 6 discusses the
overall concept and section 7 presents related work.

2 Architectural Goals for Push-based
Web Service Wrappers

The component model presented by Web service
technologies offers RPC API across widely available
protocols, such as HTTP. This might not be appro-
priate for all structuring needs. Hence, we conjecture
that a more push-based Web service interface should be

2Wide Area Information Filtering, is a joint project with Cor-
nell University and UC San Diego. http://waif.cs.uit.no.
This work is sponsored by the Norwegian Research Council IKT-
2010 Programme and Programme No. 162349.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392160344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://waif.cs.uit.no

complementing the traditional pull-based Web service
model. This will potentially reduce the amount of un-
necessary pulling. Our conjecture is that we can build
systems that minimize pulling by wrapping Internet
services with a push-based event notification compo-
nent.

The fundamental problem is that remote data
changes. Unless such updates are produced in regu-
lar or well-known intervals, it is impossible to guar-
antee that a pull request is made once and only once
for every data update. This is illustrated in Figure 1,
where a client must repeat the pull request arbitrarily
often. Frequent pulling turns into a scaling problem
when many concurrent users try to capture all updates
when they occur. Consequently, popular Internet ser-
vices such as Slashdot3, punish users performing ex-
cessive polling by temporarily blocking the originating
IP. Data filters shared by many users and placed close
to remote sources can reduce the amount of unneces-
sary pulling drastically. Although upstream evaluation
with shared data filters can be computationally inten-
sive, its use can be justified if a significant amount of
the data to be sent over the wire is blocked.

Our approach is through Internet service wrappers
interposed on the traditional client-server communica-
tion path. This is a design that Web services fit well.
To specify complex parameters as part of a Web ser-
vice request is efficient, and potentially more precise
than content adaptation in mediators. Semantic en-
hancements to Web services [14] can help wrappers
use ontological and semantic information to provide
better service to their users. The ability to correlate
events enables a Web service wrapper to further en-
hance precision. By correlation, we mean to combine
data from a series of events into one, be it to track
remote data changing over time, or to collect and com-
bine event data from different sources. Performing cor-
relation on the mediator level and not on the client side
makes sense in combination with upstream evaluation,
because they share the need for event dissemination.
However, performing event correlation across different
remote services requires the ability to push events to a
service other than the one issuing the subscription.

Data consumers can now be given a rich, expressive
interface for data filtering.

The push-based architecture in Figure 2 illustrates
our approach. First, an initial subscribe request is
issued. This contains a query and a (client) owner ad-
dress. The query is equivalent to a pull request, but can
contain push-specific preferences such as pull-frequency
or delivery at specific times or rates. Next, the wrap-
per is activated, which pushes updates whenever they

3http://slashdot.org

Client

WS
API

1. request(query)

2. reply(data)

Data

Figure 1. Traditional pull-based client-server ar-
chitecture.

Client 1. subscribe(query,
 owner)

N. push(data) Pulling

WAIF
Proxy

WS
API

Data

Figure 2. A push-based architecture where the
wrapper does all the pulling.

happen or exactly when the user wants them delivered.
If a wrapper has many subscribers, publish-subscribe
substrates can be used between the wrapper and its
clients for efficient event delivery.

We can now present the design goals we strive for
in engineering push-based Web service wrappers. The
goals are not limited to any current technology, like
.Net4, J2EE5, WebLogic6 or Python for Web services7.

Evaluate Persistent Requests Close to Data
To potentially reduce the amount of unnecessary
data sent over the network, a wrapper should
store and evaluate requests close to the data
source. This is upstream from the client on the
traditional client-server path.

Improve Service Expressiveness
Wrapper parameters should equal or supersede
the parameters of the underlying Web service.
A wrapper should not give its users less expres-
siveness than the underlying service. Adding
a push-interface enables a wrapped service to
offer new functionality, like timed delivery or
personalized filtering.

4http://www.microsoft.com/net/
5http://java.sun.com/j2ee
6http://www.bea.com/content/products/weblogic/
7http://pywebsvcs.sourceforge.net/

http://slashdot.org
http://www.microsoft.com/net/
http://java.sun.com/j2ee
http://www.bea.com/content/products/weblogic/
http://pywebsvcs.sourceforge.net/

Enable Event Correlation
To further increase clients ability to precisely
define their interests, a Web service wrapper
should enable correlation between events. This
enables new events to be triggered by previous
events, where the produced event contains, or is
based on, data or state aggregated over time or
by different sources.

Upstream evaluation also potentially gives better
precision. Publishers can now perform individual com-
parison of an event to subscriptions and possibly re-
duce the number of messages sent. The alternative is
a push-based wrapper that pushes every data update
to its subscriber, without evaluating whether the data
should actually be sent.

3 The WAIF Proxy

Guided by the goals stated in Section 2, we have de-
signed and implemented a prototype Internet service
wrapper, the WAIF Proxy. Designed to run close to
popular Internet services, it can be easily customized
to wrap any pull-based resource. This includes Web
services, but also regular web pages, databases, and
file systems. It is called a proxy because it acts as a
mediator between push- and pull-based software proto-
cols, and because it performs computations on behalf
of individuals or groups of users. Our design is built on
a general structure for extensible servers we previously
presented in [1].

The basic functionality of a WAIF Proxy is to wrap
some pull-based resource, and offer subscriptions to
data changes generated by regular pulling. Deploying
the proxy requires adding application specific logic to
load data from an external resource, to parse incoming
events, and to use loaded or incoming data to create
new events. Hence, it meets our first design goal by
storing and evaluating persistent requests close to the
data source. Personalized event subscriptions can con-
tain push-specific parameters on, for instance, delivery.
Our wrapper will thereby supersede the expressiveness
of the underlying data source, satisfying our second
design goal.

Our implementation is a Python8 package. We chose
Python as our development platform because it allows
easy and flexible prototyping, with rich support for In-
ternet applications. Our package contains a set of basic
modules optimized for a range of situations. This en-
ables monitoring of items in RSS streams, objects on
web services and even low-level file system events. Not

8http://www.python.org

Input Handling

Event processing
 and output

 Data
Source

Figure 3. Overall view of a WAIF Proxy pulling
an external data source.

only does the proxy supply a push-based resource in-
terface, it allows users to build personalized network
services by combining proxies to form custom applica-
tions. Examples include personalized alarms for people
who want bus routes for work only in cold weather or
when traffic is congested. The WAIF Proxy handles
two types of events: internal events triggered by data
updates on a monitored source and external events re-
ceived from other WAIF proxies. Event handling may
change the state of a proxy, or it can trigger new events.
Connecting WAIF proxies to form a personal network
service implies event correlation, our third design goal
for push-based Web service wrappers.

Adding a push-based interface to a pull-based re-
source is motivated by the assumption that both users
and resource suppliers gain from it. On the publisher
side, it depends on the cost of handling millions of users
pulling versus the cost of matching events with millions
of subscriptions. Pushing does indeed pose a significant
cost, and this is also why hierarchical publish-subscribe
networks [4, 15, 5] were designed with focus on the
matching and delivery of events in wide-area environ-
ments. In this setting, a WAIF Proxy can be used as
a top-end publisher in hierarchical networks. Filtering
networks can also be created using WAIF Proxy in-
stances without adding custom logic and thereby only
using their subscription and filtering functionality. Fil-
ters must however be placed directly at every proxy,
and they must include target addresses since we do
not apply hierarchical filter forwarding.

3.1 Generic Structure

The WAIF Proxy is completely event-driven and
handles all events asynchronously. Implemented as
an object-oriented structure, it makes extending and
adding custom event handlers easy. The WAIF Proxy

http://www.python.org

Event
preprocessing

Subscription
management

Internal Event Queue

External
 Events Subscriptions

Figure 4. The input handling component.

is divided into two threads communicating through a
shared, synchronized Python Queue object. The divi-
sion enables asynchron event handling, since one thread
can receive, verify and queue new events while the other
is handling them. The Python thread model does not
offer true parallelism, so performance will not improve
if we add more threads. The separation will, however,
decouple incoming event deliveries from outgoing de-
liveries. Figure 3 shows the proxy with its two sub-
components and an external, pull-based data source.
Both components are customizable and extendible to
fit any pull-based data resource. New customized prox-
ies can build upon our Python module to cooperate
with other WAIF Proxies. However the communica-
tion protocol is built on SOAP, so implementations in
other languages are possible.

The input component in Figure 4 handles incom-
ing events and subscriptions, both delivered via the
same SOAP interface, but via separate SOAP-RPC
calls. Even though subscription updates could be
treated as special-case events, we chose to separate
them to streamline common-case performance. Using
synchronous RPC to accept incoming events and sub-
scription updates gives WAIF proxies a chance to com-
municate status and error messages. Event validation
and pre-processing, and subscription updates are han-
dled synchronously. This means incoming RPC calls
can be returned quickly. Valid events are then put on
an internal event queue for asynchronous event han-
dling. On Figure 4 this queue is shown as the bottom
arrow. New or updated subscriptions can also produce
events, for instance if a new user can instantly be de-
livered events from the proxy data cache. Such events
are also put on the internal event queue.

The event processing component, shown in Figure 5
has an internal event scheduler. The thread waits for
incoming events on the shared event queue, and the
scheduler delegates control to a suitable handler for
the event. Handlers are registered under aliases in a

Custom loader Custom handler

Scheduler

 Push
Queue

Internal Event Queue

External Events

 Data
Cache

Figure 5. The event processing component and
its data source.

hash-table on initialization, and events should contain
a reference to one of these aliases. Otherwise, they will
be fed to the built-in default handler. If the default
alias is not taken by other handlers in the hash-table,
the built-in default handler will log an error message
and return. The output of an event handler is either
nothing, a new internal event, or a new event to be
pushed to a remote WAIF Proxy.

To produce events based on pulling some web re-
source, a programmer can implement a custom data
loader function that adds customized objects to the in-
ternal data cache. If a function called loader is present
in a class descending from the WAIF Proxy class, it is
automatically discovered. Data returned from a loader
is checked for validity, and marked with a timestamp.
Cache loading is scheduled like regular events using
built-in timers that sleep in intervals and only wake up
to queue new loading events. Likewise, built-in han-
dlers are invoked by timers to make sure the content of
the data cache and other state information is written
to persistent storage. Timer intervals are adjustable to
fit the application and the desired event rate. If the
cache has changed, the update can trigger events to
users. Timers can also be used to, for instance, batch
events in daily deliveries.

3.2 Extensibility and Configuration

To support the full range of pull-based web re-
sources, the features of our generalized proxy service
are easy to adapt and customize. Since the WAIF
Proxy contains only what we regard as minimal func-
tionality, we allow extensibility in both the input com-

ponent and the event processing component. However,
extensions are not allowed during runtime. Making
runtime extensions safe without limiting functionality
and performance is a difficult task.

The WAIF Proxy is distributed in Python source-
code, and is designed to be easy to extend and cus-
tomize for programmers with knowledge of object ori-
ented and event-driven programming methodologies. A
customized wrapper should extract key data from the
wrapped service by fine-grained pulling.

Our generalized proxy framework is open for any
arbitrarily rich query and configuration language. This
is possible because the proxy framework only defines
the parameters it actually needs, and all others are
accepted and passed on to the internal event handlers.
Associative arrays, such as Python dictionaries, suit
this purpose well.

A subscription is initiated with a SOAP call to the
subscribe function with the mandatory parameters
shown in Table 1.

waifID User ID of subscription owner.
taddr Target URI for event notifications.
params Optional parameters. See Table 2.

Table 1. Mandatory Subscription Parameters.

The taddr URI should point to another WAIF
Proxy. Subscriptions issued with an empty taddr pa-
rameter will not fail, only yield a warning. A target ad-
dress is not necessary for proxies set up to deliver data
via a GUI or alternative protocols, like email or SMS.
In that case, an alternative address must be given. The
params dictionary can carry optional parameters that
will be used by the proxy, as shown in Table 2.

localID ID of existing subscription.
DataType ID or alias of event handler.
interval Repeated timer every interval secs.
countdown Timer counting countdown secs.
email Alternative delivery address.

Table 2. Optional Subscription Parameters.

The interval and countdown parameters will initi-
ate timers that, after the specified amount of time, will
trigger an internal event to this subscription.

If the subscription parameters do not contain the
localID parameter, the call will return a new subscrip-
tion identifier. The (waifID, subID) tuple is consid-
ered a unique key, and is later used to validate exter-
nal events delivered directly to individual users. Thus,
a subscription creates a permanent proxy that keeps
state for each user. A user can have multiple subscrip-

tions, to, for instance, use multiple different filters on
the same data.

Communication between proxies or between a
proxy and a user is established by subscriptions,
and events are pushed accordingly. External
events from other proxies are delivered via the
notify(waifID, subID, event) call, which triggers
an internal event for the specified subscription. If no
such subscription is found, the proxy will return an
error message to the caller. However, a proxy can
be configured to accept all events, and events carry-
ing data can define whether they are available for all
subscribers or just one specific subscription. Incom-
ing data can be correlated with data from the receiv-
ing proxy, given that the receiver understands the data
format and content. Our message format for communi-
cation between WAIF proxies lets filtering applications
define their own data formats. For topic-based filter-
ing, this implies we do not specify a certain topic space,
and there is no Web service-style name-space specifi-
cation scheme. Hence, collaborating proxies will need
a common data format.

A subscription is active until an
unsubscribe(waifID, subID) call is received.
This will not delete the user profile by default, only
deactivate it.

3.3 Event Format

We distinguish between internal and external events,
but they have similar formats. The format of an ex-
ternal event that gets delivered to the WAIF proxy via
the notify function is shown in Table 3.

waifID User ID of subscription owner.
subID Subscription ID.
message An associative array for event data.

Table 3. External Event Format.

Both external events delivered via the notify func-
tion and internal events are added to the same event
queue. External events are preprocessed, type conver-
sions made by the SOAP infrastructure are undone,
and a handle is added to identify the event handler
for this event. At this point, the two event types are
not distinguished, and they have the same format, as
shown in Table 4. The type conversion from SOAP as-
sociative arrays to Python dictionaries and lists is the
reason the message parameter in Table 3 changes name
to payload in Table 4.

waifID User ID of receiving subscriber.
subID Subscription ID.
handle Name of chosen event handler.
payload Dictionary for application data.

Table 4. Internal Event Format.

4 Case Studies and Applicability

Our WAIF Proxy has been tested in numerous ap-
plication areas, ranging from news recommendations,
fine-grained file system eventing, persistent Web search
wrapping Google, weather alerts, commuter informa-
tion, stock quote updates and RSS feed alerts. We will
describe the latter two here.

4.1 The WAIF Feed Proxy

Web syndication9 using RSS, Atom or similar proto-
cols has become a popular, although resource straining,
Web application. The idea behind syndication feeds for
Web resources is that frequent users can efficiently get
a brief overview of the latest updates without explic-
itly visiting the feed source with a Web browser. The
user registers feeds in a feed reader application on his
computer, often called a news aggregator, and lets this
reader pull selected feeds arbitrarily often. Although
relieving the user from unnecessary manual pulling,
there is little or no evaluation on the feed source of
whether a user should be notified of a feed update.
Thus, the user relies on frequent pulling and client-side
evaluation to stay updated. This puts a high strain
on the feed source and the network, having to serve
many users checking for updates. These characteris-
tics of RSS feeds and client behaviour are investigated
in [10]. Their conclusion is that a better update noti-
fication scheme is needed, because much of the band-
width is consumed by re-fetching feeds. If publishers
notify subscribers about when they should pull for up-
dates, less bandwidth would be consumed. rssCloud
is an RPC upcall system where subscribers ask for a
lightweight SOAP notification when new feed updates
are available. However, this feature has rarely been
implemented by feed publishers since its introduction
with RSS 0.92 in 200110.

Our feed proxy is designed to alleviate problems
both for the user and the feed source. By reducing
the number of messages sent over the wire, we reduce
both network strains for RSS publishers and the need
to evaluate data on the client side. Our goal is keeping

9http://en.wikipedia.org/wiki/Web_syndication
10http://www.thetwowayweb.com/soapmeetsrss

bandwidth consumption to a minimum, while optimiz-
ing timely delivery of feed updates.

A well-known technique to help scale high-traffic
servers is to insert mediators on the client-server path
and replicate data or functionality across nodes. A
WAIF Proxy acting as a mediator on the client-server
path allows us to relieve strain from busy news servers.
However, simply moving computation from the server
to a mediator will only serve to move the scaling prob-
lem to another node in the system. Thus, a mediator
structure must have added functionality to scale the
entire system.

Our mediator is a WAIF Proxy that can pull feeds
updates on behalf of its users. It can pull as often as
necessary to catch updates in a timely manner, and will
push only the differences to its subscribers when new
data becomes available. This is similar to the function-
ality of the FeedTree[13] peer-to-peer micronews distri-
bution network.

The implementation uses the Python feedparser11

and feedfinder12 libraries to find, fetch and parse feeds.
These libraries support all known feed protocols and
formats, like RSS and Atom, enabling the feed proxy
to extract and forward feed entries on a simple, com-
mon format. Users can subscribe by specifying a feed
by base URL, direct URI or feed title, and optionally
indicating how often they want notifications. The de-
fault behaviour is to pull every feed not more than ev-
ery thirty minutes, to avoid getting blocked from busy
sites like Slashdot.org, who will block IPs of users that
pull too often. Subscriptions giving only a title of a
feed will fail unless that feed has already been added
to the feed cache by another subscriber. To save band-
width, the feed proxy does not fetch data from feeds
without subscribers. When a feed has been updated,
every subscriber to this feed is notified. If a feed no
longer has subscribers to it, the feed proxy will stop
updating it, but it will stay in the cache.

Feeds with subscribers will by default be pulled once
every 30 minutes. This seems to be a reasonable in-
terval, since some sites block users pulling more often
than that. Setting individual update intervals for each
feed is not implemented, even though [10] suggests it
is more appropriate.

An example subscription to the BBC News Service
is given in Table 5. It contains a delivery URI and an
email address in case a notification is undeliverable via
the SOAP interface.

A feed is identified by a URI where an XML file is
published and republished when it changes, and each
version of this file has several entry items with ti-

11http://www.feedparser.org
12http://diveintomark.org/projects/feed_finder/

http://en.wikipedia.org/wiki/Web_syndication
http://www.thetwowayweb.com/soapmeetsrss
http://www.feedparser.org
http://diveintomark.org/projects/feed_finder/

waifID larswaif
taddr http://waif.cs.uit.no/feedclient:

7878
params {feed:bbc, email:larsb@cs.uit.no}

Table 5. Feed Subscription.

tles, summaries, and links. An updated feed may not
mean that every entry is new, experiments show that
merely changing some of the summary text or even
ordering of entries will trigger a feed update. Some
sites use HTTP/modified headers or ETags on both the
main feed file and each entry. These can be used for
conditional GET operations. Servers responding with
HTTP/304 messages make it easier to check for modified
feeds, but it is not always possible to know exactly what
data has been modified and how. Therefore, headers
cannot be fully trusted to tell whether a feed should be
pushed to subscribers.

Consequently, RSS users must pull frequently to
make sure they get all updates, and also need to either
have a smart client able to detect duplicate updates
or perform manual evaluation, i.e. keep reading RSS
news all the time. Thus, RSS users may not experience
saving much time compared to regular Web browsing.

To detect duplicates, a feed is broken down to en-
tries, and for every new feed pull, each entry is com-
pared to every other entry we have cached for that
feed. Currently, we only look at the link to the full
article, however we are currently experimenting with a
fuzzy duplicate detection scheme to apply on the sum-
mary text. It is a hard task to determine whether a
story has been updated with breaking news, or simply
edited. A problem with using the link as a key occurs
when feed servers use HTTP/302 forwarding schemes
for load balancing. We have seen servers change links
for every pull operation, and in combination with lack
of ETags or modified headers this makes it nearly im-
possible to perform duplicate detection without fuzzy
content analysis.

An example feed entry being pushed to a user sub-
scribing to the BBC UK News service is given in Ta-
ble 6.

Title Secrets of largest fish revealed.
Summary Researchers use satellite tags to gain un-

precedented insight into the life of the
whale shark, the world’s largest fish.

URI http://news.bbc.co.uk/go/rss/-/
1/hi/world/asia-pacific/4273844.
stm.

Table 6. Feed Entry Format.

Updated or new feed entries with new links are de-
clared true positives and written to the feed cache, ex-
isting entries are declared false positives and thrown
away. The feed cache will only keep as many entries
as the feed contains at any given time, and does not
support chronological queries for outdated feed entries.
After a successful update pull, the proxy will push ev-
ery new entry to subscribers of this feed. Typically,
when signing up, a user receives the complete content
of the feed cache for that feed, and after that only re-
ceives new or updated entries.

To receive feeds from the WAIF Feed Proxy, you
need a special client application. It is also built on the
WAIF Proxy framework, and features a GUI do display
the news entries. Currently, a Trillian13 plugin is being
developed.

4.2 The WAIF Stock Quote Proxy

Buyers and sellers of publicly traded stocks usually
want to be kept up to date on the movements in stock
prices. Price movements, both the direction and the
amount, are hard to predict: they depend on complex
factors and we usually do not know in advance when
they will occur. Hence, stock quote alerts are a very
common application for push-based systems.

The WAIF Stock Quote Proxy is designed to pull
stock quotes from a public Web service, and generate
alerts upon price movements. Users subscribe by giving
a list of stocks to watch, and how much a certain stock
should move before an alert is pushed. The reason why
we expect significant bandwidth savings using a push-
based approach, is that the most actively traded stocks,
measured both in dollar and share volume, rarely make
radical movements. During a trading day, such stocks
are not expected to move more than a little bit, as for
large trading volumes, a change of only 1% is worth
a lot of money. Hence, if stocks such as Google or
Microsoft moves more than 0.5%, it may be considered
unusual and thus a subscriber to these stocks would
want to know about it. Smaller movements should not
disturb the user. A sample subscription is shown in
Table 7.

waifID larswaif
taddr http://waif.cs.uit.no/

stockclient:8787
params {tickers:[orcl,goog,msft,sunw], thresh-

old:0.5}

Table 7. Stock Quotes Subscription.

13http://www.ceruleanstudios.com/

http://waif.cs.uit.no/feedclient:7878
http://waif.cs.uit.no/feedclient:7878
http://news.bbc.co.uk/go/rss/-/1/hi/world/asia-pacific/4273844.stm
http://news.bbc.co.uk/go/rss/-/1/hi/world/asia-pacific/4273844.stm
http://news.bbc.co.uk/go/rss/-/1/hi/world/asia-pacific/4273844.stm
http://waif.cs.uit.no/stockclient:8787
http://waif.cs.uit.no/stockclient:8787
http://www.ceruleanstudios.com/

The threshold level sets how much a stock has to
move before an update is considered a true positive.
Each new update is compared to the previously stored
true positive. If a stock quote subscriber has a 0.5%
threshold setting, he will receive two notifications if in
the course of one day his stocks moved up 0.5%, and
then 0.5% down again. A sample stock quote alert is
shown in Table 8

ticker goog
price $315.68
previous $314.10

Table 8. Stock Quote Notification.

When a stock quote update is declared a true pos-
itive, the new value replaces the previously cached
quote, and gets pushed to its subscribers.

5 Experiments

To demonstrate the potential advantages of using
push-based WAIF proxies as wrappers for pull-based
Web services, we have experimented with the two ap-
plications we described in Section 4.

A requirement for optimal pulling is that every pull
request should return a true update, i.e. new data.
The unpredictable nature of dynamic and volatile sys-
tems like stock trading or news feeds, implies that data
are not updated on a planned schedule. In a pull-based
system, the only practical solution to avoid missing up-
dates, is to increase the pull frequency of the clients.
However, this means that some pull requests will return
new, changed data (true positives), and others will re-
turn unchanged data (false positives). Hence, the ratio
between true and false positives is a measurement indi-
cating the amount of unnecessary network traffic and
server resources.

The motivation for both experiments is to inves-
tigate applications typically implemented using fre-
quent pulling, and to check the amount of pull re-
quests returning false positives. Since our experiments
are implemented using the WAIF Proxy, this is easily
measured by issuing subscriptions and recording the
amount of output the subscribers receive.

Note that the cost related to matching data updates
to subscriptions and pushing events to subscribers, al-
though interesting, is outside the scope of this article.

The computer running the experiments from Tromsø
is a Dell Dimension 360 (Win XP Sp2) with a 3.2GHz
P4 CPU and a 100Mbps network connection. The com-
puter we used at Cornell University is a Dell Dimension
8100 (Red Hat Linux) with a 1.4GHz P4 CPU and a
100Mbps network connection.

5.1 RSS News Feeds

Our first experiment is based on measuring the fil-
tering performance of the WAIF Feed Proxy described
in Section 4.1. The application is a WAIF Proxy able
to pull any RSS feed in a given interval and generate
alerts to subscribers when new items appear in a feed.
In our experiment, we consider realistic subscriptions
to popular newsfeeds, but do not actually push updates
to real subscribers. When a feed contains new entries,
we declare them true positives. A pull returning old
entries, or only slightly changed entries, is declared a
false update. The latter result is declared when a feed
changes the order of its feed entries or changes a sum-
mary text without actually changing the target link.

By regularly pulling, we investigate how often a set
of selected feeds are updated with new content. Our
conjecture is that with a moderate pull interval, rarely
updated feeds will mostly generate false positives. Oth-
ers with higher update frequency will give a higher
share of true positives. The ratio between true and
false feed updates depends on the content and the pub-
lisher of the feed, since different information topics will
have different publication rates.

Table 9 contains the ten news feeds used for our ex-
periment. They were selected to capture feeds with
different characteristics of their content and their up-
date frequencies.

Extensive measurements [10] has been performed at
Cornell University on the quantitative characteristics
of RSS as a publish/subscribe system for the Web.
This study shows that we can expect a representative
selection of feeds to show very different update fre-
quencies. According to their study, approximately 55%
are updated hourly, while 25% have updates within
days or weeks. While this extensive study of approx-
imately 100,000 feeds discussed collective properties,
we can reproduce their results in concrete examples.
Hence, we can use their analysis to suggest how some
feeds could benefit from pushing their updates to sub-
scribers, while other feeds should rather be frequently
pulled.

The results from pulling the ten feeds in Table 9 ev-
ery 30 minutes over 10 days is shown in Table 10. Each
feed has been pulled 500 times, and the proxy tries to
use conditional GET where ETags or modified headers
are available. The first pulls returned between 6 and
24 entries per feed, and the data in the table are based
on the 499 following polls. The first column, Updates,
show us that nine out of ten feeds are either not re-
sponding with HTTP/304 Not Modified or are actually
updated within every 30 minutes. ACM Queue turns
out to have a very well-behaving feed, since it only

Feed Title Base URL Content Type
AP http://hosted.ap.org/lineups/TOPHEADS.rss AP Top Headlines
AP Sports http://hosted.ap.org/lineups/SPORTSHEADS.rss AP Sports Headlines
Reuters http://today.reuters.com/rss/topNews Reuters Top News
Aftenposten http://www.aftenposten.no/eksport/rss-1_0/ Norwegian News
BBC News http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/world/rss.xml World News
Slashdot http://rss.slashdot.org/Slashdot/slashdot News for nerds
CNN.com http://rss.cnn.com/rss/cnn_topstories.rss CNN Top Stories
Google News http://news.google.com/news?q=web+services&output=rss Search “Web Services”
Google News http://news.google.com/news?q=whale+shark&output=rss Search “Whale Shark”
ACM Queue http://acmqueue.com/rss.rdf IT Trends

Table 9. Selected News Feeds

Feed Title Updates Entry updates Feed length
AP Headlines 490 4816 10
AP Sports 490 4814 10
Reuters 492 892 10
Aftenposten 499 513 10
BBC News 426 448 24
Slashdot 496 364 10
CNN.com 499 184 6
Google WebSrv 499 117 10
Google WhaleSh 499 40 10
ACM Queue 11 2 10

Table 10. Feed Test Results For 500 Pulls

claimed to be updated 11 times after the initial pull.
However, the next column, Entry updates, shows how
many feed entries were actually updated, according to
our duplicate detection algorithm. We see that the two
feeds from Associated Press (AP) seem to update all
10 entries for every pull, e.g. within every thirty min-
utes. However, this result may not be correct, as the
AP server seems to use randomized HTTP/302 redirec-
tion between different servers. If the URIs in the feed
changes for every pull, our scheme will fail to detect
duplicate entries with different links. Further, we see
Reuters are frequently updated, with 1.8 updated feeds
per 30 minutes. Our two personlized feeds from Google
News on “Web services” and “whale sharks” did not re-
turn many entry updates. The latter only 40 had new
entry updates, but we had to pull and evaluate every
time because the Google server does not respond to
conditional GET operations.

Quantitative measures on the updates of Web data,
and RSS feeds especially [10], have suggested that each
feed should be pulled on an individual schedule, which
our findings clearly support. However, since most of
the pull operations does not really return new, valid
updates (true positives), a more push-based scheme
where only the updates are pushed can be suggested.

In this case, subscribers to our feed proxy could have
received up to 92% fewer messages (in the case of the
“whale shark” feed). We also see that feeds from the
federated news agencies AP and Reuters mostly get
forwarded right away because they have many updates.
As such, the extra processing to confirm these updates
are mostly wasted.

Our results tell us that the update characteristics of
feed data is important for the success of pushing feed
updates. It seems that rarely updated feeds are better
suited for push, because of their low update ratio.

5.2 Stock Quotes

Our stock quote application is a WAIF Proxy built
to pull stock quotes from a publicly available Web ser-
vice. It generates alerts upon certain price movements.
Section 4.2 gives a case study of this application.

For our experiment, we chose to monitor ten of the
most active stocks on the Nasdaq and NY Stock Ex-
change during June 2005 (measured both in number of
transactions and dollar volume). The stocks are listed
with symbols and company names in Table 11.

Our alarm service wraps one of XMethods14 demo

14http://www.xmethods.net

http://hosted.ap.org/lineups/TOPHEADS.rss
http://hosted.ap.org/lineups/SPORTSHEADS.rss
http://today.reuters.com/rss/topNews
http://www.aftenposten.no/eksport/rss-1_0/
http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/world/rss.xml
http://rss.slashdot.org/Slashdot/slashdot
http://rss.cnn.com/rss/cnn_topstories.rss
http://news.google.com/news?q=web+services&output=rss
http://news.google.com/news?q=whale+shark&output=rss
http://acmqueue.com/rss.rdf
http://www.xmethods.net

Symbol Company Name
INTC Intel Corporation
MSFT Microsoft Corporation
SUNW Sun Microsystems, Inc.
GOOG Google Inc.
CSCO Cisco Systems, Inc.
YHOO Yahoo!, Inc.
LU Lucent Technologies, Inc.
XOM Exxon Mobil Corporation
TWX Time Warner Inc.
PFE Pfizer, Inc.

Table 11. Monitored Stock Quotes.

Web services; Delayed Stock Quote. It’s interface is
very simple; the function getQuote(symbol) returns
the price for that stock as a float, with a 20 minute
delay compared to real-time trading.

The machine and bandwidth resources of the
XMethods service are limited, and we do not know
anything about the efficiency of its implementation.
However, this is a typical scenario for developers of ap-
plications that rely on publicly available Web services.
We only know its IP address, indicating a location in
San Jose, CA15.

For an update to be declared a true positive, the
stock price had to move beyond a certain threshold.
Hence, when a stock price had increased or decreased
a certain percentage since the last true positive was
recorded, it would be considered a new true positive.
In this way, we avoided storing more than one value per
stock, and only triggered alarms when the threshold
had been reached.

A stock traded in very high volumes is expected
to have many small and insignificant changes, but we
wanted to record only significant changes. Although
subscribers to our stock alert service would probably
want to set this threshold themselves, we tested our ser-
vice with three threshold levels; 1.0%, 0.5% and 0.25%.
On average, we do not expect that the most traded
stocks move more than that during one trading day,
and for large trading volumes, a change of only 1% can
be significant in a trading context. If the subscriber
is not actively trading at the moment, pulling for up-
dates once per minute should be more than enough.
Since the Web service we based our wrapper on seems
to be located in San Jose, Ca., we decided to test both
from the University of Tromsø, Norway, and from Cor-
nell University, NY, to investigate the impact of long
distance latency. Detailed test results are shown in Ta-

15http://www.geobytes.com/IpLocator.htm?

GetLocation&ipaddress=64.124.140.30

ble 12. The test data was collected between September
26. and October 11., 2005.

Site Threshold Pulls TP Ratio
Tromsø 0.25 13310 1475 0.1108
Tromsø 0.50 7640 177 0.0231
Tromsø 1.00 6980 55 0.0079
Cornell 0.25 7750 852 0.1099
Cornell 0.50 7670 196 0.0255
Cornell 1.00 9130 45 0.0049

Table 12. Test Results.

Each stock quote was pulled in approximately 3000
times per trading day. The tests run with the high-
est movement threshold clearly yielded fewer true pos-
itives, both with an update ratio well below 1.0%. The
middle threshold value gave ratios at approximately
2.5%, and the lowest threshold gave many more true
positives, with both ratios at around 11%.

In message count, this means that a subscriber to
our service could receive 99% less messages, if he only
cares about movements larger than 1.0%. Still, the
stocks are monitored every minute so the user receives
the required information quickly. When the threshold
level decreases, more updates will qualify as true posi-
tives and less bandwidth is saved. Lowering the thresh-
old for update pushes, means moving closer from push
to pull. Still, with the lowest threshold we tested, 90%
of the updates were false positives.

The latency measurements are omitted since they
did not pose a significant cost, and did not suggest
moving the evaluation closer to the source.

6 Discussion

Urgency matters. The ability to capture one or a
series of remote events as early as possible is a key
differentiator in a modern society. An obvious example
is a stock broker getting public information about a
traded company slightly prior to another. We have
studied an Internet structuring technique we conjecture
as important in this context, and we will discuss some
of our experience in this section.

6.1 An Expressive Push Structure

The widely adopted client-server model is not al-
ways the best structuring solution for modern Internet
applications. First, to capture remote events as early
as possible, a client needs to pull data over the wire
very frequently. This stresses the remote server, as ex-
perienced by popular RSS publishers [10]. Also, far too
much data is sent over the network as a result.

http://www.geobytes.com/IpLocator.htm?GetLocation&ipaddress=64.124.140.30
http://www.geobytes.com/IpLocator.htm?GetLocation&ipaddress=64.124.140.30

Second, the session based client-server scheme re-
quires that a user (or client program) is constantly in
the computational loop. This creates unnecessary in-
terrupts at the client side, in particular if the frequency
of false positives is high. The best would then be to of-
fload this validation process to the opposite edge-point
of the Internet and only send high precision data over
the wire.

Push technology alone does not solve these prob-
lems properly. The reason is that it is hard to spec-
ify exactly what to push over the wire due to lack
of expressiveness in the server API. High expressive-
ness comes with an additional burden, since more fine-
grained computations must take place. Hence, typi-
cal push inspired server APIs like, for instance, RSS
feeds, has a coarse-grained, topic-based push interface.
Similarly, publish-subscribe systems like, for instance,
Gryphon [15], Siena [4] and SCRIBE [5] provide topic-
based, or limited content-based, subscriptions to pub-
lished information.

In the WAIF [9] approach, we strive for extreme ex-
pressiveness of subscriptions. Our approach is through
deployment of very personalized filtering code on the
path between an Internet publisher and the client. We
have shown the potential in doing such expressive up-
stream evaluation close to the data source; one anec-
dotic example indicates that over 99% of communica-
tion can be avoided.

We deploy these filters at mediator structures [16]
that turn existing Internet services into publishers.
Similarly, we change traditional browsing clients, into
asynchronous subscribers. Our goal is to complement
the pull-based Internet, with a push-based one deliver-
ing high-precision information in a timely manner. We
do not envision that we can change the API of, for in-
stance, Google or Amazon, but we can build external
proxy structures turning such services into expressive,
push-based ones.

Our results indicate that we must balance when to
deploy expressive push and when to deploy client-server
structures. The obvious solution for a client-server
solution, for instance, would be a server containing
only historic data. The other extreme is a server with
rapidly changing content. At first, one might conjec-
ture that frequent changes at a server would be the
ideal candidate for push and upstream evaluation. We
are not so sure, though, that there is a simple answer
to this, since frequent updates typically imply heavy
computations at the server. Hence, from the server
perspective, it is probably better that data is handed
off remotely. At the same time, many true positives
also imply network transfers and client interruptions.
A coarse grained RSS push might then be a good can-

didate here.
The approach we have taken, by an extra intermedi-

ate structure pulling the server for data, and doing the
additional parsing of the data before potentially push-
ing it to clients, is a good scaling approach. The server
does not do the parsing, and the client evaluation and
most of the network traversal is avoided. Hence, ex-
tra functionality comes at the cost of this incremental
proxy structure.

When data are updated less frequently, push is a
stronger candidate than client-server techniques. This
way unnecessary polling for new updates is avoided.

6.2 Push vs. Pull

Both news feeds and stock alert services are typical
applications where we know nothing about when and
how large data changes will appear. Although the news
feed experiment showed us that push is not necessarily
the best option, our results suggested that stock quote
alerts are very suitable for push.

In a very realistic usage scenario, we showed that up
to 99% of pulled stock quote data were false positives,
i.e. wasted traffic. These results suggest that a more
push-based architecture is very suitable for this type of
application.

However, one may argue that our clear results in
the latter experiment are caused by selectively picking
stocks that fit our requirements. It is reasonable to
presume that choosing a representative selection of all
publicly traded stocks may give us results similar to
the RSS feed experiment.

In that case, our results support the discussion put
forth in [3], where algorithms for optimal combinations
of push and pull strategies are discussed. Still, we con-
jecture that complementing traditional pull-based Web
services with a push-based interface can significantly
reduce the amount of unnecessary traffic on the Inter-
net.

6.3 Personal Overlay Network Systems

We are past the point when multiple users shared
a single computer. Now, a single user typically uses
a network of computers, some of them servers shared
with others. Technology as peer-to-peer file sharing
networks like, for instance BitTorrent [6], blurs the pic-
ture even more, but where the picture is that a single
user can have very many computers serving his needs.

We envision this trend to be further developed to-
wards what we call personal overlay network systems
(PONS). This is a dedicated network serving the needs
of a single user. In a PONS, a user can distribute

and install highly personalized modules which should
be doing as much as possible of often repetitive and
tedious personalized tasks. Input also comes through
feedback from other users by collaborative recommen-
dation techniques. Only when certain events or combi-
nations of events occur, should a user be alerted. This
overlay structure is transparent for the user, giving the
impression of a personal overlay network system push-
ing data towards him.

Expressiveness in a PONS is far better than in ex-
isting systems since we can deploy any type of pro-
grammed Web service in this system. However, the
novice user does not know that code is configured on
his or her behalf, where this code is actually running,
and the like.

7 Related Work

We have basically patched the initial client-server
architecture to accommodate the exponential growth
of dynamic content on the Web. This includes, for in-
stance, web proxies, DNS name resolution techniques,
scalable server farms, search engines, directory ser-
vices, multi-threaded browsers, and the like. However,
we argue that this is probably not sufficient, in partic-
ular if we want to provide support for a new class of
applications automating more of the tedious tasks of all
the millions of users on the web. Hence, we conjecture
that the structure of the Internet is ripe for change.

We will now discuss different technologies that have
all affected our design choises while developing WAIF
Proxies as push-based wrappers for Web services.

7.1 Extensibility

In WAIF, we investigate expressive push structuring
techniques. That is, we study how to extend existing
mediator structures using Web service technology. Ex-
tensibility as a concept has been applied to computer
systems for many years. Extensible operating system
services and active networks, for instance, contain a
body of related work. For instance, SPIN [2] and Ex-
okernel [7] demonstrate how to dynamically extend op-
erating systems at run-time. A system like STP [11]
uses untrusted mobile code to upgrade communicating
end-hosts at the transport level.

A key difference with WAIF, though, is that we ex-
tend user space web servers at run time, not in-kernel
or protocol functionality. This is similar to how Web
services in, for instance, Microsoft .NET can be used,
where Internet services can be composed from other
Web services.

7.2 Publish/subscribe systems

Existing publish/subscribe systems like, for in-
stance, Siena [4], Gryphon [15], and Scribe [5] demon-
strate that push-based approaches solve some of the
scaling issues of the current Web. To accommodate
scale, upstream evaluation techniques are combined
with downstream distribution in these systems. Simi-
lar push-based approaches are also emerging with alert
and subscription services added to popular web sites.
For instance, both Google News and NY Times, pro-
vide a subscription-based service alerting users when
interesting data appear at the servers. Nevertheless,
two problems with this type of publish/subscribe sys-
tems are that they are proprietary and have coarse
granularity. The latter might result in far too much
data being sent over the wire, adding to the scaling
problem.

Recently proposed publish/subscribe systems that
specificly targets efficient distribution of RSS feed up-
dates using collaborative polling are described in [13,
12].

7.3 WS-Eventing

WS-Eventing is a protocol16 that allows Web ser-
vices to subscribe to or accept subscription for event
notification messages. As such, it is very similar to
the way WAIF Proxies extend the existing API of
pull-based resources like, for instance, Web services.
The suggested standard will enable better interoper-
ability between event producers and different routing
substrates, a problem associated with current propri-
etary publish/subscribe systems. Only a early proposal
for a protocol specification existed when we started
our project in late 2003, so we did our own version.
WAIF Proxies are generalized wrappers, and may con-
tain functionality equal to current implementations of
this protocol. Filters in WS-Eventing are optional, like
in WAIF Proxies, and implementations are suggested,
to use XPath17 predicate expressions as filters.

7.4 Mobile Agents

Running specialized code on remote data sources is
an application area well known within mobile agent
research. The advantages of this approach were out-
weighed by the disadvantages, so mobile agent technol-
ogy has never found a broad use [8]. Still, we believe
that upstream evaluation of data close to the source

16http://msdn.microsoft.com/library/default.asp?url=

/library/en-us/dnglobspec/html/ws-eventing.asp
17http://www.w3.org/TR/xpath

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-eventing.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-eventing.asp
http://www.w3.org/TR/xpath

is a viable technique for many systems like, including
push-based Web services. Like mobile agents, we are
able to evaluate data differently for each subscriber.
The key to achieving the same expressiveness as with
mobile executable code, is to export a highly config-
urable interface for subscribers. We claim that WAIF
Proxies export this kind of interface, and thus can do
many of the same tasks as mobile agent systems, with-
out the security or performance issues often associated
with mobile agents.

7.5 Semantic Web

The recent developments in Semantic Web18 services
display a trend where remote services and data are
given very expressive interfaces. Attaching structured
metadata to a service interface using the Resource De-
scription Format(RDF)19 allows client programs a bet-
ter semantic understanding of that service, and better
expressiveness to help extract more specific and rele-
vant data. These interfaces are ideal for push-based
applications, and may produce very interesting events.
Better structuring of information also improves event
matching, often the bottleneck of push-based subscrip-
tion systems.

7.6 Adaptive Push-pull

Distribution strategies for dynamic Web data has
been the subject of extensive research. Bhide et.al. [3]
argues that since the popularity of Web objects vary
over time, it is hard to a priori determine whether to
use push or pull for a specific data item or stream.
To aid this problem, they present and discuss adaptive
algorithms able to optimally combine push and pull at
a particular instant.

8 Concluding Remarks

In WAIF, we are investigating how to structure
next-generation large-scale pervasive systems. The key
design principle we advocate is proactive computing
where information providers initiate dissemination of
information. We conjecture that Internet applications
filtering data close to remote sources scale better than
pure client-server solutions. The potential net effect is
that redundant or obsolete data are not pulled down
over the wire. Remote filtering, however, suffers from
the lack of expressiveness. That is, it is hard to take
into account individual and diverse user needs through

18http://www.w3.org/2001/sw/
19http://www.w3.org/RDF/

standard, fixed server APIs. A typical Internet server
is not extensible, especially not for this type of trans-
formation to an Internet publisher.

We are interested in transforming traditional Inter-
net services normally accessed through a client-server
API into publishers. Fortunately, it is possible to add
an intermediate proxy structure to a communication
path between a client and a server. This proxy resides
close to the Internet server wrapping it with a new API.
In this case, it transforms a standard client-server API
into a push-based one. Highly personalized filters run-
ning as Internet service front-ends now determine when
and what type of data to push. We have experienced
that the inherent structure of Web services lends itself
naturally to this type of problem, and experiments indi-
cate that a push-based Web Service wrapper can filter
out redundant data without reducing service value.

Acknowledgements

We would like to thank the other members of the
WAIF research group, especially Dmitrii Zagorodnov
and Ingar M. Arntzen for valuable discussions and their
help in testing.

We also thank the anonymous referees for their in-
sightful comments on earlier versions of the paper.

Bibliography

[1] I. M. Arntzen and D. Johansen. A pro-
grammable structure for pervasive computing. In
The IEEE/ACS International Conference on Perva-
sive Services (ICPS’04), pages 29–38. IEEE Computer
Society, 2004.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and S. Eg-
gers. Extensibility safety and performance in the spin
operating system. In SOSP ’95: Proceedings of the fif-
teenth ACM symposium on Operating systems princi-
ples, pages 267–283, New York, NY, USA, 1995. ACM
Press.

[3] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe,
K. Ramamritham, and P. Shenoy. Adaptive push-pull:
Disseminating dynamic web data. IEEE Transactions
on Computers, 51(6):652–668, 2002.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-
sign and evaluation of a wide-area event notification
service. ACM Transactions on Computer Systems
(TOCS), 19(3):332–383, Aug. 2001.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A large-scale and decentral-
ized application-level multicast infrastructure. IEEE
Journal on Selected Areas in Communication (JSAC),
20(8), Oct. 2002.

http://www.w3.org/2001/sw/
http://www.w3.org/RDF/

[6] B. Cohen. Incentives build robustness in bittorrent.
In Proceedings of the 1st Workshop on Economics of
Peer-to-Peer Systems, June 2003.

[7] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exoker-
nel: An operating system architecture for application-
level resource management. In SOSP ’95: Proceedings
of the fifteenth ACM symposium on Operating systems
principles, pages 251–266, New York, NY, USA, 1995.
ACM Press.

[8] D. Johansen. Mobile agents: Right concept, wrong
approach. In 5th IEEE International Conference on
Mobile Data Management (MDM 2004), pages 300–
301. IEEE Computer Society, 2004.

[9] D. Johansen, R. van Renesse, and F. B. Schneider.
Waif: Web of asynchronous information filters. In
A. Schiper, A. A. Shvartsman, H. Weatherspoon, and
B. Y. Zhao, editors, Future Directions in Distributed
Computing, volume 2584 of Lecture Notes in Computer
Science, pages 81–86. Springer, 2003.

[10] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client
and feed characteristics of rss, a publish-subscribe sys-
tem for web micronews. In USENIX Internet Mea-
surement Conference (IMC), New Orleans, Louisiana,
Oct. 2005.

[11] P. Patel, A. Whitaker, D. Wetherall, J. Lepreau, and
T. Stack. Upgrading transport protocols using un-
trusted mobile code. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pages 1–14, 2003.

[12] V. Ramasubramanian, R. N. Murty, and E. G.
Sirer. Corona: A high-performance publish-
subscribe system for web micronews. In
http://www.cs.cornell.edu/people/egs/beehive/corona/.

[13] D. Sandler, A. Mislove, A. Post, and P. Dr-
uschel. Feedtree: Sharing web micronews with peer-
to-peer event notification. In Proceedings of the
4th International Workshop on Peer-to-Peer Systems
(IPTPS’05), Ithaca, New York, Feb. 2005.

[14] K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A.
Miller. Adding semantics to web services standards.
In L.-J. Zhang, editor, Proceedings of the International
Conference on Web Services, ICWS ’03, pages 395–
401. CSREA Press, 2003.

[15] R. Strom, G. Banavar, T. Chandra, M. Kaplan,
K. Miller, B. Mukherjee, D. Sturman, and M. Ward.
Gryphon: An information flow based approach to mes-
sage brokering. In International Symposium on Soft-
ware Reliability Engineering (ISSRE ’98), 1998.

[16] G. Wiederhold. Mediation in information systems.
ACM Computing Surveys (CSUR), 27(2):265–267,
1995.

	Introduction
	Architectural Goals for Push-based Web Service Wrappers
	The WAIF Proxy
	Generic Structure
	Extensibility and Configuration
	Event Format

	Case Studies and Applicability
	The WAIF Feed Proxy
	The WAIF Stock Quote Proxy

	Experiments
	RSS News Feeds
	Stock Quotes

	Discussion
	An Expressive Push Structure
	Push vs. Pull
	Personal Overlay Network Systems

	Related Work
	Extensibility
	Publish/subscribe systems
	WS-Eventing
	Mobile Agents
	Semantic Web
	Adaptive Push-pull

	Concluding Remarks

