
The last hop of global notification delivery to mobile users:
matching preferences, context, and device constraints

Dmitrii Zagorodnov Dag Johansen

Dept of Computer Science
University of Tromsø, Norway
{dmitrii,dag }@cs.uit.no

Abstract

Events injected by publishers into a publish/subscribe
system may reach users through a variety of devices: a
stationary desktop, a laptop, a mobile phone, etc. We ar-
gue that the ”last hop” – from the network to the output
device – has unique properties, owing to the mobile na-
ture of these devices, and as such demands special con-
sideration. In particular, user’s preferences and location
may limit what should be forwarded to a device. Further-
more, technological constraints, such as network bandwidth
availability and battery power, suggest that the decision
when to forward messages is also important for optimiz-
ing user’s experience. We describe a new publish/subscribe
system with volume-limiting mechanisms and explain how
user preferences, context, and device constraints can be ac-
commodated in such a system. Notably, based on results
of simulations, we propose a simple algorithm for low-cost
”prefetching” of notifications to mobile devices in cases
when network bandwidth is insufficient.

1 Introduction

Users often view the Internet as a massive client-server
infrastructure. Nevertheless, this pull-based structuring
technique is gradually being complemented with push-
based structures. E-mail is an excellent example of a per-
vasive application where messages are pushed to the in-
box of recipients. Another emerging example application
is network news. Users can subscribe to news services like,
for instance, New York Times and be alerted when certain
headline news stories are published. The financial industry
also depends more and more on being the first to receive
certain subscriptions. A stock broker exclusively receiv-
ing push-based information through, for instance Reuters,
might have enough seconds to take action and outperform
other competitors depending on the same information. Sec-
onds count in this financial competition. Publish/subscribe
systems like, for instance, Siena [3], SCRIBE [4], and
Gryphon [1] are also being developed to target this new type

of push applications.
We built and deployed the first academic sensor network

in the world, the StormCast system, more than a decade
ago [6, 7]. Currently, there is a large body of work in this
area. The lessons we learned from a series of deployed
StormCast sensor networks in the Arctic resemble lessons
being learned in similar systems today: push-based commu-
nication complements the pull-based structuring scheme.

Large players in the computer industry are also moving
towards push-based infrastructures. Microsoft already has
their Alert engine as vital in their .Net infrastructure. The
proactive initiative by Intel [15] and CMU [14, 12] also sug-
gests wide deployment of push-based infrastructures in the
future. In essence, the idea is to develop proactive software
that anticipates our needs and produces answers before they
are required.

However, there are a number of fundamental problems
with a push infrastructure. One is that of scale; how can one
support both high recall and precision when a large number
of users are involved. Filtering close to the data source is
one approach to this, typically being supported by a system
like Siena. Another one is that of precision, where spam
detection is an example illustrating this problem.

We are advocating a structuring technique where remote
servers are programmed (extended) with user code and user
profiles for high expressiveness [2]. This way, data is fil-
tered as close to the data source as possible. Next, we struc-
ture a spooling service close to the user, much the way an e-
mail client is being deployed and used today. This spooling
service has high bandwidth and connectivity to the Inter-
net. The last structure in our architecture is a mobile device,
be it a cellular or a PDA, where connectivity is intermit-
tent and resources are scarce [11]. The focus on this paper
is on the aspects related to this last jump, where we need
to understand some of the problems and issues involved in
a context-sensitive, precise push of information to a light,
mobile client.

The rest of this paper is structured as follows. In sec-
tion 2, we present our WAIF infrastructure. Next, in section
3, we describe our publish/subscribe system. In section 4
we present our simulation results. In section 5 we outline

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392160341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

directions for future work and in section 6 we conclude.

2 Wide Area Information Filtering

In WAIF1, we conjecture that extensible computational
resources will be embedded throughout the Internet [9]. Fo-
cus is on how this next generation Internet can be made
programmable and extensible with personalized, mobile
software. Our goal is to replace the old, time-consuming
pull-based Internet, with a push-based one delivering high-
precision information in a timely manner. Servers initiating
information dissemination can be programmed by accepting
entrant client code and data for execution [2].

For many years, computers systems were structured to
accommodate many users per computer. In our pervasive
computing model, though, we structure systems initially so
that many computers serve a single user. For each user,
we create a personal overlay network system (PONS). This
ad hoc network serves a single user by filtering, fusing and
pushing information based on personal preferences. In ad-
dition, a PONS provides a distributed personal file system
and private compute resources.

A publish/subscribe system like, for instance, Siena
achieves expressiveness by evaluating filtering predicates
close to data sources. We advocate a similar, but even more
extreme design principle for our pervasive systems. We ac-
tually program the servers by deploying client code at the
data sources. This resembles how we used mobile agents
successfully in our TACOMA mobile agent system [8, 10].
As such, a PONS can be created by extending servers with
(mobile) client code. The infrastructure is much like in
Oxygen [5], but we use this pervasive infrastructure embed-
ded in our environment as a virtual remote computer net-
work.

WAIF also supports automating environment mobil-
ity [11]. An environment is the applications and services
being used at the source computer when a user decides to
move on. For instance, if a user is editing a text document, is
listening to some mp3-based music in the background, and
has his mailer and browser active on the desktop, all these
tasks should be brought along. Next, upon reaching a desti-
nation computer, the same applications should be recreated
with state as upon departure.

3 Volume-Limiting Pub/Sub System

Our publish/subscribe system istopic-based, in that a
user subscribes to a topic published by a specific publisher
(e.g. weather updates from a news outlet). This is differ-
ent from the more complexcontent-basedsystems in which
a subscription is expressed as a query and any events sub-
mitted into the system that match the query are forwarded

1WAIF is a joint project between University of Tromsø, Cornell Univer-
sity, and UC San Diego.http://www.waif.cs.uit.no. Funded by Norwegian
Resource Council (IKT-2010 Program).

to the user, regardless of their origin. We believe that for
an Internet-scale publish/subscribe system a topic-based ap-
proach is more appropriate. Firstly, query processing has
higher routing overhead, which inhibits scalability. Sec-
ondly, the use of queries requires agreement on a query
language, which is difficult to achieve on a global scale.
Thirdly, it is not clear how to prevent malicious parties, such
as unsolicited advertisers, from abusing a global content-
based messaging system by submitting events designed to
match queries of users who are not interested in their con-
tent.

Although topic subscriptions would seem to restrict a
user to the publishers that it knows about, this need not
be the case any more than web surfers being limited to the
URLs that they know about. Just as web crawlers index
content of websites and allow one to find that content with a
query, a special kind of publisher – anevent notification in-
dexer– can parse all incoming events and notify subscribers
whose queries match the content of the event, regardless of
their origin. In this model, to discover new publishers, a
user would subscribe to a ”customized” topic published by
the indexer in response to the query (e.g. any event match-
ing ”weather” & ”Norway”). The topic would exist only for
as long as there are users interested in a query.

To obtain events for parsing, the indexer can both sub-
scribe to topics of regular publishers and also allow pub-
lishers to submit events directly to it in the hope of reaching
a wider audience. With likelihood, malicious parties will be
submitting deceitful content to such an indexer, but its op-
erators have a strong incentive to do what they can to detect
and filter out such content, just as web search engines do to-
day with some success. It is outside the scope of this paper,
but certainly among key concerns in our overall design, to
consider how to assist indexers in this filtering.

3.1 Publisher Interface

Just as many newspapers are thrown away unread, we
expect that many event notifications in a global pub-
lish/subscribe system will never reach the eyes of a user
who is unable to keep up with the flow of events on all the
topics he subscribed to. When our time is scarce, we typ-
ically prioritize the tasks that need to be done and perform
them in the order of priority, ignoring the ones that have
lost relevance by the time they are at the top of the queue.
This is our motivation for allowing a publisher to attach two
attributes to every event notification:

• Rank– Indication of a notification’s importance in re-
lation to other notifications on its topic.

• Expiration – Time after which a notification is no
longer relevant and should be discarded from the
queue.

Although publishers are not required to use these two
attributes and they cannot be forced to use them correctly,

2

it is in their interest to do so. If, for example, a publisher
of a weather topic fails to attach a high priority to a storm
warning resulting in that message being lost among other
weather updates, a user would likely consider switching to
a different publisher. Similarly, since a weather forecast is
relevant only for a few days, it is most prudent to attach
an appropriate expiration time to it, lest the user mistakenly
rely on outdated information.

While helpful in overcoming information overload, both
RankandExpirationare also useful for efficient utilization
of hardware resources – primarily network bandwidth and
battery power – as will be shown in Section4.

3.2 Subscriber Interface

In the most general sense, a subscriber needs a way to
specifywhat event notifications to receive andwhento re-
ceive them. Although a subscription to a topic unambigu-
ously identifies a set of notifications the user is interested in,
when time is scarce the user may want to limit how many
events from that topic are delivered. Our system offers two
complementary volume limits for this purpose:

• Max– Deliver at most this many highest-ranked event
notifications at a time. This is aquantitativelimit.

• T hreshold– Only event notifications with the rank at
or above this threshold are deemed acceptable. This is
aqualitativelimit.

To illustrate, if one wanted to subscribe to the ”Slash-
dot” topic, the two limits used in concert would allow one
to request the highest-ranked stories and comments above
threshold 4.5 (out of 5 maximum), but not more than 30 at
a time. Provided that the stories do not expire too quickly,
one can come back from a month-long vacation and read
the most important bits from the past month. The volume
limits are especially important for indexer queries because
they aggregate content from multiple publishers and can re-
sult in an event arrival rate beyond the processing capacity
of any user.

With most devices it is possible to either display event
notificationson-line, as soon as they arrive, or accumulate
them foron-demanddisplay, when the user decides to check
messages. This is a matter of user’s preference, which is
likely to depend both on their personality and on the na-
ture of notifications on a topic. Certain topics, such as ur-
gent traffic updates, are likely candidates for on-line display,
whereas others do not warrant interrupting the user and are
best served on-demand. Our publish/subscribe interface al-
lows the device to specify for each subscription how the
user wants to receive the notifications. Notifications for on-
line topics are forwarded over the last hop as soon as the
connection allows. For on-demand topics, which we expect
to be the majority, we optimize the use of the last hop by
taking the volume-limiting parameters, such asRank and
Max, into account. This is the subject of Section4.

There is a number of potential refinements to the user
interface for a topic, beyond a simple selector between on-
line and on-demand display. For example, one can envision
a hybrid model in which an on-line topic goes quiet (e.g.
during a meeting) or an on-demand topic interrupts (e.g. a
tornado warning on a weather topic). On-line topics could
be configured to only deliver events at specific points during
the day with a certainMax number of messages per day.
Furthermore, some devices, such as SMS-enabled mobile
phones, may not be capable of on-demand display. All of
these are issues of user interface design – it only matters to
the publish/subscribe system whether event delivery is on-
line or on-demand.

3.3 Device Constraints

As receivers of event notifications, mobile devices on
one hand open doors to innovative location-aware services,
but on the other hand introduce limitations in processing
and communication capabilities.

From the perspective of our publish/subscribe system,
changes in device’s location or, more generally, itscon-
text, lead tochanges in the set of subscriptionsthat are
forwarded to the device. For example, a subscription to a
topic for traffic updates could be contingent upon the device
being located in the home city of the user. Perhaps more
ambitiously, such subscription could be ”parameterized” to
receive traffic updates for whatever city the user happens
to be in. In other words, upon a context update from a
GPS-enabled mobile device, the spooling server detects a
change in context and re-subscribes the user to the traffic
updates topic with the new location as a parameter. Despite
a potentially unlimited variety of such services, in our pub-
lish/subscribe system their functionality can be mapped into
a simple context update handler, which performs standard
subscribe ()andunsubscribe ()operations.

Hardware limitations of mobile devices introduce per-
formance challenges for the last hop of a publish/subscribe
system:

• Even when network access is free or unrated, limited
battery poweradds a cost to every network transfer
and every computation on the mobile device by effec-
tuating a limit on network messages beyond which the
device is inoperable.

• When storage capacitybecomes scarce, the device
may need to delete old or low-ranked notifications to
make room for new ones. This deletion means that the
messages were forwarded needlessly, thus contributing
to battery drain.

• Limited network capacitymay at worst prevent the
user from accessing the spooling server or at best make
receipt of notifications tedious.

The first two limitations argue in favor of minimizing the
number of notifications forwarded to the device. The third

3

one, though, makes a case forprefetchingsome notifica-
tions to the mobile device in anticipation of poor network
capacity. Although complete lack of connectivity may soon
be a thing of the past in most corners of the globe, insuf-
ficient bandwidth will be a problem for the foreseeable fu-
ture, given the small antenna sizes of many wireless devices
and the large distances between them and base stations. We
evaluate this trade-off between effectiveness of prefetching
and waste of resources in the next section.

4 Optimizing the Last Hop

To understand the dynamics of the last hop of a pub-
lish/subscribe system, we wrote a discrete-event simulator
of a spooling server and a mobile device and had the sim-
ulator report detailed statistics on the number of messages
exchanged between them. During initialization the simula-
tor is populated with three types of events:

• Notification Arrivals– Events on a topic arrive a cer-
tain number of times per day (event frequency), ac-
cording to a Poisson distribution. Optionally, a portion
of the events can be configured to expire withinexpi-
ration time, according to a desired distribution (expo-
nential, uniform, normal).

• User Reads– The user checks for new messages a
certain number of times per day chosen from a nor-
mal distribution (user frequency), which are distributed
randomly throughout the 16- to 17-hour period, also
slightly randomized, that the user is awake. At most
Max messages are read at a time, and only messages
with rank aboveT hresholdare read.

• Network Outages– The network link goes down with a
configurable frequency (Poisson distribution with high
variance) and can be specified to last long enough for
cumulative network downtime of anywhere between 0
to 100%. Note that we view periods of unacceptably
slow network performance as outages, so high outage
percentages can represent users who are mainly on a
slow but functioning link.

Each experimental run lasted for one ”virtual” year, re-
sulting in anywhere between 150 and several thousand user
reads, depending on the configuration. Since studying inter-
actions among different devices or different topics and the
question of overall link utilization are outside the scope of
this work, it was sufficient to model a single client device
subscribed to a single topic.

4.1 Prefetching

If the client device does not have the constraints on stor-
age and battery life and if network connectivity is inexpen-
sive – then it is appropriate to forward all incoming noti-
fications to the device as soon as they arrive, regardless of

whether they belong to a on-line or on-demand topic. In
the latter case the device will queue up the notifications un-
til the user requests them. Thison-line forwarding policy
ensures thebest possible servicein that all notifications are
delivered as soon as they can be, given the network condi-
tions. If the devicedoeshave the constraints but network
connectivity is good – then it is appropriate to hold notifi-
cations for on-demand topics on the spooling server until
the user requests them. Suchon-demandforwarding policy
minimizes resource consumption and delivers service that
is just as good for as long as the spooling server is always
reachable via a fast network.

As discussed in Section3.3, many mobile devices face
capacity constraints in combination with insufficient net-
work connectivity. In such a setting, an on-line forwarding
policy may waste resources and a pure on-demand policy
may result in a lower quality of service. To make this pre-
cise, we define twoinefficiencymetrics:wasted messages
are those that were sent to the device, but never read by
the user; andlost messagesare those that would have been
read by the user under an on-line forwarding policy (i.e. the
best possible service), but never reached the user under the
policy in effect. A pure on-demand policy has no waste be-
cause only the messages explicitly requested are transferred
to the device. An on-line forwarding policy has no losses,
by definition.

In our publish/subscribe system, waste can arise in two
ways, both related to the volume-limiting mechanisms that
we introduced in Section3. First, when the arrival rate of
notifications on a topic (as modeled byevent frequency) ex-
ceeds the rate at which the user can read them (product of
user frequencyandMax), some notifications never reach
the user. We call this conditionoverflow. Second, notifica-
tions may expire before the user gets to them (as modeled
by expiration time). When network connectivity is good,
both overflow and expirations would cause the same mes-
sages to remain unread regardless of the forwarding policy.
But when network outages are present, different forwarding
policies lead to differences in the set of messages available
to the user at any moment. For example, if a user checks an
on-demand topic during an outage, no notifications will be
available on the device. By the time the network is up, some
notifications may expire, resulting in a loss as compared to
the on-line forwarding policy.

To investigate the trade-off between waste and loss, we
configured the simulator to execute two scenarios for each
randomized set of discrete events. In anon-line scenario,
notifications were queued up at the spooling server and for-
warded to the device as soon as the network was available.
This defined the best possible user experience under the cir-
cumstances – the baseline for computing loss – and also
the maximum level of waste. In theprefetching scenario,
we could experiment with a pure on-demand policy with
no forwarding or a intermediate solution that forwarded a
portion of notifications based on some algorithm. To com-
pute loss, upon the completion of a run, the set of messages

4

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32 64

Pe
rc

en
t o

f
W

as
te

d
M

es
sa

ge
s

Maximum Messages per Read

User Frequency:
0.25
0.5

1
2
4
8

16
32
64

Figure 1. Wasted due to overflow at different values
of Max anduser frequency(event frequency= 32)

read under a prefetching scenario was compared to the set
of messages read under the on-line scenario.

4.2 Inefficiency Due to Overflow

We first turn to the waste and loss caused by overflow,
or mismatch in event production and consumption rates. In
this section we assume that event notifications do not expire.
Figure1 shows the percentage of waste (i.e. the fraction of
unread forwarded messages) at different values ofMaxand
user frequency. Without loss of generality,event frequency
was fixed at 32 notifications per day. The results are pre-
dictable: a user that reads a maximum of 32 messages once
a day will not cause any waste, but ifMax is reduced to 4,
then 88% of the forwarded messages are wasted. The shape
of these curves is dictated by a simple formula:

Waste %= 1− user frequency∗Max
event frequency

The point to observe is that users who do not check mes-
sages frequently and do not have the time to read much, risk
burdening their mobile device with a high level of waste –
thus shortening battery life and incurring extra connectivity
costs – under an on-line forwarding policy. With pure on-
demand forwarding the waste can be eliminated, but at the
price of some loses. In Figure2 we show what those loses
are at different levels of network availability. As the por-
tion of the time that the network is unavailable increases,
the losses grow exponentially to the point just below 100%
before dropping back to 0 at the point of no connectivity
(on-line and on-demand policies are equally powerless at
that point). Although we only show losses atMax = 8, the
shape of the curves with lowuser frequencyis much the
same withMax anywhere between 1 and 64.

We experimented with two prefetching approaches in the
attempt to find a compromise between waste and loss due
to overload. Both approaches suppress forwarding of some
notifications and both chose the highest-ranking notifica-
tions when they do forward. The intuition behind both was

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pe
rc

en
t o

f
L

os
t M

es
sa

ge
s

Percent of Network Outage

User Frequency:
0.25
0.5

1
2
4
8

16
32
64

Figure 2. Loss due to overflow at different levels of
network availability (event frequency= 32,Max= 8)

to adapt to the difference in production and consumption
rates:

• In the buffer-basedapproach the spooling server en-
sures that the client device never has more than a fixed
prefetch limitof notifications in its buffer. When the
buffer is full, no forwarding occurs. Once the user has
read some notifications, room in the buffer opens up
and more notifications can be forwarded.

• In therate-basedapproach the spooling server dynam-
ically calculates the ratio between the event arrival rate
and the read rate of the user. The ratio is used to for-
ward messages with a certain frequency. For example,
with a ratio of 0.2, forwarding takes place at the arrival
of every 5th message.

We found that both approaches were good at reducing
waste and loss to a few percentage points, but the buffer-
based approach turned out to be more effective and, inci-
dentally, simpler. In Figure3 we show loss and waste with
buffer-based prefetching under different prefetch limits. As
the limit increases from 1 to 16, the loss percentage drops
down very close to 0; as the limit goes beyond 64, the waste
percentage starts growing exponentially before leveling off
at 50%. (Withevent frequency= 32,Max = 8, anduser
frequency= 2 we expect half of all messages to be wasted
in the worst case.) Between 16 and 64, both waste and loss
are below 1%. The low end of this range corresponds to the
average number of messages a user reads per day.

Therefore, in cases of overflow, a buffer-based prefetch-
ing algorithm can be highly effective. To help determine
the prefetch limit, a spooling server needs to keep track of
several past user reads and calculate a moving average. It is
safe to set the prefetch limit to twice that amount.

4.3 Inefficiency Due to Expirations

If a user fails to read an event notification before it ex-
pires, then forwarding of this notification is wasteful. If we

5

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536

Pe
rc

en
t o

f
L

os
t M

es
sa

ge
s

Prefetch Limit (messages)

Percent of Network Outage = 0.01
0.1
0.3
0.5
0.7
0.9

0.99

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536

Pe
rc

en
t o

f
W

as
te

d
M

es
sa

ge
s

Prefetch Limit (messages)

Percent of Network Outage = 0.01
0.1
0.3
0.5
0.7
0.9

0.99

Figure 3. Loss and waste with buffer-based prefetch-
ing under different prefetch limits and levels of net-
work availability (event frequency= 32, Max = 8,
user frequency= 2)

assume for now that the user is willing to process all noti-
fications in the queue every time (i.e.Max = ∞), then the
fraction of wasteful notifications is determined byevent fre-
quency, mean expiration time, anduser frequency. Figure4
shows this fraction at different values ofuser frequencyand
different expiration times. As can be expected, most short-
lasting notifications expire before the user gets to them, but
when the user checks messages with frequency below the
expiration time, waste disappears.

In periods of network outage, expirations can also con-
tribute to loss. When expiration time is short relative to
user frequency, loss is negligible because most notifications
expire before the user gets to them and consequently users
have little to read during outages, regardless of the forward-
ing policy. As the expiration time increases, so does the
percentage of loss, because notifications that expire dur-
ing a network outage are potentially readable under on-line
forwarding, but not under on-demand forwarding. Unlike
the overflow case described in the previous section, where
spooled notifications are in theory available to the user in-
definitely, once a notification has expired, it has no chance
of being fetched by a user after a network outage. Thus
loses due to expirations are harder to minimize. Fortu-
nately, as the expiration time grows further, notifications
stick around long enough to be picked up with on-demand
forwarding eventually, so the loss percentage starts drop-
ping back down. This is illustrated is Figure5, where loss

 0

 20

 40

 60

 80

 100

 16 64 256 1024 4096 16384 65536 262144

Pe
rc

en
t o

f
W

as
te

d
M

E
ss

ag
es

Mean Expiration Time of Messages (seconds)

User Frequency:
 1

2
4
8

16
32
64

Figure 4. Waste due to expirations with different val-
ues ofuser frequencyand expiration periods from 16
seconds to 3 days (event frequency= 32)

 0

 20

 40

 60

 80

 100

 16 64 256 1024 4096 16384 65536 262144

Pe
rc

en
t o

f
L

os
t M

es
sa

ge
s

Mean Expiration Time of Messages (seconds)

User Frequency:
 1

2
4
8

16
32
64

Figure 5. Loss due to expirations with different val-
ues ofuser frequencyand expiration periods from 16
seconds to 3 days (event frequency= 32, network out-
age 95% of the time)

is shown for different expiration times on a network that is
down 95% of the time (with better network availability the
height of these curves is lower).

If Figure 4 and Figure5 are superimposed, however, it
is evident that only at long expiration times – points at the
right end of the scale and beyond – are both waste and loss
sufficiently low. This is a clue to why devising a prefetch-
ing algorithm that accommodates notification expirations is
difficult. Ideally, such an algorithm would only forward no-
tifications that will not expire by the time of the next user
read. Although expiration times are known, user behavior
is unpredictable.2As a result, the best one can do is pick an
expiration thresholdand abstain from forwarding any noti-
fications that expire over a shorter period of time.

We show how the system behaves with different values
of this threshold in Figure6. For these experiments we used

2It may be possible devise statistical methods that predict user behavior
with sufficient accuracy, but this can only be done by a comprehensive
study of real users and not by a simulation-based preliminary evaluation
that we are conducting.

6

 0.5

 1

 2

 4

 8

 16

 32

 64

 64 256 1024 4096 16K 64K 264K 1M

Pe
rc

en
t o

f
W

as
te

d
M

es
sa

ge
s

Prefetch Expiration Threshold (seconds)

Mean Expiration Time:
15360 s (4.2 hrs)

245760 s (2.8 days)
491520 s (5.7 days)
983040 s (11 days)

3932160 s (54 days)

 (17 min) (1 hr) (4.5 hrs) (18 hrs)

Pe
rc

en
t o

f
L

os
t M

es
sa

ge
s

Figure 6. Waste (curves starting on the left) and loss
(curves ending on the right) due to expirations, at dif-
ferent prefetch expiration thresholds (event frequency
= 32,user frequency= 2, network outage 90% of the
time). Note thatboth axis are logarithmic.

a challenging configuration: network downtime of 95%,
user frequencyof 2, and expiration times starting from 4.2
hours (this is one of the top points in Figure5). The graph
shows both waste and loss for five message expiration in-
tervals. In each pair of curves, the waste is high with short
expiration thresholds (because many frivolous messages get
past the thresholds) but then sharply drops to zero. Con-
versely, the loss is nonexistent at first, but then climbs up to
a high percentage and stabilizes there (too high of a thresh-
old is as bad as no prefetching at all).

This plot reveals that there are configurations – roughly
those in which message expiration time is in the vicinity of
the intervals between user reads – that result in high levels
of waste or loss no matter what threshold is chosen (e.g. the
solid curve in the figure). In those cases, we believe it is
most appropriate to let the user decide on the best trade-off
between waste and loss. But when the system detects that
average message expiration time is considerably higher than
interval between user reads, it can set the expiration thresh-
old automatically. Our experiments indicate that when the
expiration time is an order of magnitude higher than the
time interval between reads, as in the case of the 5.7-day
curve in Figure6, then there is a range of values where loss
and waste are very small, visible as a gap between the de-
scended waste curve and the ascending loss curve. That
range includes the value of the interval between reads, mak-
ing it the natural choice for the expiration threshold. For
example,user frequencyof 2 per day results in an average
interval between reads of 8 hours – an expiration threshold
value that is within the gap of the 5.7-day curve and all oth-
ers with longer expiration times.

4.4 Inefficiency Due to Rank Changes

As an additional refinement of the volume-limiting
mechanisms in our system, we allow the rank of an event
notification to change over time. A positive change can be

used to boost popularity of a useful notification based on
recommendations from other users. A negative change can
help retract notifications of malicious usersafter they reach
mailboxes of subscribers, but before the notifications are
read. Details of mechanisms for adjusting ranks are outside
the scope of this article, but here we consider the implica-
tions of rank changes on waste and loss.

On the last hop the lowering of a rank in combination
with prefetching can lead to overhead, since notifications
may fall below the threshold after being prefetched (need-
lessly). This is similar to expirations, except now the ex-
piration time is not known in advance, so there is no point
in establishing an expiration threshold. We instead propose
delaying all events on a topic that suffers from rank reduc-
tions for a period of time that is just long enough to elimi-
nate most of them. Assuming that ”bad” messages are de-
tected quickly, this can be a useful option for allowing the
user to trade off timeliness for quality. It is clear that this
delay would be computed based on the expiration history
of past events, but finding the right formula demands data
from a deployed publish/subscribe system. Therefore, this
is a topic that we plan to come back to in the future.

4.5 Unified Prefetching

To combine the ideas presented in this section and to
present them more precisely, we show in Figure7 a pseudo-
code for the spooling server in our system. The code con-
sists of three main routines (shown in all caps) that are in-
voked in response to: arrival of notifications from outside,
reads from the client device triggered by the user, and net-
work status changes. These routines rely on many queues
and several axillary routines (some of which were omit-
ted for brevity) to pass messages along. We assume that
a reader familiar with the set notation, which we use to con-
cisely indicate operations on queues, will find most of the
code self-explanatory. But several points demand explana-
tion:

• Three main queues are used for temporarily storing
events: theoutgoing queueis filled with events that
must be forwarded as soon as possible; theprefetch
queuecontains events that passed expiration checks
and the delay stage, meaning they are OK to prefetch
if there is room on the client; and theholding queueis
for events deemed unacceptable for prefetching due to
their short expiration time. Note that all three queues
are tapped for events when the user requests a read.

• schedule ()is used to invoke a routine in the future,
much like a signal handler does. It is used for both
expiring notifications and delaying them, as described
in the previous section.

• READ ()receives from the client three parameters:N,
the number of items user wants to read;queuesize,
the number of messages currently in the queue on the

7

client device,including the N that it is requesting; and
client events, a set of anywhere between 0 and N event
identifiers that are the highest-ranked events on the
client device (with effective prefetching this set may be
better than anything available in queues on the server,
making any transfer unnecessary). Essentially, a read
is not a request for more data, but a request for ”better”
data if it exists.

• In addition to omitting implementations of certain rou-
tines, such asmovingaverage (), we also did not in-
clude ”garbage collection” that would have to operate
in the background as certain queues (e.g.topic.history)
grow without any bounds.

5 Future Work

Two interesting problems resulting from the marriage of
publish/subscribe systems and mobile devices have escaped
our attention for now: In the future we want to study the im-
plications of cooperation among multiple devices belonging
to one user. Their interaction, perhaps with the aid of an ad-
hoc network, has the potential for reducing both loss and
waste by allowing one device to use the cache of another.
Also, to avoid making the spooling server a single point of
failure, we want to consider approaches to replicating it.

On the practical front, we are in the process of imple-
menting the ideas described in this paper in a real system.
We look forward to comparing results of simulations to the
behavior of real publishers and subscribers under real net-
work conditions.

6 Concluding remarks

We conjecture a more push-based Internet in the future.
Such a network has high potential for supporting timely
alerts and the like, but is also burdened with a serious prob-
lem: spam and information overload. We target this prob-
lem by filtering data as close as possible to data sources and
by building personal overlay networks fusing data towards
the client.

The focus in this paper has been to study issues involved
in the last communication path leading into the mobile
client device. We argue that precision must be taken largely
into account, and we suggest a context-sensitive precision
mechanism to support this. This is our volume-limiting
mechanism, which also has potential applicability in per-
vasive environments like, for instance, in GPRS and UMTS
based cellular communication technology.

We have presented simulation results from this scenario,
and our volume-limiting mechanism takes findings here into
account. Currently, we have implemented our volume-
limiting mechanism in one of our WAIF applications, a
peer-to-peer recommender system where user recommen-
dations are being pushed and ranked among (topic) peers.

Also, we built aspects of it into our first WAIF web browser,
where we learned that we needed a more holistic simula-
tion as done in this paper to better understand the issues
involved.

We are targeting to deploy our precision scheme in a pub-
lic WAIF PONS soon operational for students at the north-
ernmost university in the world. Naturally, this WAIF based
push infrastructure has severe StormCast weather alerts as
one of the services possible to subscribe to. Other person-
alized services or correlations of services include, for in-
stance, bus routes, alerts when a certain topic is indexed by
the search engine Google, Television program alerts, local
concert subscriptions, news subscriptions based on media-
tor services, and a push-based auction service.

References

[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman,
Mark Astley, and Tushar D. Chandra. Matching events in
a content-based subscription system. In proceedings ofthe
18th ACM Symposium on Principles of Distributed Comput-
ing, 53–61, May 1999.

[2] Ingar M. Arntzen and Dag Johansen. A programmable struc-
ture for pervasive computing. In proceedings ofIEEE Inter-
national Conference on Pervasive Services,19–23, Beirut,
Lebanon, July 2004.

[3] Antonio Carzaniga, David S. Rosenblum, and Alexander
L. Wolf. Design and evaluation of a Wide-area event noti-
fication service.ACM Transactions on Computer Systems,
19(3):332–383, 2001.

[4] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and
Antony Rowstron. SCRIBE: A large-scale and decentral-
ized application-level multicast infrastructure.Journal on
Selected Areas in Communications (JSAC),20(8):100–110,
2002.

[5] Michael L. Dertouzos. The future of computing.Scientific
American,281(2):36–39, August 1999.

[6] Gunnar Hartvigsen and D. Johansen. StormCast – A dis-
tributed artificial intelligence application for severe storm
forecasting.Distributed Computer Control Systems, Perga-
mon Press, Oxford, England, 1989.

[7] Dag Johansen and Gunnar Hartvigsen. Convenient abstrac-
tions in StormCast applications. In proceedings ofACM
SIGOPS European Workshop,pages 11-16, Dagstuhl Castle,
Germany, September 1994.

[8] Dag Johansen, Robbert van Renesse, and Fred B. Schneider.
Operating system support for mobile agents. In proceedings
of the 5th Workshop on Hot Topics in Operating Systems,
42–45, Orcas Island, WA, May 1995.

[9] Dag Johansen, Robbert van Renesse, and Fred Schneider.
WAIF: Web of asynchronous information filters. InLec-
ture Notes in Computer Science: ”Future Directions in Dis-
tributed Computing,”v. 2584. Springer-Verlag, Heidelberg,
April 2003.

[10] Dag Johansen, K̊are Jørgen Lauvset, Robbert van Renesse,
Fred B. Schneider, Nils P. Sudmann, and Kjetil Jacobsen. A

8

TACOMA retrospective.Software Practice and Experience,
605–619, 2002.

[11] Dag Johansen, H̊avard Johansen, Robbert van Renesse. En-
vironment mobility – Moving the desktop around. In pro-
ceedings ofthe 2nd Workshop on Middleware for Pervasive
and Ad-Hoc Computing,18–22, Canada, October 2004.

[12] M. Kozuch and Mahadev Satyanarayanan. Internet Sus-
pend/Resume. In proceedings ofthe 4th IEEE Workshop on
Mobile Computing Systems and Applications,Calicoon, NY,
June 2002.

[13] Mahadev Satyanarayanan. Pervasive computing: Vision and
challenges.IEEE Personal Communications,10–17, August
2001.

[14] Joao Pedro Sousa and David Garlan. Aura: An architectural
framework for user mobility in ubiquitous computing envi-
ronments. In proceedings ofthe 3rd IEEE/IFIP Conference
on Software Architecture: System Design, Development and
Maintenance,29–43, 2002.

[15] David Tennenhouse. Embedding the Internet: Proactive
computing. Communications of the ACM,43(5):43–50,
2000.

var topic // pointer to the current topic
var q← topic.queues// shortcut to queues for the topic

NOTIFICATION (event)// called when new outside event arrives
// if rank has been lowered below the threshold
if event.rank< topic.rankthreshold∧ event∈ topic.historythen

q.holding← q.holding\ event;// remove from holding queue
q.prefetch← q.prefetch\ event;// ditto for prefetch queue

// if it has been forwarded to the client
if event∈ topic.forwardedthen

q.outgoing← q.outgoing∪ event;// tell client of rank drop
else

q.outgoing← q.outgoing\ event;// don’t bother client

// if rank is above the threshold
else ifevent.rank≥ topic.rankthresholdthen

if topic.type = ”on-line” then
q.outgoing← q.outgoing∪ event;// send to client ASAP

else iftopic.type = ”on-demand”then
if event.expires> 0 then

topic.exptimes← topic.exptimes∪ event.expires;
topic.avgexp←moving average(topic.exptimes);
schedule(&expirationtimeout, event.expires, event);

if event.expires< topic.expirationthresholdthen
q.holding← q.holding∪ event;

else iftopic.delay> 0 then
schedule(&delaytimeout, topic.delay, event);// delay it

else
q.prefetch← q.prefetch∪ event;

topic.history← topic.history∪ event;// record all events
topic.delay← delay function(topic.history);// recompute delay
try forwarding ();

READ (N, queuesize, clientevents)// called when a user reads
topic.old reads← topic.old reads∪ N; // remember N
topic.prefetchlimit ←moving average(topic.oldreads) * 2;
topic.old times← topic.old times∪ gettimeofday();// timestamp
time betweenreads←moving averagedifference(topic.oldtimes);
topic.expirationthreshold← time betweenreads;
topic.queuesize← queuesize;

best← get highestranked(N, q.outgoing∪ q.prefetch∪ q.holding);
difference← get highestranked(N, best∪ client events)\ client events;
q.outgoing← q.outgoing∪ difference;
try forwarding ();

NETWORK (status)// called when the status of the connection changes
topic.network← status;
if status = ”up” then

try forwarding ();

try forwarding ()
if topic.network6= ”up” then

return;
// first empty the outgoing queue
for each event∈ topic.outgoingdo do forward(event);

// then see if anything should be prefetched
while topic.queuesize< topic.prefetchlimit ∧ q.prefetch6= ∅ do

event← get highestranked(1, q.prefetch);
do forward(event);

do forward (event)
forward(event);
topic.queuesize← topic.queuesize+ 1;
topic.forwarded← topic.forwarded∪ event;

expiration timeout (event)// remove from all queues
q.holding← q.holding\ event;
q.prefetch← q.prefetch\ event;
q.outgoing← q.outgoing\ event;

delay timeout (event)// after a delay the notification can be prefetched
q.prefetch← q.prefetch∪ event;
try forwarding ();

Figure 7. Pseudo-code for the prefetching algo-
rithm used on the spooling server.

9

	Introduction
	Wide Area Information Filtering
	Volume-Limiting Pub/Sub System
	Publisher Interface
	Subscriber Interface
	Device Constraints

	Optimizing the Last Hop
	Prefetching
	Inefficiency Due to Overflow
	Inefficiency Due to Expirations
	Inefficiency Due to Rank Changes
	Unified Prefetching

	Future Work
	Concluding remarks

