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Abstract

The performance of the collective operations pro-
vided by a communication library is important for
many applications run on clusters. The communica-
tion structure of collective operations can be orga-
nized as a tree. Performance can be improved by con-
figuring and mapping the tree to the clusters in use. We
describe and demonstrate an approach for evaluating
the performance of different configurations and map-
pings of allreduce run on clusters of different size, con-
sisting of single-CPU hosts, and SMPs with a different
number of CPUs. A breakdown of the cost of allre-
duce using the best configuration on different clusters
is provided. For all, the broadcast part is more ex-
pensive than the reduce part. Inter-host communica-
tion contributes more to the time per allreduce than the
synchronization in the allreduce components. For the
small messages sizes used (4 and 256 bytes), the time
spent computing the partial reductions is insignificant.
Reconfiguring hierarchy aware trees improved perfor-
mance up to a factor of 1.49, by avoiding scalability
problems of the components on SMPs, and by finding
the right balance between available concurrency, load
on ’root’ hosts and the number of network links in a
tree. Extending a tree by adding more threads, or by
combining two trees does not have a negative influence
on the performance of a configuration, but increasing
message size does.

1 Introduction

Clusters are becoming an increasingly important
platform for scientific computing. A large portion of

the programs are written using a communication li-
brary such as MPI [18] or PVM [22]. Both provide
collective operations, such as broadcast, reduce and
allreduce, to simplify the development of parallel ap-
plications. Of the eight scalable scientific applications
investigated in [29], most would benefit from improve-
ments to MPI’s collective operations. Also, the impor-
tance of collective operations is likely to grow, if the
high performance overhead due to lack of scalability
is reduced [28].

The communication structure of a collective opera-
tion can be organized as a tree, with threads as leafs.
Communication proceeds along the arcs of the tree and
a partial operation is done in each non-leaf node. In
earlier work [2], we improved the performance of a
collective operation up to a factor of two, by configur-
ing the tree shape, and by modifying the mapping of
the tree to the clusters in use.

In this paper we evaluate how, why, and by how
much performance can be improved by reconfiguring
the communication structure and mapping of collec-
tive operations to different clusters. We break down
the cost of collective operations to guide future opti-
mizations. Also, we evaluate the effect of extending
trees by adding more threads and clusters, and by in-
creasing message size.

We use the PATHS system [4] to specify the com-
munication structure and mapping of collective oper-
ations. We limit our study to the allreduce operation.
In allreduce, each thread has data that is reduced us-
ing an (associative) operation, followed by a broadcast
of the reduced value. The implementation of the tree
components and the communication protocols are not
changed.

We provide an approach for analyzing the perfor-
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mance of different configurations, and we demonstrate
the approach by analyzing different allreduce con-
figurations on a blade cluster with ten uni-processor
blades, a cluster of thirty two-way hosts, a cluster of
eight four-way hosts, and a cluster of four eight-way
hosts.

Reconfiguring hierarchy aware trees improves per-
formance by a factor up to 1.49, by avoiding scalabil-
ity problems of the components on SMPs, and by find-
ing the right balance between available concurrency,
load on root hosts, and the number of network links
in a tree. A tree can be extended by adding more
threads, and by using two single-cluster trees to create
a multi-cluster tree without decreasing performance.
However, increasing the message size may require a
reconfiguration.

A breakdown of the cost of allreduce using the best
configuration, shows that the broadcast part is more
expensive than the reduce part. Inter-host communica-
tion contributes more to the time per allreduce than the
synchronization in the allreduce components. For the
small messages sizes used (4 and 256 bytes), the time
spent computing the partial reductions is insignificant.

The rest of this paper proceeds as follows. Related
work is discussed in section 2. Collective operation
implementation, and our system for configuring them
are described in section 3. Our monitoring and analy-
sis approach are described in section 4. Section 5 de-
scribes the methodology for the experiments that are
used to demonstrate the analysis approach in sections
6 and 7. Finally, in section 8 we conclude and outline
future work.

2 Related Work

The MPI standard [18] includes the topology mech-
anism for remapping the ranks of processes according
to a logical arrangement of communication specified
as a graph. This may be used by the run-time system
to aid in mapping the processes onto hardware, and as
an advice for optimizing collective operations. How-
ever, current MPI implementations seems to make lit-
tle use of this mechanism [26]. We also believe that
using an implicit mechanism such as changing ranks
to influence the mapping and structure of the collective
operation tree is inadequate. Hence, the communica-
tion system should allow the communication structure

and behavior to be inspected and explicitly mapped to
the available resources.

There are several performance analysis tools for
MPI programs [17]. Generally these tools monitor and
analyze how the application use the communication
system, and not what happens inside the communica-
tion system.

Many research projects have optimized MPI collec-
tive operations [8, 11, 12, 15, 21, 23, 27]. Our work is
complimentary in that it reports detailed on where the
time is spent inside an allreduce operation.

Vadhiyar et al. [27] describes an approach where
experiments are automatically conducted on a system
to find the best algorithm for creating the communica-
tion structure for a given collective operation. In our
approach a new communication structure is created,
based on an analysis of the performance of previous
configurations, allowing for arbitrary communication
structures that may not easily be created by an algo-
rithm.

Kielmann et al. [12] shows an approach where they
reduce the number of messages over WAN connec-
tions to reduce the latency of collective operations over
wide-area links. However, we observed that for small
messages, and with our cluster sizes, the number of
roundtrip messages used to implement a collective op-
eration was more important than the number of mes-
sages crossing the WAN link in the same direction [3].

In CC-MPI [11] the compiler can determine the
communication requirements of an application, allow-
ing special features, such as native broadcast or mul-
ticast, of switched Ethernet to be used in the imple-
mentation of collective operations. The allreduce op-
eration that is optimized in this paper is not optimized
in CC-MPI. Also, they find that for (MPI) broadcast
with small message sizes a tree based unicast, simi-
lar to ours, has better performance than using reliable
multicast.

In [21], Sistare et al. presents a two level collective
operation tree for SMPs. The subtree on each host use
the high-backplane bandwidth and shared-memory ca-
pabilities of SMPs. When small messages are used in
the reduce operation, a spanning tree similar to ours
is used. Similar hierarchy aware collective operations
are also used in TMPI [23], and in MPI-StarT [8]. Tip-
paraju et al. [25] describes an allreduce implementa-
tion for SMPs that is more efficient than point-to-point



communication.
LAM/MPI version 7.0 [14], also supports SMP

aware collective operations.
Different implementations of locks and barriers on

SMPs are examined in [16], and [13]. Our implemen-
tation is at a higher level. It use the Pthread library
for implementing synchronization, and we do not con-
sider architecture specific optimizations. We also do
not consider how to optimize point-to-point commu-
nication using different network protocols or intercon-
nects such as Myrinet and SCI.

A theoretical study, using the LogP model, is pre-
sented in [10]. However, mathematical models based
on only a few network parameters does not take into
account the overlap and variation in the communica-
tion that occurs in collective communications [27]. In
[1] and [15] the collective communication structure is
based on the measured communication time between
two hosts. Our results shows that it is difficult to base
the analysis only on communication time, since other
factors such as the synchronization primitives in the
implementation influence the performance of the col-
lective operation, and also the communication time.

Factors not studied by us, but found to influence
the performance of collective operations include: (a)
group management, resource management and book-
keeping overheads [11], (b) life-span [11], and number
of a network connections [23], (c) buffer size for col-
lective communication [27], and (d) rank order with
regard to the given topology [26].

Also, we do not evaluate the, potentially significant,
influence of application load imbalance on collective
operations [13]. Daemons and other applications run-
ning on a cluster can also reduce the performance of
allreduce [19, 9]. We believe being able to analyze the
performance of collective operations, inside the com-
munication system, becomes even more important if
the solutions to these problems are implemented.

3 Configuring Collective Operations

A communication library usually provide an API
that the application programmer use to invoke collec-
tive and other operations. The implementations usu-
ally do not provide the user with the ability to inspect
and adapt the implementation of the operations to the
specifics of an application and the clusters used by fo-

cusing on parameters such as the number of threads,
communication patterns and where threads and data
are located.

Often a spanning tree is used to describe and im-
plement the communication structure of collective op-
erations (figure 1). For the actual communication be-
tween two nodes in the tree, point-to-point communi-
cation is used, usually implemented using TCP/IP. For
some collective operations, like a reduce, the non-leaf
nodes in the tree does some operation on the data re-
ceived from its parents, before sending the result fur-
ther down the tree. Synchronization is required in the
non-leaf nodes. Exactly how this is done is depen-
dent on the architecture of the run-time system (single-
threaded, multi-threaded, event-based, etc).

Essential for the performance of a collective oper-
ation is the shape of the tree, and the mapping of the
tree to the clusters in use [2]. To implement allreduce,
LAM-MPI first use a reduce tree, and then a broad-
cast tree. Both use a linear scheme1 up to and includ-
ing four threads. For more than four threads, a log-
arithmic spanning tree is used, as shown in figure 1.
The configuration in figure 1 is probably suboptimal,
since many messages are sent across hosts using a (po-
tentially) slow network, and because processing in the
hosts is not overlapping as much as it could.

3.1 Configuring Collective Communication

To expose, and allow the collective operation tree
to be better mapped for the clusters in use we have de-
veloped the PATHS system [4]. For communication,
the parallel applications use PastSet [30], a structured
distributed shared memory in the tradition of Linda
[7]. Two threads communicate, in an access and loca-
tion transparent manner, by writing and reading tuples
from/to PastSet elements. The programming model
used can be compared to message passing.

PATHS allows us to add wrapper code to be run be-
fore accessing the PastSet element. Also, the proper-
ties and mapping of all wrappers on a communication
path from a thread to a PastSet element can be speci-
fied. The wrapper code can be used to implement col-
lective operations. Figure 2 shows pseudo code for an
allreduce wrapper doing global sum (gred).

1Every thread communicates directly with thread 0.
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Figure 1. Allreduce tree for 32 threads mapped onto 8 hosts. The arcs represent communication.
Partial sums are computed at non-leaf nodes in the tree before passing the result further down in the
tree.

acquire_mutex();
do_sum();
if not last thread
condition_wait();

if last thread
condition_broadcast();

release_mutex();
return global_sum;

Figure 2. Pseudo code for gred wrapper.
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Figure 3. An application with 6 computational
threads (CT) and 2 TCP/IP service threads
(ST) using a collective operation tree imple-
mented using wrappers (small ovals). The
result is stored in a PastSet element.

Figure 3 shows the PATHS/PastSet runtime system.
Applications are usually written as multi-threaded pro-
cesses, which are mapped to the host such that there is
only one process per host. In each process there is also
a PastSet tuple server, hosting PastSet elements, and
service threads that provide communication for remote
clients. Each communication link is explicitly defined,
and has its own TCP/IP connection. The client side
stub is implemented by a proxy wrapper.

When a thread invokes an operation using a given
path, the wrappers (on the path) are run in the context
of the initiating thread until a wrapper on another host
is invoked. This wrapper (and the other wrappers on
that host) are run in the context of the threads serving
the given connection.

The runtime system is written in C. The code
for specifying and setting up the paths is written in
Python.

Figure 4, shows how the allreduce operation can be
implemented using PATHS. The participating threads
are the leaf nodes in the tree, and the root is a Past-
Set element (CoreElm). The threads send data down
the path by invoking the wrappers. All but the lat-
est arrival are blocked (on a Pthread synchronization
variable) after doing the reduce operation in the allre-
duce wrappers gred1–gred4. The latest arrival contin-
ues down the path. The final reduced tuple is stored in
the PastSet element, before it is broadcasted by return-
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Figure 4. An allreduce tree used by threads
T1–T8 instrumented with event collectors
(EC1–EC14).

ing the tuple up the tree. When an allreduce wrapper
receives the result tuple, all blocked contributors are
awakened, and each return with a copy of the tuple.
The reason for having three partial allreduce wrappers
(gred1–gred3) is to improve scalability.

All path specifications, including collective opera-
tion path specifications, are stored in a pathmap. By
reconfiguring this map, the shape of the collective tree,
the parameters of the nodes in the tree, and the map-
ping of tree nodes to cluster hosts can be changed with-
out modifying the application.

An initial pathmap is generated by a Python script
that takes as input three mappings: (1) An applica-
tion mapping describing which threads access which
elements (including elements used for collective oper-
ations). (2) A cluster mapping describing the topol-
ogy and the hosts of each cluster. (3) An application
to cluster mapping describing the mapping of threads
and elements to the hosts.

For the initial pathmap the collective operation trees
are created in a hierarchical manner by first creating a
host subtree for each host, and one cluster-root sub-
tree on one of the hosts. Then the trees are connected
to the root subtree. Proxy wrappers are used to bind to-
gether the trees over network links. A subtree can have
multiple levels of wrappers doing partial allreduce, or
only one level with one wrapper. The result is a tree as
shown in figure 5.

Host
subtree

level 0
(toplevel)

level 1

Cluster-root
subtree

Host A (cluster-root) Host B

Host
subtree

Figure 5. A collective operation tree used
by four threads (circles), implemented using
wrappers (ovals).

Event
collector 1

Event
collector 2

Instrumented
Wrapper

t1 t4

t2 t3

Figure 6. Timestamps recorded by two event
collectors for an instrumented wrapper.

4 Performance Analysis Approach

We use the EventSpace [6] system to monitor the
communication behavior of collective operation trees.
The wrappers in a collective operation tree are in-
strumented by inserting event collectors, implemented
as PATHS wrappers, before and after each wrapper.
In figure 4, an allreduce tree used by threads T1–
T8 is instrumented, by event collectors EC1–EC14.
Each event collector records data about communica-
tion events. The recorded data is stored in memory
and written to trace files when the paths are released.

For each instrumented wrapper four timestamps
(
�������������
	

and
�
�

) are recorded, using the high-
resolution Pentium timestamp counter2 (figure 6).

The overhead of a single event collector is measured
to be 0.5 �� –1.7 �� on a 200 MHz Pentium Pro [5].
Compared to the hundreds of �� per collective opera-
tion, the overhead is low. Hence, we assume the times-
tamp represent the time when the instrumented wrap-
per was entered and exited.

The performance analysis is done post-mortem. We

2The PastSet operation type and arguments are also recorded
but are not used in this paper.



do not adjust the recorded timestamps for clock drift,
since we have not seen any indications of clock drift
during the analysis (most experiments are run for less
than one minute). Also, we do not synchronize the
Pentium timestamp counters on the hosts, as it is diffi-
cult to achieve the needed accuracy (tens of �� ) with-
out using special hardware such as GPS or special
measurement cards [20].

For each instrumented wrapper we use the four
timestamps collected for the wrapper to calculate:

Wrapper latency � � ��� � ����� � � 	�� � ���
, the total time

spent in the wrapper.

Down latency
� ��� � �

, the time spent in the wrapper
when moving down the path.

Up latency
� �	� � 	

, the time spent in the wrapper when
moving up the path.

Since the timestamp counters on two hosts are not
synchronized the down, and up latency are each set to
be wrapper latency / 2, for wrappers with event collec-
tors on two hosts, such as a proxy. For the bottommost
wrapper only wrapper latency is calculated, since there
is no event collector below the wrapper.

Allreduce wrappers, or gred for short, have multi-
ple children that contribute with a value to be reduced.
The contributor can be a thread or data from another
gred wrapper (e.g. in figure 4, threads T5 and T6 con-
tributes to gred2, while gred1, gred2, and gred3 con-
tributes to gred4). There is one event collector on the
path to the parent that collects timestamps

� �
and

� 	
,

while the paths from the P parents each have an event
collector collecting timestamps

� ��
 �
, and

� �
 �
.

We define the down latency for a gred wrapper to be� ��� � ��
 �
, the down latency for the last arrival � . While

the up latency is
� �
 � � � 	

, the up latency for the first
departurer � . In addition, for each of the P contributors
the following are calculated:

Arrival order distribution For a given number of
collective operations, the number of times the
contributor arrived at the gred wrapper as the first,
second, and so on.

Departure order distribution For a given number of
collective operations, the number of times the
contributor departed at the gred wrapper as the
first, second, and so on.

Arrival wait time
� ��
 � � � ��
 �

. The amount of time the
contributor � had to wait for the last contributor �
to arrive. The wait time is a function of the arrival
order.

Departure wait time
� �
 ��� � �
 �

. Elapsed time since
the first contributor � departed from the gred
wrapper, until contributor � departed. The wait
time depends on the departure order.

Wrapper latency � � �
 ��� � ��
 ����� � � 	�� � ���
, the total

time spent in the gred wrapper for contributor � .
For a collective operation tree, we calculate similar

metrics as for a single gred-wrapper. The timestamps
are collected by event collectors above the toplevel
gred wrappers, and below the root-wrapper. For exam-
ple, for the tree in figure 4,

� ��
 �
and

� �
 �
are collected

by EC1–EC8, while
���

and
��	

are collected by EC14.
As discussed above, we do not have accurate enough
clock synchronization to calculate up and down laten-
cies for a tree spanning over multiple hosts, so we do
this by summing the latencies of all wrappers in the
path. A similar analysis can also be done for a subtree,
by selecting the event collectors above the toplevel of
the subtree, and below the subtree root.

For the analysis, we often divide the path from a
thread to the PastSet element into a down and up path
(each has the same wrappers). For each thread we cal-
culate the time spent in different stages when moving
up and down the path. The stages for the down path
are: down latencies, arrival wait times (for gred wrap-
pers), and wrapper latency for the core stage (the bot-
tommost wrapper). The up path stages are: up laten-
cies, and departure wait times.

To calculate the time a thread spent in a specific part
of the tree, we add together the time per stage for all
stages in that part of the tree. Usually the mean time
per stage is used, and arrival wait times are not added,
since these reflect the time faster threads must wait for
slower threads, thus canceling the difference between
fast and slow threads. Also, arrival wait time can only
be improved by improving the applications load bal-
ance, or by improving another part of the tree.

The time spent in various stages of the tree can also
be used for a hotspot analysis.



5 Experiment Methodology

5.1 Hardware

The hardware platform comprise four clusters:

8W: Four eight-CPU Pentium Pro 200 MHz, 2 GB
RAM.

4W: Eight four-CPU Pentium Pro 166 MHz, 128 MB
RAM.

NOW: 30 dual-CPU Pentium II 300 MHz, 256 MB
RAM.

Blade: 10 single-CPU Mobile Pentium III 900 MHz,
1024 MB RAM.

The clusters use TCP/IP over a 100 Mbps Ethernet
for intra-cluster communication. The intra-network
for 8W, 4W and Blade has no other traffic. The
NOW3 hosts are connected through the departments
100 Mbps Ethernet. There were no other users on
the NOW. The clusters are connected through the de-
partments 100 Mbps Ethernet. Communication to and
from the 4W cluster goes through a two-way Pentium
II 300 MHz with 256 MB RAM, while the 8W hosts
are directly accessible. There is no background work-
load on the cluster hosts. However, there is other traffic
on the departments network.

The operating system on all cluster is Linux, ver-
sion 2.2.14 on 4W and 8W, and 2.4.20 on Blade and
NOW. The compilator on 4W and 8W was gcc 2.96.2,
and gcc 3.2.2 on Blade and NOW. For all clusters the
optimization-flag ’-02’ was used. On all TCP/IP con-
nections the Nagel algorithm is disabled to ensure that
even small data packets are sent immediately.

5.2 Allreduce Benchmark

The allreduce benchmark, Gsum, measures the time
it takes T threads to do N allreduce operations. The
allreduce computes a global sum. The number of
values to sum is equal to the number of threads, T.
Pseudo-code is shown in figure 7. The threads al-
ternate between using two identical allreduce trees to
avoid two allreduce calls to interfere with each other.

3NOW is the departments undergraduate laboratory.

// synchronizes all threads
barrier();
start_clock();
for (i = 0; i < N; i++)
allreduce(tree1);
allreduce(tree2);

stop_clock();

Figure 7. Pseudo code for Gsum benchmark.

Only 4 and 256 byte messages are used, since the
collective operations used by most scientific applica-
tions have small message sizes (less than 256 bytes),
and the message size does not change neither with the
number of threads or with the problem size [28]. Un-
less otherwise noted, 4 byte messages are used.

The Gsum benchmark was run for 20 000 iterations
on the 4W cluster, and for 25 000 iterations on the
other clusters. The Gsum execution time has a small
standard deviation (less than 1 %). The slowdown due
to data collection is small (from no slowdown up to
2 %). For the performance analysis all samples ex-
cept the first 10 are used (these can be several order
of magnitudes larger than the other samples). We only
analyze the performance of one of the trees, since we
cannot see any difference in the behavior of the two
trees.

6 Reconfiguration Experiments and Cost
Breakdown Results

In this section we analyze how reconfiguring com-
munication structure can improve performance, and
we use the fastest allreduce configuration to provide
a cost breakdown.

6.1 8W Cluster

In the initial configuration for the 8W cluster,
nary8W, a hierarchy aware n-ary tree is used (figure 8).
The tree has one thread per CPU. A reduce is done on
each 8W host, before sending the partial results to the
cluster-root wrapper, located on one of the 8W hosts.
The broadcast use the same wrappers.

Adding an additional level (figure 9) to the host sub-
trees gives a speedup of 1.17 (when comparing two
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Figure 8. Initial 8W Gsum configuration (n-ary hierarchy aware tree).

T TTT

gred

Host A

Add 
level

Remove
level

T TTT

gred

Host A

gred

gred

Figure 9. Add a level to a subtree to increase
concurrency, or remove a level to reduce la-
tency.

non-instrumented configurations). Adding another
level to the host subtrees, gives yet another speedup
of 1.17. Adding a level to the cluster-root gives a
further speedup of 1.08, resulting in a total accumu-
lated speedup of 1.49. Based on the tree shape, the
configurations are called respectively, quad8W, bina-
ryquad8W and binary8W. Binaryquad8W have binary
host subtrees, and a quad cluster-root subtree.

Adding an additional level introduces a small in-
crease in the down-latency for the entire subtree (up
to 13 �� , including latencies introduced by the addi-
tional event collectors). However, as shown in figure
10, the up-latency ( ���

�
) decreases when additional

levels are added to the host subtrees. The departure
wait times are also decreased, resulting in improved
concurrency during the broadcast (slope of the curve,
flatter is better).

The host subtree on the cluster-root host has higher
up-latency than the other host subtrees, due to the
additional load introduced by the cluster-root sub-
tree. Compared to binaryquad8W, the additional level
added to the cluster-root subtree in binary8W, results
in better performance for the host subtree (figure 10),
even if the host subtrees have similar shape.
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Figure 10. Up-latency and departure wait
times for 8W cluster-root host subtree using
various configurations.

The different reconfigurations did not change the
amount of time spent in the proxy stages or the core
stage.

The departure order of a gred wrapper is dependent
on the arrival order (table 1). The last arrival almost
always departs first. The first arrival mostly departs as
the second, and the second arrival mostly departs as the
third. However, for the third to seventh arrival there is
some variation. This indicates that some form of FIFO
queue is used by the synchronization variables that are
used to implement the gred wrapper.

In earlier work [4], we improved the performance of
a configuration similar to nary8W by moving the root
wrapper in each host subtree to the cluster-root hosts
(figure 11). However, adding additional network links
did not improve (or decrease) the performance of the
binary8W configuration.



1st dep 2nd dep 3rd dep 4th dep 5th dep 6th dep 7th dep 8th dep
1st arrival 0.0% 99.9% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
2nd arrival 0.0% 0.1% 99.8% 0.1% 0.0% 0.0% 0.0% 0.0%
3rd arrival 0.0% 0.0% 0.2% 96.5% 3.2% 0.1% 0.0% 0.0%
4th arrival 0.0% 0.0% 0.0% 3.3% 95.9% 0.7& 0.1% 0.0%
5th arrival 0.0% 0.0% 0.0% 0.0% 0.9% 95.0% 4.1% 0.0%
6th arrival 0.0% 0.0% 0.0% 0.0% 0.0% 4.2& 90.9% 5.0%
7th arrival 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 95.0%
8th arrival 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Table 1. For a gred wrapper, how many times the first arrival departed as the first, second and so on.
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Figure 11. Add additional network link to re-
duce contention on shared resources and
synchronization mechanisms, or remove net-
work link to reduce number of messages sent
over a network.

6.1.1 Cost Breakdown

To find the overall behavior of the binary8W configu-
ration we use a timemap visualization4 . The timemap
in figure 12 shows the mean time spent ( � -axis) in each
stage of the path ( � -axis) when moving down and up
the path. The arrival wait times are not shown. � �

�

is when the threads enter the core wrapper (the bot-
tommost wrapper).

The tree has a regular shape, and the threads have
similar behavior. The threads can be divided into two
classes, those on the cluster-root host, and those not
(these have an additional proxy wrapper). The vari-
ation in the cluster root up-path is due to the arrival-
departure order dependency described earlier.

Statistics for the slowest thread in the binary8W are

4The timemap is inspired by the lifeline visualizations used in
the NetLogger Visualization [24].
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Figure 12. Timemap for all threads in the bi-
nary8W configuration.

shown in table 2. The departure wait time is dependent
on the departure order, hence the large standard devia-
tion (the distribution is a combination of several distri-
butions). The large standard deviation for the up, and
down latencies for gred wrappers are probably caused
by queuing in the synchronization variables that are
used in the implementation. However, we believe the
mean time per stage can be used to get an overview of
the cost of each stage.

Table 3 summarizes the mean time spent in different
parts of the allreduce tree for the fastest (0) and slow-
est thread (17). Both spend more time in the up-path
(broadcast) than on the down path (reduce). More time
is spent in the host subtree than in the cluster-root sub-
tree, since there are more CPUs per host than hosts
in the cluster. The fastest thread has a slower host



mean median stdev min max 10-perc 90-perc
Host level 0 down latency 6 5 18 2 692 4 7
Host level 0 up latency 25 25 7 14 152 16 34
Host level 0 departure wait 25 33 22 0 160 0 53
Cluster-root level 1 down latency 7 4 10 2 73 4 7
Cluster-root level 1 up latency 17 17 1 15 65 16 18
Cluster-root level 1 departure wait 11 0 15 0 80 0 31
Proxy wrapper latency 333 331 24 268 1367 308 357
Core wrapper latency 11 10 3 8 64 8 14
Time per allreduce 680 678 124 388 2509 537 807

Table 2. Time in �� spent in various stages in the binary8W configuration for thread 17.

Part Fastest thread (0) Slowest thread (17)
Down-path, with arrival wait 409 320
Down-path, no arrival wait 45 212
Up-path 233 360
Host subtree, no arrival wait 156 149
Cluster-root subtree, no arrival wait 104 77
Proxy stage 0 332
Core 11 11
Total, no arrival wait 278 572
Total time with arrival wait 642 680

Table 3. Mean time in �� spent in various parts of the binary8W configuration, for a thread on the
cluster-root host (0), and a thread on another host (17).
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Figure 13. Timemap without arrival wait times,
for thread 0 using various 8W configurations.

subtree due to the additional load introduced by the
cluster-root subtree. It also spends more time in the
cluster-root subtree due to the arrival-departure order
dependency (it mostly arrives first, and hence mostly
departs last). The slowest threads are slower due to the
proxy stages, which dominates the time per collective
operation. For both threads the time spent storing the
tuple in the PastSet element (core) is insignificant.

Figures 13 and 14 shows the timemap for the fastest
(0) and slowest thread (17). Since paths in two con-
figurations can have unequal length, the y-coordinates
are scaled such that both have the same ��� and ������� .
The largest improvements are on the up-path due to the
improvements described above.

6.2 4W Cluster

The initial configuration, nary4W, has a hierarchy
aware n-ary tree similar to the initial 8W configura-
tion (figure 8). A binary tree configuration, binary4W,
where a level is added to all host subtrees and two lev-
els are added to the cluster-root subtree resulted in a
speedup of 1.07. As for the 8W cluster, the perfor-
mance is improved due to improvements in the up-
latency and improved concurrency of gred wrappers.

Adding additional LAN links (figure 11), resulted
in a slowdown of 1.49, due to increased load on the
cluster-root host.

In the binary4W configuration the cluster root has
three levels. The split4W configuration is created by
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Figure 14. Timemap without arrival wait times,
for thread 17 using various 8W configura-
tions.
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Figure 15. Increase parallelism and reduce
load on root host by moving toplevel wrap-
pers to other hosts, or move toplevel wrap-
pers to root host to reduce number of mes-
sages sent over network.
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duced by the two bottom levels of the 4W
cluster-root subtree.
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Figure 17. Timemap without arrival wait times,
for thread 9 using various 4W configurations.

moving three of the four toplevel gred wrappers to
other hosts (figure 15). The fourth is not moved since
it has the cluster-root host subtree as one of the con-
tributors. A speedup of 1.10 is achieved, due to per-
formance improvements in the two bottom levels in
the cluster-root subtree (figure 16), and in the toplevel
gred wrappers moved to other hosts. In the new con-
figuration, 24 threads get an additional proxy wrapper,
but the time spent in the proxy wrappers is only in-
creased by 1.55. The host subtree on the hosts where
the gred wrappers where moved to also got worse per-
formance. This shows how a trade-off between the
number of network links, and the load on the cluster-
root host can improve performance even for a small
cluster with 8 hosts.

For the four host without any part of the cluster-
root subtree, the initial nary4W configuration has bet-
ter performance than split4W. A new configuration,
split4W-2, where the host subtrees on these four hosts
have similar shape and performance as in nary4W,
gives a speedup of 1.05.

The 12 slowest threads in split4W-2 are slower than
the 12 slowest threads in binary4W, as shown by the ’4
bytes’ graphs in figure 17. However, the threads with
one proxy wrapper are faster (figure 18). Overall, the
split4W-2 configuration is faster since the variation in
time per stage leads to the slowest thread on the aver-
age not being slowest all the time. Thus it is difficult to
determine which configuration is fastest by only con-
sidering the performance of the slowest thread.
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Figure 18. Timemap without arrival wait times,
for thread 13 using various 4W configura-
tions.

6.2.1 Cost Breakdown

Figure 19 shows the timemap for all threads in the
split4W-2 configuration. The irregular shape of the
tree can be seen in the figure. As for the 8W con-
figuration, most of the time is spent in the up-path for
all threads. However, more time is spent in the cluster-
root subtree since there are more hosts than CPUs per
host. As for the 8W configuration the proxy stages
dominate the time per allreduce. The fastest thread use
339 �� on the average per allreduce (without arrival
wait times), while the slowest use 1042 �� (the differ-
ence being the proxy stages). The difference between
the fastest and slowest thread with one and two proxy
wrappers is respectively 70 � s and 147 �� . The differ-
ence for both, is the time spent in the proxy stages to
and from the cluster-root host stages.

6.3 NOW

In the initial NOW configuration a quad tree is used.
Splitting the cluster-root subtree, by moving seven of
the eight toplevel wrappers to other hosts (the cluster-
root host subtree contributes to the eight), gives a
speedup of 2.44. Using a binary tree gives a speedup
of 1.37. Splitting the cluster-root subtree further, gives
a slowdown of 1.11.

An overview of the behavior of the binary config-
uration is shown in figure 20. The tree has an irregu-
lar shape, and the threads also have irregular behavior.



Part Zero (0) One (56) One (4) Two (11) Two (36)
Down-path, with arrival wait 674 628 575 534 506
Down-path, no arrival wait 27 204 199 351 369
Up-path 368 415 483 520 566
Host subtree, no arrival wait 21 11 15 13 20
Cluster-root subtree, no arrival wait 368 232 319 196 217
Proxy stages 0 370 342 656 694
Core 6 6 6 6 6
Total, no arrival wait 395 619 682 871 935
Total, with arrival wait 1042 1043 1058 1054 1072

Table 4. Average time in �� spent in each stage of the binary configuration for threads with zero, one,
and two proxy wrappers on their path. The slowest and fastest threads with one and two proxies are
shown.
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Figure 19. Timemap without arrival wait time
for all threads in the split4W-2 configuration.
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Figure 21. Up latency + departure wait time
for Blade cluster-root subtree.

The fastest threads are the two without proxy wrap-
pers. All threads with one proxy are faster than threads
with two proxies. The slowest thread with one proxy
is 61 �� faster than the fastest thread with two proxy
wrappers.

Table 4 shows the amount of time spent in various
parts of the binary tree for the fastest thread, and the
slowest and fastest threads with one and two proxies.
The up-path is slower than the down-path. Most of
the time is spent in the proxy stages, and more time
is spent in the cluster-root subtree than in the host
subtree. The fastest threads spend more time in the
cluster-root subtree due to the arrival-departure order
dependency (it is also visible in the up-path in figure
20).

6.4 Blade Cluster

For the Blade cluster the best configuration has
one gred wrapper which all ten threads contribute
to. Adding additional levels does not improve perfor-
mance, since the host has only one CPU and hence
operations cannot be done in parallel (figure 21).

The Blade cluster-root subtree has more contribu-
tors than the 4W cluster-subtree. However, splitting
the Blade cluster-root subtree among four hosts does
not improve performance (as it does for the 4W sub-
tree). This is probably caused by the faster CPU on the
Blade hosts.

As for the other configuration less time is spent on

the down path, and most of the time is spent in the
proxy stages.

7 Sensibility Analysis Experiments

In this section we examine if a configuration can
be extended by adding more threads, or by combining
two configurations. We also examine how an increase
in message size influence the performance.

7.1 Increasing Number of Threads on 8W Cluster

To evaluate how the increase in number of threads
influence the performance of a binary tree (binary8W),
and quad tree configuration (quad8W), we use the
cluster with largest SMPs (8W). Table 5 shows that the
binary tree is always faster, since the height of the tree
increases logarithmically and the gred wrappers have
scalability problems. The increase in threads, did not
decrease the performance of the cluster-root subtree.

7.2 Combining 4W and 8W Clusters

To examine if two single cluster configurations can
be combined in a multi-cluster configuration without
decreasing performance, we combine the split4W and
binary8W configurations. A root wrapper is located
on the 4W cluster-root host. The cluster-root subtrees
contribute to this wrapper. Communication between
the 4W and 8W cluster must go through a gateway
host.

The performance of the 8W tree, and the per-
formance of all 4W and 8W host subtrees has not
changed. The 4W tree is around 300 �� faster in the
multi-cluster configuration than in the single cluster
configuration, due to reduced load caused by the 4W
threads having to wait for the slower 8W threads (the
24 slowest threads are on the 8W cluster).

For the slowest thread, the proxy stages contribute
on the average with 930 of the 1193 � s per allreduce.
598 � s are used for overlaying through the gateway
host. The slowest 4W threads are only around 150 ��
faster than the slowest 8W threads.

A configuration with one of the 8W hosts chosen
as root resulted in a slowdown of 1.46. The reason for
this is that the slowest 4W threads are even slower than
the slowest 8W threads in the initial configuration.



Threads Levels Execution time Speedup
binary quad binary quad

32 3 6 40.5 sec 32.0 sec 1.26
64 3 7 60.9 sec 45.8 sec 1.33
128 4 8 107.4 sec 78.0 sec 1.38

Table 5. Comparing two configurations when increasing the number of threads per CPU. Gsum is run
for 25 000 iterations.

7.3 Increasing Message Size

To examine how a small increase in message size
affects the performance of different configurations, we
use the cluster with slowest CPUs and the largest user-
to-user level communication latency (4W). The tuple
size is increased from 4 bytes to 256 bytes (

�������

byte integers).
The additional ’reduce’ work is not shown in the

down-latency of the gred wrappers since the down-
latency is dominated by synchronization time. The
only wrappers affected by the increase are the proxy
wrappers (for the NOW cluster, a similar increase in
tuple size also only affects the proxy wrappers).

Figures 17 and 18 shows the timemap for two
threads using 4 and 256 byte tuples. The binary4W
configuration is 1.23 faster than the split4W-2 (it is
1.12 slower with 4 byte tuples), since splitting the clus-
ter root increases the time spent in the proxy stages
more than it improves the cluster-root subtree perfor-
mance.

8 Conclusion and Future Work

An allreduce collective operation can be organized
as a tree, that describes which threads communicate
with which other threads, and where data should be
reduced and broadcasted. We have documented how
reconfiguring the shape and mapping of the collective
operation tree can improve performance. Also a sys-
tem and approach for monitoring, analyzing and visu-
alizing the performance of such a tree is described. We
analyze the communication behavior of threads using
a given configuration and compare the communication
behavior of a thread using different configurations.

An allreduce micro-benchmark was run on a blade

cluster with ten uni-processor blades, a cluster of thirty
2-way hosts, a cluster of eight 4-way hosts, and a clus-
ter of four 8-way hosts.

Even if all our initial configurations were hierarchy
aware, reconfiguration improved performance by 1.18,
1.37, 1.20, 1.49 for the blade, 2-way, 4-way and 8-way
cluster respectively.

For the 8-way and 2-way SMPs, a binary tree has
best performance. However for the 4-way SMP a quad
tree may have better performance depending on the
load on the host. For single-CPU hosts a flat tree has
best performance.

We improved performance by finding the right bal-
ance between available concurrency, load on root
hosts, and the number of network links in a tree. How-
ever, finding the right balance can be difficult since the
user-to-user-level network latency is dependent on fac-
tors such as the CPU speed, and load on hosts.

For the 2-way and 4-way clusters the best configu-
ration has an irregular shape, complicating the analysis
due to rather large variations in the time spent in vari-
ous parts of the tree.

Our results shows that performance is not nega-
tively effected when two cluster configurations are
combined in a multi-cluster configuration, or when the
number of threads is increased. But a reconfiguration
may be necessary even for a small increase in message
size (from 4 to 256 bytes).

A breakdown of the cost of an allreduce shows that
for all clusters more time is spent on the broadcast part
than the reduce. Also more time is spent on the net-
work than in the partial allreduce components, and the
time to do the reduce is not visible.

As future work we intend to study the performance
of the allreduce operation using more complex bench-
marks, for example to evaluate how reconfiguration



can be used to improve the performance of applica-
tions with load balance problems. Also, other non-
synchronizing, collective operations such as reduce
should be analyzed. Finally, we continue working
towards our long-term goal, a communication sys-
tem where collective communication is analyzed, and
adapted at run-time.
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