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Chapter 1

Introduction

In conventional digital communications, transmission of a bitstream over a channel is per-

formed by modulating certain apects of a deterministic carrier wave. Familiar examples

include amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift keying

(PSK) [Gibson 1993, Proakis 1995]. The receiver estimates the parameters of the deter-

ministic information-carrying signal and uses some detection rule to classify the received

waveform as one of the possible parametric signals.

Conventional methods provide no protection against eavesdropping and unauthorised

decoding of the signal. Recent methods promising some amount of protection against eaves-

dropping include so called spread spectrum techniques [Dixon 1994, Peterson et al. 1995,

Viterbi 1995, Glisic and Vucetic 1997, Ojanpera and Prasad 1998] and chaotic digital en-

coders [Frey 1993, Brownhead et al. 1995, Aislam and Edwards 1996, Lee et al. 1997]. Such

techniques demand precise synchronisation between transmitter and receiver. Even small

synchronisation errors may cause high bit error rates (BER) at the receiver.

In this project a new concept of digital communication has been studied, which is based

on realisations of stochastic processes as information-carrying signals. The concept has an

inherent security against eavesdropping. At the same time, it is possible to device decoders

that are simpler than those of spread spectrum and chaotic encoding.

The project aims to address some fundamental issues concerning the new technique: (i)

How can the distance between the information carrying stochastic processes be measured in

a statistical sense? (ii) What detector should be used to decode the information sequence

modulated by stochastic processes and how does it perform? (iii) How should the stochastic

transmission processes be chosen?

1



Chapter 1: Introduction

1.1 Secure Communications

The purpose of this project is to investigate and develop aspects of a new modulation

technique with applications in secure digital communication. By secure communications

we mean information transmission which is protected against attempts by unauthorised

listeners to capture the information. Such hostile activity is also known as eavesdropping.

Most conventional modulation techniques offer no protection against eavesdropping.

Examples of commercial modulation schemes are frequency shift keying (FSK), amplitude

shift keying (ASK) and phase shift keying (PSK) [Gibson 1993, Proakis 1995]. All such

signals are, as should they be, easily decoded by any receiver. Instead, security is normally

provided by encryption [Welsh 1988, Golomb et al. 1994, Goldreich 1999]. Encryption is

defined as the process of disguising data so that they become unintelligible to an unautho-

rised receiver.

In electronic computers, data is encrypted by applying mathematical operations on the

information sequence, i.e. the bit stream that is produced at the transmitter. There are two

kinds of basic operations: rearrangement of data without changing the symbols themselves

(transposition), and substitution of data (single symbols or blocks of symbols) with other

symbols or blocks of symbols without changing the sequence in which they occur. Modern

encryption algorithms implement these operations through complex nonlinear schemes.

A personal encryption key, known only to the transmitter and intended receiver, con-

trols the encryption algorithm. It ensures that the encrypted data can only be decrypted

with the same key (symmetric encryption) or an associated key (asymmetric or public-key

encryption). The best encryption algorithms are considered almost impregnable.

We will distinguish between two types of approaches to secure communications. First,

we have the techniques that operate directly on the source symbols by altering the infor-

mation sequence, as described above. Secondly, there are techniques that are concerned

with the representation of source symbols when they are transmitted through a physical

medium. The idea is to obscure the identity of the source symbols in the demodulation

process. If this works, an eavesdropper will not be able to decode the information sequence

from the physical waveform that is received through the medium.

Hence, approaches to secure communications are divided into two main categories:

• Code layer methods

• Physical layer methods

2



1.2: Spread Spectrum Techniques

The most common approaches are found in the first group, which spans over the wide

field of cryptography and coding theory. However, the technique which has been studied

in this project belongs to the second category. This group also includes spread spectrum

techniques, an approach to secure communications which has been investigated in interest

of military applications for a long time. Another technique, which has been proposed more

recently, is chaotic encoding. These methods will be explained in more detail subsequently.

We like to see the proposed technique as a supplement to, rather than a competitor to

the methods in the first group. Physical layer security does not exclude the need for code

layer security, and vice versa. In fact, one would often combine encryption with physical

layer methods.

1.2 Spread Spectrum Techniques

The recent interest in spread spectrum communications (SSC) has been associated with

applications like the global positioning system (GPS) and code division multiple access

(CDMA), which is a multiuser system for personal mobile communications [Dixon 1994,

Viterbi 1995, Ojanpera and Prasad 1998]. Nevertheless, the consept was first developed

for secure communications in military applications [Glisic and Vucetic 1997]. The first

approaches were undertaken more than half a century ago.

The original idea behind SSC is that a narrowband carrier signal will be more resistant

to intensional interference from a hostile source if it is spread over a larger bandwidth. Let

xnb(t) be a narrowband information signal with signal power Px and bandwidth Bnb. Next,

let inb(t) be an intensive jamming signal with signal power Pi > Px. The jamming signal

is also relatively narrowband.

Define an invertible linear spreading operator S[·] with the property that S[·] = S−1[·].
The spreading operator transforms the narrowband information signal into a wideband

signal xwb(t) = S[xnb(t)] with bandwidth Bwb � Bnb before it is transmitted. Thus, if the

jamming signal is present in the communications channel, the receiver receives the sum

xwb(t) + inb(t) and applies the inverse spreading operator to obtain

S−1[xwb(t) + inb(t)] = S[xwb(t)] + S[inb(t)]

= xnb(t) + iwb(t)
(1.1)

where iwb(t) = S[inb(t)]. The result can now be filtered by passband filter that matches
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Figure 1.1: Antijamming principle in spread spectrum communications.

the bandwidth of xnb(t). Let the filter operation be denoted by F [·]. We then have

F [xnb(t) + iwb(t)] = xnb(t) + irem(t) (1.2)

where irem(t) is the remainder of the interference signal after bandpass-filtering. If iwb(t)

is white, then only a fraction Bnb/Bwb of its signal energy will pass through the filter.

Hence, the signal power of irem(t) is Pi(Bnb/Bwb) � Px, which explains that spreading of

the signal bandwidth is an efficient tool to combat jamming.

The described antijamming procedure is illustrated by figure 1.1. The width of the

rectangles represents the relative bandwidths of the assigned signals and the height rep-

resents the relative signal power. A solid rectangle denotes the information signal, while

a dashed rectangle denotes the interference signal. The shaded areas represent the degree

of interference or destructive jamming. The different stages are: (a) before spreading, (b)

after spreading the information signal at the transmitter, (c) after despreading the received

signal, (d) after bandpass-filtering the despread received signal.

We shall now explain how the spreading operation is performed, with reference to

figure 1.2. If we assume that the information signal is a discrete bipolar sequence xnb(n)

(e.g., it takes only the values xnb(n) = ±1), then spreading is achieved by modulating the

information sequence with a bipolar pseudo-random noise (PN) sequence c(n). THe PN-

sequence is also referred to as a chip sequence. For bipolar sequences, plain multiplication

4
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Figure 1.2: Modulation of discrete bipolar sequence xnb with a discrete bipolar pseudoran-

dom noise sequence c(n) (chip sequence). The information rate is 1/T , while the chip rate

and the data rate of the PN-modulated sequence xwb(n) is 1/Tc.

can be used as the spreading operator, as shown in the figure. For a unipolar signal (which

takes only the value xnb(n) ∈ [0, 1]), the requirement S[·] = S[·]−1 is satisfied by the modulo

1 addition operator: S[xnb(n)] = {[xnb(n) + c(n)] mod 1}.
As illustrated by the figure, the chip rate 1/Tc should be mush higher than the informa-

tion rate 1/T , since the degree of spreading is proportional to T/Tc. The idea is that the

transmitted wideband signal xwb(n) should be as uncorrelated and noise-like as possible.

The PN-sequence is a deterministic and periodic sequence, and will never be truly ran-

dom. Nevertheless, c(n) can be chosen as a sequence which asympotically satisfies certain

randomness criteria [Golomb 1967, Viterbi 1995] as the sequence period increases. Hence,

the desired effect is obtained if the period of c(n) is sufficiently large.

1.3 Chaotic Encoding

Chaos theory [Drazin 1992, Strogatz 1994] has been developed by physicists and mathe-

maticians to describe apparently random or unpredictable behaviour generated by simple

deterministic systems. Chaotic behaviour is observed in some nonlinear systems as a result

of sensitivity to initial conditions. The interest in chaos in the fields of signal processing

and communications has arised mainly because the signals produced by such determin-

istic systems may look like noise when displayed in either the time or frequency domain

[Giannakis 1999, Lee et al. 1997].

Let the system state at a given time be a point in state space. The time development

of a chaotic system can then be described by a trajectory in state space. Any slight change

5
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in initial conditions creates a totally different state space trajectory. That is, two identical

chaotic systems with nearly identical initial conditions will diverge. The trajectories are

deterministic, but one cannot predict a future state without knowing the initial conditions

exactly.

Despite the divergence property, Tang et al. [Tang et al. 1983] discovered that iden-

tical chaotic behaviour can be achieved by isolated systems. The theoretical framework

was further developed by Pecora et al. [Pecora and Caroll 1990, Pecora and Caroll 1991,

Ditto and Pecora 1993]. They proved that for certain stable systems, two separate systems

driven by the same chaotic signal can be synchronised. Different curcuits that exhibit this

synchronising property have been proposed [Chua et al. 1993, Cuomo et al. 1993]. They

can be used to implement synchronised chaotic systems that suppress rather than enhance

differences between them, thus enabling secure communications by means of chaotic en-

coding.

Lee [Lee et al. 1997] classifies existing secure communications schemes based on chaotic

signals and systems into four categories. The first is chaotic modulation, where a wideband

chaotic signal is used to modulate the information sequence. The chaotic signal is aperiodic

and multivalued, which makes it suited as a spreading sequence. The drawback is that

generation is critically sensitive to initial conditions.

Second, chaotic switching is a group of techniques where different source symbols are

mapped to distinct chaotic signals. The schemes differ by the way signals and decision

statistics are chosen. Again, sensitivity to initial conditions is the main practical hinder.

A third category is chaotic masking. The information signal is masked by adding

a chaotic signal, and one of the described self-synchronising curcuits is used to extract

the information at the receiver. Synchronisation is possible only when the power of the

information signal is sufficiently smaller than the masking signal. Thus, synchronisation is

sensitive to additive noise.

The fourth category is chaotic parameter modulation. Parameters of the carrier signal

are perturbed at the transmitter by a chaotic signal. The information signal is recovered

by use of a self-synchronising curcuit at the receiver. Also this technique suffers because

the receiver requires high signal-to-noise ratio (SNR).

6
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Process generator

Process generator

Bit ’1’

Bit ’0’

SPSK signal

Figure 1.3: Generation of SPSK signal at transmitter.

1.4 Stochastic Process Shift Keying

The new technique coined Stochastic Process Shift Keying (SPSK) was first proposed by

Hanssen in [Hanssen 1997]. The concept was developed further by Salberg and Hanssen in

[Salberg and Hanssen 1999a, Salberg and Hanssen 1999b, Salberg and Hanssen 2000].

The idea behind SPSK is rather simple. Bit ’0’ of a binary signal is represented by the

stochastic process X0(t). Bit ’1’ is represented by another stochastic process X1(t) with

different parameters. The transmitter consists of two stochastic process generators and a

switch between these, as shown in figure 1.3. Bit ’0’ is transmitted as a realisation of the

process X0(t), 0 ≤ t ≤ T and bit ’1’ as a realisation of the process X1(t), 0 ≤ t ≤ T , where

T is the symbol period or Baud interval.

The continuous processes X0(t) and X1(t) can be made discrete by sampling them N

times on the Baud interval 0 ≤ t ≤ T . This produces the discrete stochastic processes

X0(n) and X1(n), where n is the discrete time argument. The realisation x(n) of any of the

discrete stochastic processes is a sequence of N samples. Generation of a certain sequence

x(n), n = 1, . . . , N is associated with the probability

P
(
[Xi(1), . . . , Xi(N)] = [x(1), . . . , x(N)]

)
, i = 0, 1. (1.3)

SPSK has two fundamental properties, due to the stochastic nature of the carrier signal.

First, we note that two equal source bits will always be transmitted as different physical

waveforms. Secondly, two different source bits will be transmitted as statistically similar,

but not equal, waveforms. In addition, the stochastic signal is noise-like, which makes it

difficult for unauthorised listeners to determine whether a meaningful message is sent at

all.

7



Chapter 1: Introduction

Different processes can be used as carrier signals. A natural choice is linear Gaussian

processes, or autoregressive/moving-average (ARMA) processes [Kay 1993, Box et al. 1994].

This class of processes has a simple structure, they have been extensively studied and have

simple detectors. Other choices could be flicker noise (1/f γ) processes [Mandelbrot 1999,

Malakhov and Yakimov 1993, West and Schlesinger 1990] with different spectral exponents

γ0 and γ1, bilinear and nonlinear processes [Priestley 1988]. Chaotic communications

[Lee et al. 1997] can be viewed as a special case of SPSK with nonlinear processes. On

the whole, there is a lot of freedom is the choice of processes.

In this thesis, we have restricted ourselves to a study of SPSK with autoregressive

(AR) processes, a technique which will be referred to as autoregressive process shift key-

ing (ARPSK). The AR-process is preferred to the moving-average (MA) process and the

ARMA process because it is more resistant to additive white noise. The power spectral

density (PSD) of a (higher-order) MA-process typically contains notches, wheras the PDS

of a (higher-order) AR-process typically contains peaks. As a feature that contribute to

detectability, a peak is more robust to white noise since notches can be “drowned” in the

power of additive noise. The AR-process will thus be thoroughly presented and discussed

in the following. At this point, it is sufficient to note that an AR-process has an order

p, which specifies its number of characteristic parameters (disregarding the driving noise

variance).

In order to capture the information in an ARPSK signal, an unauthorised listener

will have to estimate the process order p and the parameters of the two AR-processes (p

parameters each), as well as the pulse length N and synchronisation delay. Apart from the

synchronisation, these figures are all known a priori to the authorised (intended) receiver.

ARPSK communications is an attempt to conceal information behind the variance in

the estimates of the unknown parameters. The challenge is to specify processes whose AR-

parameters are close enough to prevent eavesdropping, while at the same time enabling

the decoder to meet the required bit error rate.

1.5 Overview of Thesis

Chapter one gives an overview of the problem. Secure communications is defined and some

existing approaches are presented. The principles and properties of the novel technique

coined stochastic process shift keying (SPSK) is described, before we restrict the choice of

8



1.5: Overview of Thesis

stochastic transmission processes to autoregressive (AR) processes.

Chapter two gives the necessary theoretical background for a study of autoregressive

process shift keying (ARPSK), with emphasis on probability and statistical signal theory.

Chapter three is a review of statistical distance measures that can be used to quantify the

distance between two autoregressive transmission processes.

In chapter four we propose two detectors for the ARPSK communications system and

derive their respective detection error probability. We also assess the effect of additive

white noise and synchronisation errors on the detectors. In chapter five we propose a set

of criteria for selection of the transmission processes. The discussion of these criteria leads

to a process selection procedure.

In chapter six we evaluate the theoretical expressions for the detection error probabil-

ities of the deviced detectors. These results are compared with the results of numerical

simulations. In chapter seven we give the conclusions of the thesis and propose topics of

future research.

9
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Chapter 2

Fundamentals on Autoregressive

Processes

2.1 Stochastic Processes

A stochastic process is a waveform exhibiting some kind of random behaviour. In constrast

to a deterministic signal, whose signal value is fully specified for all argument values, a

stochastic process must be specified by the joint probability density function (PDF) of its

possible outcomes [Papoulis 1991, Peebles 1993].

The stochastic process can be a deterministic waveform with a stochastic parameter, e.g.

X(t) = sin(ω0t+ Θ) where the phase Θ is a random variable taking on values 0 ≤ θ ≤ 2π.

X(t) is clearly deterministic after Θ is realised. The waveform can also be entirely random,

like a noise signal. In this case, there exists no functional form of X(t).

In engineering problems we encounter stochastic processes both as the signal of interest,

and as noise that is contaminating our desired signal, whether it be stochastic or deter-

ministic. In some cases, the nature of a process is truly stochastic. More commonly, the

underlying physical model is so complex that stochastical modelling is the most practical

approach.

A stochastic process is a generalisation of stochastic variables, to include one or more

dimensions. Both the stochastic process and the independent variable can be continuous

or discrete. We will be concerned only with stochastic processes as a continuous function

of discrete time n. To specify a stochastic process X(n) of length N , we thus need to know

the PDF fX(x1, . . . , xN), where xi is the sample realisation of X(n) at discrete time n = i.

11



Chapter 2: Fundamentals on Autoregressive Processes

2.2 Gaussian Probability Density Function

The Gaussian probability density function is without doubt the most important probability

distribution in science and engineering. The joint PDF of N Gaussian random variables,

denoted X = [X(1), . . . , X(N)]T , is given by [Papoulis 1991, Peebles 1993]

fX(x) =
1

(2π)N/2|Σ|1/2
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
(2.1)

where µ = E{X} and Σ = E{(X − µ)(X − µ)T} are the mean vector and covariance

matrix, respectively, and |Σ| denotes the determinant of Σ. For µ = 0, Σ reduces to the

correlation matrix R = E{XXT}, and the PDF becomes [Peebles 1993]

fX(x) =
1

(2π)N/2|R|1/2
exp

{
−1

2
xTR−1x

}
. (2.2)

which is the form that will see all through the thesis.

A Gaussian distribution is completely specified by µ and Σ [Peebles 1993]. Thus, the

notation N [µ,Σ] is a specification of a multivariate Gaussian PDF. When x is zero-mean,

a necessary and sufficient description is N [0,R].

2.3 Central χ2 Probability Density Function

Another important probability distribution is the χ2 distribution. The χ2 probability

density function and other PDFs with similar functional form appear when we deal with

quadratic forms in multivariate Gaussian random variables. The sum

Y =
N∑

i=1

X2
i (2.3)

is centrally χ2 distributed with N degrees of freedom when the Xi are statistically indepen-

dent and identically distributed (i.i.d.) N [0, 1] random variables (standardised Gaussian

variables) [Scharf 1991]. This is denoted: Y ∼ χ2
N . Equivalently, this is also true for the

sum

Y =

N∑

i=1

(Xi − µ)2/σ2 (2.4)

when the Xi ∼ N [µ, σ2]. In any case, the PDF of Y is [Scharf 1991]

fY (y) =
1

Γ(N/2) 2N/2
y

N−2
2 e−y/2 (2.5)

12
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Figure 2.1: Probability density functions of central χ2-distributed variables.

where the gamma function is defined as

Γ(N) =

∫ ∞

0

e−t tN−1 dt, for N > 0 . (2.6)

The mean value and the variance of a χ2
N distributed variable Y is E{Y } = N and

V ar{Y } = 2N , respectively. The maximum of the PDF occurs at N − 2 and the skewness

is 2
√

2/N [Scharf 1991].

A set of χ2
N PDFs for different choices ofN is shown in figure 2.1. From the figure we see

that the the mean and the PDF maximum increases with increasing N in agreement with

theory, and so does the variance. We also see that the skewness decreases as N increases.

In the limiting case, when N → ∞, the skewness vanishes and the χ2
N PDF approaches a

one-dimensional Gaussian PDF specified by N [N, 2N ].

A more general result exists for the multivariate Gaussian random variable X ∼
N [µ,Σ]. The quadratic form

Q = (X − µ)TΣ−1(X − µ) (2.7)

is χ2
N distributed. If the sequence {X(n)}, n = 1, . . . , N is white Gaussian noise, then Q

reduces to Eq. (2.4), with PDF given by Eq. (2.5).

The characteristic function of a multivariate random variable X is defined as [Scharf 1991,

Peebles 1993]

ΦX(ω) = E{ejωT
X}

=

∫∫∫
fX(x)ejωT X dx

(2.8)
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Chapter 2: Fundamentals on Autoregressive Processes

where j =
√
−1, ω = [ω1, . . . , ωN ]T and

∫∫∫
(·) dx denotes a multi-dimensional integral.

The close relationship between the characteristic function and multi-dimensional Fourier

transform of fX(x) is obvious. It is easily found that

ΦX(−ω) = F{fX(x)} (2.9)

where F{·} denotes the multi-dimensional Fourier transform. This result that will be used

in subsequent chapters. The other major application of ΦX(ω) is that it enables calculation

of moments. The mth moment of X is given by [Papoulis 1991, Peebles 1993]

E{Xm} = (−j)m dmΦX(ω)

dωm

∣∣∣∣
ω=0

. (2.10)

The characteristic function of Q is readily found as [Scharf 1991]

ΦQ(ω) =
1

(1 − 2jω)N/2
. (2.11)

From ΦQ(ω), the mean and variance of Q is obtained as [Scharf 1991]

E{Q} = N (2.12)

V ar{Q} = 2N . (2.13)

A more general result exist for the quadratic form

Q̃ = (X − µ)TP (X− µ) (2.14)

in the symmetric matrix P. The characteristic function of the modified Q̃ is found from a

straight-forward derivation [Scharf 1991] as

ΦQ̃(ω) =
1

|I− 2jωPR|1/2
. (2.15)

The mean and variance now become

E{Q̃} = tr(PR) (2.16)

V ar{Q̃} = 2tr
(
(PR)2

)
(2.17)

where the trace operator applied on a N×N matrix A is defined as the sum of all elements

on the main diagonal:

tr(A) =

N∑

i=1

[A]ii . (2.18)
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2.4: Definition of an AR-process

q
-1

q
-1

q
-1

ap ap-1 a2 a1

(n)

∋

x(n)

Figure 2.2: Block diagram of AR-process.

2.4 Definition of an AR-process

Many real-world signals can be described by stochastic processes assuming parametric

models. One such model is the autoregressive (AR) process [Kay 1993, Box et al. 1994].

In an AR-model of order p, the present output x(n) depends on a linear combination of

the p previous outputs, driven by a random component ε(n), which is termed the driving

noise of the process. This has the mathematical form

x(n) = −
p∑

i=1

aix(n− i) + ε(n). (2.19)

We assume that the driving noise is zero-mean, white and Gaussian, i.e. that E{ε(n)} = 0

and E{ε(n)ε(n + k)} = σ2
ε δk,0 where δk,0 is the Kronecker delta function. The output

signal is then completely specified by the AR-parameters ai, i = 1, . . . , p and the variance

σ2
ε of the driving noise. A block diagram of an AR-process is shown in figure 2.2. The unit

time delay operator is denoted q−1.

The AR-process x(n) can also be interpreted as a filtered version of the driving noise

ε(n). In the time domain, the filtering operation is equal to the convolution

x(n) = h(n) ∗ ε(n) (2.20)

where the filter has infinite impulse response (IIR) h(n) [Oppenheim et al. 1983]. The filter

interpretation is shown in figure 2.3. The filter coefficients cannot be written explicitly, but

(n)

∋

h(n)
x(n)

Figure 2.3: Filter interpretation of the AR-process.
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Chapter 2: Fundamentals on Autoregressive Processes

they are given by the inverse discrete Fourier transform (IDFT) [Oppenheim et al. 1983]

h(n) =
1

2π

∫

2π

H(ω)ejωn dω (2.21)

where H(ω) = 1/A(ω), as will be shown in the next section. Here, H(ω) and A(ω) is the

discrete Fourier transform (DFT) of the filter impulse response and the AR-parameters,

respectively.

2.5 Power Spectral Density

Define the AR-parameter of order zero as a0 = 1. We may then rewrite the AR-model in

Eq. (2.19) using the time domain operator q−d representing a delay of d discrete time units

(symbol periods), to obtain

ε(n) = x(n)

p∑

k=0

akq
−k

= a(n) ∗ x(n)

(2.22)

where a(n) = [a0 , . . . , ap]
T . From statistical signal theory [Scharf 1991, Kay 1993, Peebles 1993]

we know that for a linear time invariant (LTI) system with input-output relation

y(n) = h(n) ∗ x(n) (2.23)

the power spectral density (PSD) of the output y(n) is

Syy(ω) = |H(ω)|2Sxx(ω) (2.24)

where H(ω) is the DFT of the system impulse response and Sxx(ω) is the PSD of the input

signal x(n). Hence, from Eqs. (2.20) and (2.22) we obtain the relations

Sxx(ω) = |H(ω)|2Sεε(ω) (2.25)

Sεε(ω) = |A(ω)|2Sxx(ω) (2.26)

which proves that

H(ω) =
1

A(ω)
. (2.27)
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2.5: Power Spectral Density

Since the PSD of white noise equals the noise variance, the PSD of x(n) is given by

[Kay 1993, Box et al. 1994]

Sxx(ω) = σ2
ε /

∣∣∣∣∣1 +

p∑

k=1

ake
−jωk

∣∣∣∣∣

2

. (2.28)

We next evaluate the denominator as an explicit function of the AR-parameters.

|A(ω)|2 =

p∑

k=0

a2
k + 2

p∑

k=1

(
p−k∑

l=0

alak+l

)
cos(kω). (2.29)

The denominator function can also be written as

|A(ω)|2 = A0 + 2A1 cos(ω) + . . .+ 2Ap cos(pω) (2.30)

where the Ak are Fourier series cosine terms coefficients of the inverse PSD 1/Sxx(ω),

weighted by the driving noise variance [Itakura and Saito 1970]. Hence, we identify the

relation

Ak =
σ2

ε

2π

∫ π

−π

cos(kω)

Sxx(ω)
=

p−k∑

l=0

alak+l. (2.31)

We achieve rather simple expressions for the power spectral densities of lower order AR-

processes. For instance, we have [Box et al. 1994]

AR(1) : Sxx(ω) = σ2
ε [(1 + a2

1) + 2a1 cos(ω)]−1. (2.32)

AR(2) : Sxx(ω) = σ2
ε [(1 + a2

1 + a2
2) + 2a1(1 + a2) cos(ω) + 2a2 cos(2ω)]−1. (2.33)

The power spectral densities of two AR-processes of order p = 2 are shown in figure

2.4. The first process has AR-parameters a1 = 0.4 and a2 = −0.2. It is clearly a high-

frequency process, which should be expected from the sign of a1. The second process has

AR-parameters a1 = −0.4 and a2 = 0.2. As a consequence, this is a low-frequency process.

With increasing order, the features of the power spectral density become more complex.

Inserting z = ejω into Eq. (2.28), we see that an AR-process is causal and stable if

the roots of the characteristic denominator polynomial A(z) (the Z transform of the AR-

parameters a(n) [Oppenheim et al. 1983]) all have magnitude less than one. That is, for

stability of a causal AR-process, we require [Box et al. 1994]

|zi| < 1 for
{
zi :

p∑

k=0

akz
−i = 0

}
, i = 1, . . . , p. (2.34)
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Figure 2.4: power spectral densities of two second-order AR-processes with parameters:

[a1, a2] = [0.4,−0.2] (left), [a1, a2] = [−0.4, 0.2] (right) and σ2
ε = 1 (both).

2.6 Autocorrelation Function

Since the AR-process regresses on previous values of itself, it has an infinite autocorrelation

function (ACF). The ACF of an AR-process can be defined recursively, but the resulting

expression become complex very rapidly with increasing order p.

To study the autocorrelation of an AR-process, we now derive the Yule-Walker equa-

tions [Box et al. 1994, Haykin 1996]. Starting from Eq. (2.19), we multiply both sides by

x(n− k) and take the expectation value,

E

{
x(n)x(n− k) +

p∑

i=1

aix(n− i)x(n− k)

}
= E{ε(n)x(n− k)}. (2.35)

The left hand side evaluates to a sum of scaled autocorrelations of varying time lag.

The right hand side is non-zero only for zero lag (k=0), since the driving noise is uncorre-

lated. Hence, with the ACF of x(n) defined as rxx(k) = E{x(n)x(n + k)} [Papoulis 1991,

Peebles 1993], this becomes

rxx(−k) +

p∑

i=1

airxx(i− k) = σ2
ε δk,0 . (2.36)

If we evaluate this equation for k = 1, . . . , p, we obtain a set of equations in the AR-

parameters, which can be rephrased as the well-known Yule-Walker equations [Box et al. 1994,

Haykin 1996]
p∑

i=1

airxx(−k + i) = −rxx(−k), k = 1, . . . , p. (2.37)
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2.6: Autocorrelation Function
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Figure 2.5: Autocorrelation functions of two second-order AR-processes with parameters:

a1 = 0.4, a2 = −0.2 (left); a1 = −0.4, a2 = 0.2 (right) and σ2
ε = 1 (both).

The expression gives an implicit solution for the ACF for k > 0. Eq. (2.36) evaluated

for k = 0 provides an expression for the variance of an AR-process (referred to as process

variance). Since x(n) is zero-mean, we have σ2
x = rxx(0) and

σ2
x = σ2

ε −
p∑

k=1

akrxx(k). (2.38)

Suppose that we write the Yule-Walker equations in Eq. (2.37) as
∑p

i=0 airxx(k − i) = 0

with a0 , 1. We may then define the operator A(q) = 1 + a1q
−1 + . . . + apq

−p with q−1

denoting a discrete unit time delay operator, such that A(q)rxx(k) = 0. The operator A(q)

can also be written [Box et al. 1994]

A(q) =

p∏

i=1

(1 − qiq
−1) (2.39)

where the {qi} are roots of the characteristic equation A(q) = 0. The stability requirement

again appears as the condition that |qk| < 1 ∀ i. The general solution of A(q)rxx(k) = 0 is

[Box et al. 1994]

rxx(k) = α1q
k
1 + . . .+ αpq

k
p (2.40)

for some constants {αi}. If a root qi is real-valued, then the term αiq
k
i is a damped expo-

nential that decays to zero as k increases. If a pair of roots qi, qj are complex conjugates,

their contribution to the ACF will be a damped sinusoid |qi|k sin(ωk + φ) with frequency

[Box et al. 1994]

ω = cos−1(|Re{qi}|/|qi|) . (2.41)
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Chapter 2: Fundamentals on Autoregressive Processes

Figure 2.5 displays the autocorrelation function of two AR(2)-processes. The processes

are the same there was used to generate the power spectral densities in figure 2.4. The

effects of both damped exponentials and damped sinusoidals can be seen to appear in both

functions.

2.7 Yule-Walker Estimation of AR-parameters

The system of equations in (2.37) can be expressed compactly on matrix form as

Rxa = −rx (2.42)

where the correlation matrix is defined as [Rx]ij = rxx(i − j), i, j = 1, . . . , p and the

correlation vector as rx = [rxx(1), . . . , rxx(p)]
T . Thus, we can solve for the parameter

vector a = [a1, . . . , ap]
T and insert estimates of Rx and rx to obtain the Yule-Walker (YW)

estimate [Box et al. 1994, Haykin 1996]

âY W = −R̂−1
x r̂x . (2.43)

Evaluation of Eq. (2.36) for k = 0 gives the variance of the driving noise as

σ2
ε = rxx(0) + rT

x a

= rxx(0) − rT
xR−1

x rx.
(2.44)

The ACF can be estimated from a length N realisation of the AR-process, for instance

using the biased estimator [Kay 1993]

r̂xx(k) =
1

N

N−|k|∑

n=1

x(n)x(n + |k|), k = 0,±1, . . . ,±N. (2.45)

Recalling that for real-valued data, rxx(k) = rxx(−k), we need only estimate the ACF for

non-negative lags. Inserting the estimated ACF-values for k = 0, . . . , p into Eqs. (2.43)

and (2.44), the estimators â and σ̂2
ε follow straight-forward.
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2.8: Maximum Likelihood Estimation of AR-parameters

2.8 Maximum Likelihood Estimation of AR-parameters

We have assumed that the driving noise of the AR-process is zero-mean, white and Gaus-

sian. Hence, the PDF of the noise sequence ε = [ε(1), . . . , ε(N)]T is

fε(ε) =
N∏

n=1

1√
2πσ2

ε

e−ε2(n)/2σ2

= (2πσ2)−N/2 exp

{
− 1

2σ2
ε

N∑

n=1

ε2(n)

}
.

(2.46)

From the definition of the AR-process, it follows that

fX(x) = (2πσ2)−N/2 exp



− 1

2σ2
ε

N∑

n=1

[
p∑

i=0

aix(n− i)

]2


 (2.47)

which can be rewritten as

fX(x) = (2πσ2
ε )

−N/2 exp

{
− N

2σ2
ε

α
T R̂xα

}
(2.48)

where we introduce α = [a0, . . . , ap]
T = [1, a]T , and the (p+1)×(p+1) empirical correlation

matrix, which is given by

R̂x =
1

N

N∑

n=1

xp+1
n xp+1

n
T
. (2.49)

Here xp+1
n denotes the sequence [x(n− p), . . . , x(n)]T of p + 1 samples of x(n), up to and

including discrete time n. Now consider the PDF as a likelihood function, by taking the

parameter vector a to be the variable instead of x, and denoting it fX(x|a). The maximum

likelihood (ML) estimate [Scharf 1991, Box et al. 1994] of a is the parameter vector that

maximises fX(x|a),

âML = arg
{

max
a

{fε(ε|a)}
}
. (2.50)

It is seen that a maximum is obtained when the term
∑N

n=1 ε
2(n)/N = α

T R̂xα is minimum.

Hence, the maximum likelihood estimate is identical to the least squares estimate, assuming

a Gaussian model for the driving noise [Scharf 1991, Box et al. 1994]. We note that the

least squares estimate is independent of the driving noise PDF.

Assume that the innovation variance is unknown. The maximum likelihood estimate

of σ2
ε is obtained from the definition as [∂fX(x|a)/∂σ2

ε ]|σ̂2
ε

, 0, which yields

σ̂2
ε = α

T R̂xα. (2.51)
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Chapter 2: Fundamentals on Autoregressive Processes

Maximum likelihood estimates for the AR-parameters are obtained component-wise from

∂fX(x|a)/∂ak|âk
, 0. Using Eq. (2.47), the result is the system of equations [Scharf 1991,

Box et al. 1994]
p∑

i=0

ai

N∑

n=1

x(n− i)x(n− k) = 0, k = 1, . . . , p (2.52)

which can be rewritten as

p∑

i=1

air̂xx(k − i) = −r̂xx(k), k = 1, . . . , p. (2.53)

This is seen to be precisely the Yule-Walker estimate.

2.9 Approximate Likelihood Function

Since the AR-process is a linear combination of Gaussian variables, the PDF of x(n) is

also Gaussian. Due to the complex correlation matrix, it is difficult to derive an exact

PDF or likelihood function for the AR-process in terms of the AR-parameters. In a search

for an approximate likelihood function, the exact likelihood function can be factorised into

[Itakura and Saito 1970, Box et al. 1994]

f(xN
n |a, σ2

ε ) = f(xN−p
n |xp

p, a, σ
2
ε )f(xp

p|a, σ2
ε ) (2.54)

where the notation xN
n should still be read as the length N sequence ending with the datum

x(n). In [Box et al. 1994] it is shown that this results in

f(xN
n |a, σ2

ε ) =
C

(2πσ2
ε )

N/2
exp

{
− 1

2σ2
ε

[
α

TXα +
N∑

i=p+1

α
Tx

p+1
i x

p+1
i

T
α

]}

=
C

(2πσ2
ε )

N/2
exp

{
− 1

2σ2
ε

α
T
[
X + (N − p)R̂x

]
α

}
.

(2.55)

where we define the correlation matrix estimator as

R̂x =
1

N − p

N∑

i=p+1

x
p+1
i x

p+1
i

T
. (2.56)

The constant C = |Rx/σ
2
ε |1/2 and the elements of the (p+ 1) × (p+ 1) matrix X are

[X]ij = xixj + xi+1 xj+1 + . . .+ xn+1−i xn+1−j (2.57)

22



2.10: Approximate Log-Likelihood Ratio

with summations consisting of n− (i− 1) − (j − 1) terms. The last term of the exponent

in Eq. (2.55) will dominate for N � p, and the likelihood function can be approximated

by [Itakura and Saito 1970, Box et al. 1994]

f(xN
n |a, σ2

ε ) =
C

(2πσ2
ε )

N/2
exp

{
− N

2σ2
ε

α
T R̂xα

}
. (2.58)

The log-likelihood function is defined as

l(xN
n |a, σ2

ε ) = ln f(xN
n |a, σ2

ε ) (2.59)

An approximation for the log-likelihood function is thus found from Eq. (2.58) as

`(xN
n |a, σ2

ε ) = lnC − N

2
ln 2πσ2

ε −
N

2σ2
ε

α
T R̂xα (2.60)

invoking the same assumption on the length of the data sequence. Under these approxi-

mations, we observe that Eqs. (2.48) and (2.58) have the same mathematical form. The

maximum likelihood estimates for σ2
ε and a obtained from the likelihood function of the

AR-model are therefore identical to those presented in section 2.8.

2.10 Approximate Log-Likelihood Ratio

The likelihood function f(xN
n |a, σ2

ε ) was introduced in section 2.8 as an equivalent to the

PDF, when the statistical parameter vector of the probability model is regarded as the

independent variable, after a data vector is observed. The log-likelihood function was

defined in section 2.9, and denoted `(xN
n |a, σ2

ε ). We now define the log-likehood ratio as

the logarithm of the ratio of two likelihood functions [Scharf 1991],

L(xN
n ) = ln

[
f(xN

n |H1)/f(xN
n |H0)

]

= l(xN
n |H1) − l(xN

n |H0)
(2.61)

where Hi denotes the hypotesis that xN
n is a realisation of process Xi, i ∈ [0, 1]. From

now on, all process dependent function will be conditioned by the appropriate hypothesis,

instead of respective parameter vector and innovation variance.

From the approximation of the log-likelihood function in Eq. (2.60), we now propose

an approximate log-likelihood ratio (ALR)

L(xN
n ) = `(xN

n |H1) − `(xN
n |H0)

=
N

2

(
1

σ2
ε0

α
T
0 R̂xα0 −

1

σ2
ε1

α
T
1 R̂xα1

)
+
N

2
ln

(
σ2

ε0

σ2
ε1

)
.

(2.62)
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The interesting point about the ALR is that it can be used to derive approxima-

tions to Bayes detectors and Neyman-Pearson detectors [Scharf 1991]. Detection theory

[Kazakos and Papantoni 1990, Scharf 1991] will be discussed in a later chapter, and the

ALR will be used to design one of the alternative detectors in ARPSK communications.

The simple mathematical form and low complexity makes it an attractive choice. In par-

ticular, we note that the ALR requires estimation of the first p+ 1 lags of the ACF only.

2.11 Orthogonal Decomposition

Although we cannot find an explicit expression in terms of the AR-process parameters,

the exact log-likelihood ratio has a rather simple mathematical form. For a multivariate

Gaussian process, whose PDF was defined in Eq. (2.2), the exact log-likelihood ratio is

readily found as

L(xN
n ) =

1

2
xT

n

{[
R(0)

x

]−1 −
[
R(1)

x

]−1
}

xn +
1

2
ln

∣∣R(0)
x

∣∣
∣∣R(1)

x

∣∣ . (2.63)

The true correlation matrices of process X0 and X1 are here denoted R
(0)
x and R

(1)
x , re-

spectively. The superscript of xN
n , denoting the segment length, was left out in the above

equation and will be suppressed from now on, whenever it is convenient.

In the sequel, we will for different reasons need to write the log-likelihood ratio in

an alternative form. Let yn = TTxn be a linear transformation with the transformation

matrix T. Since xn is zero-mean, we find that yn ∼ N [0,TTRxT], provided that TTRxT

is non-singular [Peebles 1993, Scharf 1991]. It can be shown [Peebles 1993] that

fY(y) =
1

|T|fX
(
x = (TT )−1y

)
. (2.64)

It follows that L(yN
n ) = L(xN

n ) for any linear transformation. In particular, since the

correlation matrix is positive semi-definite, we can use the N orthonormal eigenvectors

{uk}, k = 1, . . . , N of the generalised eigenvector problem

R(1)
x uk = λkR

(0)
x uk (2.65)

to build a transformation matrix U = [u1u2 · · ·uN ] that defines an orthogonal decomposi-

tion [Fukunaga 1990, Scharf 1991]. Eigenvector uk corresponds to eigenvalue λk and R
(i)
x
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Figure 2.6: Computation of log-likelihood ratio by means of orthogonal transformation.

is the N × N correlation matrix of process Xi, i ∈ [0, 1]. The orthogonal transformation

yn = UT xn gives diagonal correlation matrices

R(0)
y = I (2.66)

and

R(1)
y = Λ . (2.67)

The correlation matrix Λ = diag(λ1, . . . , λN) has eigenvalues on the diagonal. After

transformation, the log-likelihood ratio is computed as

L(yN
n ) = L(yN

n |H1) − L(yN
n |H0)

=
1

2
yN

n

T (
I − Λ−1

)
yN

n − 1

2
ln
∣∣Λ
∣∣ = L(xN

n ) .
(2.68)

Computation of the log-likelihood ratio using the orthogonal transformation matrix is

illustrated by figure 2.6. In the block diagram, boxes denote left multiplication matrix

operators. The plus sign denotes vector addition and the multiplication sign (diagonal

cross) denotes the appropriate scalar product that produces L(xN
n ).
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Chapter 3

Statistical Distance Measures

In the receiver of the binary ARPSK communications system, we need a detection rule that

decides which one of the two possible AR-processes is transmitted. The detector should

quantify the likelihood that the received sequence is produced by each one of the respective

models of the transmitted signal, and base its decision on this information.

We might imagine that the detector somehow measures the similarity between the

received process realisation and its parent models, in an implicit or explicit sense, by use

of a statistical distance measure. Such distance measures have been proposed, both in the

area of speech processing and communications [Gray and Markel 1976, Gray et al. 1980,

Rabiner and Juang 1993], as well as in pattern recognition and statistical decision theory

[Basseville 1989, Fukunaga 1990]. These distance measures will also be valuable tools when

we attempt to choose the optimal processes for our communications system.

In communications and information theory, design of distance measures [Jeffreys 1948,

Kullback 1959, Ali and Silvey 1966] has been motivated by the problem of selecting carrier

signals that provide minimum detection error probability, denoted Pe. The analytical ex-

pression for the Pe of a given system may be too complex for analytical or numerical optimi-

sation methods to be applied. Therefore, minimisation of Pe is replaced by weaker criteria

that involve distance measures that are more mathematically tractable [Kailath 1967].

According to this problem formulation, an optimal distance measure d(a0, a1) between

the processes with parameter vectors a0 and a1 should have the property

Pe(a0, a1) > Pe(a0, a
′
1) =⇒ d(a0, a1) < d(a0, a

′
1) (3.1)

when a1 6= a′
1. I.e., the distance d(·) should be a monotone functional of the detection
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probability (1 − Pe). Apparently, we must seek distance measures that satisfy weaker

criteria. But, as a general statement, a good distance measure would be one that mimics

the behaviour of (1−Pe). A weaker, but realistic constraint, is that d(·) should be a convex

functional of the likelihood ratio [Kailath 1967].

The strict analogy between distance measure and Pe is important from the receiver’s

point of view, if the first is not used as a replacement for the other when the purpose is

to assess or optimise the perfermance of the communications system. If we look at the

problem from an eavesdropper’s point of view, then an optimal detector is not available,

and the theoretical Pe has no practical value. Hence, other statistical distance measures

with less relation to the Pe may prove to be more intuitive tools.

We may expect that an unauthorised listener will try to decode the transmitted signal

by means of a segmentation or change detection algorithm [Basseville 1988], or detection

could be done in the domain of second-order statistics, attempting to distinguish between

the power spectral densities of the transmission processes. Therefore, we should choose

processes that have similar spectral characteristics. This suggests that we may employ

distance measures that are designed for the frequency domain.

Spectral distance measures are explicit functions of second-order statistics, which would

normally mean the power spectral densities of the processes. More general distance mea-

sures are derived, as will be seen, from the PDFs of the processes. However, since we

deal with Gaussian processes that are complitely specified by their second-order statistics,

spectral distance measures will not discard any inherent information.

Several spectral distance measures have been defined and studied in the area of speech

processing. Speech is commonly modelled as an AR-process. Assuming that a segment

of a speech signal can be described by one of a number of AR-models, a hypothesis test

is carried out by measuring the distance between the estimated speech spectrum and the

model spectra [Gray and Markel 1976].

We shall in this chapter examine a number of different statistical distance measures.

For a distance measure d(x, y) to be a true metric, it must satisfy three conditions:

(i)

(ii)

(iii)

d(x, y) = d(y, x)

d(x, y) ≥ 0, ∀ x, y
d(x, y) = 0, iff x = y

d(x, y) ≤ d(x, z) + d(y, z)

(symmetry)

(positive definiteness)

(triangle inequality)

(3.2)

These requirements are not met for all the distance measures presented in this thesis. Still,
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we find that some of the distance measures serves our purpose.

3.1 Euclidean Distance

The simplest possible distance measure for AR-processes would be the Euclidean distance

between the AR-parameters,

dE = ‖a1 − a0‖

=

[
p∑

k=1

(
a

(1)
k − a

(0)
k

)2
]1/2 (3.3)

where ‖ · ‖ denotes the Euclidean vector norm. This is not a good choice, because a large

Euclidean distance does not always imply large distance in the feature space where pro-

cess discrimination is performed [Rabiner and Juang 1993]. Moreover, dE has no spectral

theoretical interpretation [Basseville 1988].

3.2 Jeffreys Divergence

This divergence measure was first introduced by Jeffreys [Jeffreys 1946, Jeffreys 1948]. It

measures the dispersion of the log-likelihood ratio expected values under the two hypothe-

ses, and is defined by

dJ = E{L(x)|H1} − E{L(x)|H0}. (3.4)

The constituent terms dKL(0, 1) = E{L(x)|H1} and dKL(1, 0) = −E{L(x)|H0} can also be

used as distance measures. These are known as the Kullback-Leibler numbers or Kullback

information [Kailath 1967, Basseville 1989]. In general, we have dKL(0, 1) 6= dKL(0, 1).

The sum, on the other hand, is symmetric. It is also known as the Kullback divergence

[Kailath 1967, Basseville 1989].

For a zero mean multivariate Gaussian random variable x with covariance matrices R
(0)
x

and R
(1)
x under the respective hypotheses, the Jeffreys divergence is [Scharf 1991]

dJ =
1

2
tr
(
R(1)

x R(0)
x

−1
+ R(0)

x R(1)
x

−1 − 2I
)
. (3.5)

Basseville [Basseville 1989] has classified the Jeffreys divergence as belonging to a

class of likelihood distance measures [Rabiner and Juang 1993] related to the Csiszar I-

divergence [Csiszar 1975]. Class members measure the distance between two probability
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distributions f0(x) and f1(x) with aid of the dispersion of the likelihood ratio with respect

to f0(x). Hence, these distance measures can be written as

d
(
f0(x), f1(x)

)
= h

{
E0

[
g

(
f1(x)

f0(x)

)]}
(3.6)

for some functions g(·) and h(·), where E0{·} is the expectation with respect to f0(x). The

Jeffreys divergence is written on this form with g(x) = (x − 1) ln(x) and h(x) = x. From

information theory, this measure is known as the relative entropy between the probability

distributions.

3.3 Bhattacharyya Distance

The Bhattacharyya coefficient for two probability distributions f0(x) and f1(x) is given by

[Bhattacharyya 1943]

ρB =

∫ √
f0(x)f1(x) dx . (3.7)

The Bhattacharyya distance is given by

dB = − ln ρB (3.8)

where 0 ≤ dB < ∞. Alternatively, we can define d̃B =
√

1 − ρB with bounds 0 ≤ d̃B ≤ 1,

which obeys the triangle inequality in Eq. (3.2). The Bhattacharyya distance for different

statistical distributions is reported by Kailath [Kailath 1967]. For a multivariate Gaussian

random variable x with zero mean vector, we have

dB =
1

2
ln



∣∣(R(0)

x + R
(1)
x

)
/2
∣∣

√∣∣R(0)
x

∣∣∣∣R(1)
x

∣∣


 . (3.9)

An upper and lower bound for Pe is also given in terms of the Bhattacharyya distance. For

symmetrical sources, we find that [Kailath 1967]

1

2

(
1 −

√
1 − ρ2

B

)
≤ Pe ≤

1

2
ρB (3.10)

where ρB = e−dB .

In terms of Eq. (3.6), the Bhattacharyya distance is defined by functions g(x) = −√
x

and h(x) = − ln(−x). It is a special case of the Chernoff distance [Kailath 1967], defined

by g(x) = −x1−r for 0 ≤ r ≤ 1 and h(x) = − ln(−x). Both the Jeffreys divergence and

the Bhattacharyya distance are convex functionals of the likelihood ratio [Kailath 1967].
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3.4 Log-Spectral Distance Measures

Assume two spectral models, S(ω) and S ′(ω). The log-spectral difference per angular fre-

quency between the models is defined as [Gray and Markel 1976, Rabiner and Juang 1993]

V (ω) = ln

(
S(ω)

S ′(ω)

)

= ln(S(ω)) − ln(S ′(ω))

(3.11)

where ω is the normalised angular frequency (ω ∈ [0, 2π]). The log-spectral distance mea-

sures dp, also known as the Lp norms, are a set of true metrics, defined as [Gray and Markel 1976,

Rabiner and Juang 1993]

[dp(S, S
′)]p =

1

2π

∫ π

−π

|V (ω)|p dω. (3.12)

where the argument in the power spectral densities are omitted for brevity. Different

measures are obtained for different choices of p (which must not be confused with the

order of the AR-model), e.g. the mean absolute log spectral measure (p = 1), the root

mean squared (RMS) log spectral measure (p = 2) and the peak log spectral difference

(p → ∞). Most commonly used is the RMS log spectral distance

d2(S, S
′) =

[
1

2π

∫ π

−π

|V (ω)|2 dω
]1/2

. (3.13)

The effect of large values of V (ω) is more heavily weighted as p is increased. In the

limiting case, d∞ = max |V (ω)|. As would be expected, measures for different choices of

P are heavily correlated. A commonly used approximation to d2 is found in the cepstral

distance measure [Gray and Markel 1976, Rabiner and Juang 1993].

3.5 Itakura-Saito Distance Measure

Another spectral distance measure based on the log-spectral difference V (ω) defined in Eq.

(3.11) was proposed in [Itakura and Saito 1970]. The Itakura-Saito distance is given by

dIS(S, S ′) =
1

2π

∫ π

−π

[
eV (ω) − V (ω) − 1

]
dω

=
1

2π

∫ π

−π

S(ω)

S ′(ω)
dω − ln

σ2

σ′2
− 1

(3.14)
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where σ2 and σ′2 are called the one-step prediction errors [Rabiner and Juang 1993] of the

spectral models S(ω) and S ′(ω), respectively. For general processes, σ2 is calculated from

σ2 = exp

{
1

2π

∫ π

−π

lnS(ω) dω

}
(3.15)

and σ′2 from the same expression replacing S(ω) with S ′(ω). For AR-processes, the one-

step prediction error is equal to the driving noise variance.

From the integrand of Eq. (3.14) we see that dIS is asymmetric. In effect, positive values

of V (ω) are weighted more than negative values. Therefore, dIS itself is not useful for our

purpose, but we shall show some relations to other distance measures in the following.

3.6 Cosh Distance Measure

We will now show that the Jeffreys divergence also has a spectral interpretation. Recall

the orthogonal decomposition from section 2.11. It was shown that the log-likelihood ratio

can be written as

L(xN
n ) = (yN

n )T (I − Λ−1)yN
n − ln |Λ| . (3.16)

using the linear transformation y = UTx where the transformation matrix U = [u1 . . .un]

is constructed from eigenvectors of

R(1)
x uk = λkR

(0)
x uk , k = 1, . . . , N . (3.17)

From the definition of the Jeffreys Divergence we find that

dJ = tr(Λ + Λ−1 − 2I)

=
N∑

k=1

(λk + λ−1
k − 2) .

(3.18)

Scharf [Scharf 1987] conclude that the contribution of eigenvalue λk to the divergence and

detectability is highest when 0 < λk � 1, or 1 � λk, such that the sum (λk +λ−1
k ) is large.

He also provides an interpretation of λk, which relies on theory of circulant matrices.

An N×N Toeplitz matrix M is circulant if and only if its elements obey [Bellman 1970]

[M]mn = f
(
(m− n) mod N

)
(3.19)

where f(·) is an arbitrary function. That is, each column of M must be equal to the

previous column rotated downwards by one element. Every wide-sense stationary time
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3.6: Cosh Distance Measure

series x(n) [Papoulis 1991, Peebles 1993] has a Toeplitz correlation matrix Rx which is

asympotically circulant as N → ∞ [Scharf 1987]. A circulant matrix Rx further has an

orthogonal representation [Bellman 1970]

Rx = FSFH (3.20)

where F is a discrete Fourier Transform (DFT) matrix, S is a diagonal PSD matrix and

[ · ]H denotes the Hermitian transpose. The entries of the DFT and PSD matrices are

[F]mn = ej2πmn/N (3.21)

and

[S]nn =
N−1∑

k=0

rxx(k)e
j2πkn/N . (3.22)

After further derivations [Scharf 1987], we identify the eigenvalues as

λk =
S

(1)
xx

(
exp(j2πk/N)

)

S
(0)
xx

(
exp(j2πk/N)

) (3.23)

where S
(i)
xx

(
exp(jΩ)

)
is the PSD of process Xi and Ω = 2πk/N is a discrete angular

frequency. Hence, λk and its reciprocal value are the quotients of the process spectral

densities at Ω = 2πk/N . It is intuitive that large and small values of the quotients signify

the strongest contribution to detectability, since this indicates a large difference between

the spectra at that particular frequency.

The eigenvalues sample the function S
(1)
xx (ω)/S

(0)
xx (ω) at N equally spaced frequencies.

By comparison of the λk, we can identify the frequency windows that are important for

detection. Moreover, as an asympotic result, we find the following spectral interpretation

of the Jeffreys divergence

lim
N→∞

dJ =

∫ π

−π

(
S

(1)
xx (ω)

S
(0)
xx (ω)

+
S

(0)
xx (ω)

S
(1)
xx (ω)

− 2

)
dω

=

∫ π

−π

(
S

(1)
xx (ω) − S

(0)
xx (ω)

)2

S
(0)
xx (ω)S

(1)
xx (ω)

dω .

(3.24)

Define the dispersion spectral density as

D(ω) =

(
S

(1)
xx (ω) − S

(0)
xx (ω)

)2

S
(0)
xx (ω)S

(1)
xx (ω)

. (3.25)
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By integrating the dispersion spectral density over all frequencies and dividing by the fre-

quency range 2π, we obtain a measure of the mean spectral dispersion. We have now arrived

at the well known Cosh distance measure [Gray and Markel 1976, Rabiner and Juang 1993],

which is defined as

dCOSH =
1

2π

∫ π

−π

D(ω)

2
dω . (3.26)

The Cosh distance can also be derived as a symmetrised version of the Itakura-Saito

distance [Rabiner and Juang 1993]. We have dIS(S, S ′) 6= dIS(S ′, S) for S(ω) 6= S ′(ω).

Hence, a symmetric distance measure can be defined as [dIS(S, S ′)+dIS(S, S ′)]/2. It turns

out that this is the Cosh distance, on the form

dCOSH(S, S ′) =
1

2π

∫ π

−π

[eV (ω) + e−V (ω) − 2]/2 dω

=
1

2π

∫ π

−π

[cosh V (ω) − 1] dω

(3.27)

where cosh x = [exp(x) + exp(−x)]/2. It is easily seen that this expression is equivalent to

Eq. (3.26).

From Eq. (3.25), we note that a linear spectral difference of a given value is more

significant to discrimination, the lower the process PSDs are at the frequency it occurs.

This is also an implicit result of the dP measures that operate on the logarithmic spectral

difference. In particular, we experience in practice that the Cosh distance and the RMS

log spectral distance have similar properties. This can be explained if we compare the

integrands of d2
2 and dCOSH in Eqs. (3.13) and (3.27), respectively. The serial expansion

cosh[V (ω)] = 1 +
V (ω)2

2!
+
V (ω)4

4!
+ · · · (3.28)

proves that

dCOSH(S, S ′) ≥ 1

2
[d2(S, S

′)]2 . (3.29)

In figure 3.6, the curve cosh[V (ω)]−1 is plotted as function of V (ω), together with V (ω)2/2,

which is the basis of the RMS log spectral distance. We see that the weighting of spectral

differences is relatively close at small spectral differences, while large spectral differences

are weighted much more in dCOSH-measure.
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Figure 3.1: Comparison of the integrands cosh[V (ω)] − 1 and V (ω)2/2 in the spectral

distance measures dCOSH and d2, respectively.

3.7 Prediction Residual Power Ratio

If we have p observations xp
n = [x(n− p), . . . , x(n− 1)]T of a process that is assumed to be

described by an AR-model with parameters a = [a1, . . . , ap]
T , then the next observation

can be predicted from the linear predictor [Gray and Markel 1976, Scharf 1991]

x̂(n) = −
p∑

i=1

aix(n− i) . (3.30)

The prediction error is given by

ε(n) = x(n) − x̂(n)

=

p∑

i=0

aix(n− i)
(3.31)

where a0 , 1. A minimum mean squared error (MMSE) estimate of the process model

parameter vector is given as the α = [a0, . . . , ap]
T that produces the minimum prediction

residual power (MPRP)

α = min
a

{
E
[
ε2(n)

]}

= min
a

{
E
[
(αTxp

n)2
]}

.
(3.32)
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If x(n) is truly described by an AR-model, then we have α = σ2
ε . From Eq. (3.32) we

see that σ2
ε = α

TRxα, where Rx is the true correlation matrix of the AR-process. The

prediction filter interpretation is an alternative way of looking at the AR-model.

Assume that a data sequence x̃(n) is generated by another AR-process with parameter

vector α̃ = [ã0, . . . , ãp]
T . If prediction vector α is applied on x̃(n), the linear predictor

will produce the generally non-minimum prediction residual power (PRP)

β = α
T R̃xα

=
α

2π

∫ π

−π

∣∣∣∣∣
Ã(ω)

A(ω)

∣∣∣∣∣

2

dω ≥ α
(3.33)

where A(ω) and Ã(ω) are the DFTs of α and α̃, respectively, while R̃x is the true cor-

relation matrix of the process with parameter vector α̃. Equality in β ≥ α holds only

if α = α̃. The prediction residual energy ratio β/α can be used as a distance measure.

It is related to the Itakura-Saito distance of two AR-processes with unity driving noise

[Rabiner and Juang 1993],

β

α
− 1 = dIS

(
1

|A(ω)|2 ,
1

|Ã(ω)|2
)
. (3.34)

This distance measure puts emphasis on spectral shape, and totally disregards the driving

noise variances of the processes. So does the gain-normalised Itakura distance [Itakura 1975,

Rabiner and Juang 1993], which is defined for two general AR(p)-processes as

dI

(
σ2

ε

|A(ω)|2 ,
σ̃2

ε

|Ã(ω)|2
)

= dIS

(
α

|A(ω)|2 ,
β

|Ã(ω)|2
)

= ln

(
β

α

) (3.35)

where α = σ2
ε and β is calculated according to their definition, assuming parameter model

α and disregarding the value of σ̃2
ε , which is generally different from σ2

ε .

There is obviously a connection between β/α and the approximated log-likelihood ratio

(ALR) from section 2.10. We can write the ALR as

L(xN
n ) =

N

2

[(
α

T
0 R̂xα0

α
T
0 R

(0)
x α0

)
−
(

α
T
1 R̂xα1

α
T
1 R

(1)
x α1

)
+ ln

(
α

T
0 R

(0)
x α0

α
T
1 R

(1)
x α1

)]

=
N

2

[(
β̂|α0

α |H0

)
−
(
β̂|α1

α |H1

)
+ ln

(
α |H0

α |H1

)]
.

(3.36)
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The process-dependent MPRP values are here denoted α |H0 = σ2
ε0

and α |H1 = σ2
ε1

. The

data dependent terms β̂|α0 = α
T
0 R̂xα0 and β̂|α1 = α

T
1 R̂xα1 are interpreted as estimators

of the PRP that is produced when the data sequence xN
n is fitted to the AR-model with

parameter vector α0 and α1, respectively. The expectation values of PRP estimators under

the two hypotheses are

E{β̂|α0} =

{
α

T
0 R

(0)
x α0 = σ2

ε0
: H0

α
T
0 R

(1)
x α0 > σ2

ε0 : H1

(3.37)

and

E{β̂|α1} =

{
α

T
1 R

(0)
x α1 > σ2

ε1
: H0

α
T
1 R

(1)
x α1 = σ2

ε0
: H1

. (3.38)

The first term in Eq. (3.36) is a measure of the distance or dissimilarity between the

data sequence and process X0. The second term measures the distance with respect to

process X1, and the relative magnitude of the terms tells something about how a source

bit represented by xN
n should be classified. The third term reflects the fact that the driving

noise variances must be taken into account, since, in ARPSK communications, we must

require that σ2
ε0 6= σ2

ε1 to obtain equal average process power. The application of the ALR

to detection is examined in detail in the next chapter.

We find that the ALR can be expressed in terms of the Itakura-Saito distance as

L(xN
n ) =

N

2

[
dIS

(
β̂0

|A0|2
, S0

)
− dIS

(
β̂1

|A1|2
, S1

)
− ln

(
β̂1

β̂0

)]
(3.39)

where S0 = σ2
ε0/|A0|2 and S1 = σ2

ε1/|A1|2 denotes the PSD of process X0 and X1, re-

spectively, and frequency arguments are omitted. For brevity, the PRP estimators for

model-fitted data are also subscripted, defining β̂i = β̂|αi, i ∈ [0, 1].

37



Chapter 3: Statistical Distance Measures

38



Chapter 4

Detection

In this section we will discuss some possible detectors for the ARPSK-modulated signal,

and their associated detection error probability Pe or bit error rate (BER).

The Neyman-Pearson detector [Scharf 1991] is optimum in a minimum detection error

probability sense, and is one obvious candidate. It can be considered as a special case of the

Bayes detector [Scharf 1991], which is another conventional detector of great importance.

An alternative is to use the theory of statistical distance measures that have been reviewed

in the previous section. We have already forecasted that the approximate likelihood ratio

can be used as a detector. But before we look into the details of various detectors, we

establish a constraint that must be satisfied for SPSK communications.

4.1 Process Power Equalisation

The average power of the two stochastic processes used in SPSK communication must

evidently be equal. Otherwise, a variation in the transmitted power can be sufficient for

an eavesdropper to distinguish between different source bits.

The average power of a discrete time stochastic process X(n) is given by [Peebles 1993]

Pxx =
1

2π

∫ π

−π

Sxx(ω) dω . (4.1)

This integral can be interpreted as the inverse Fourier transform of the power density

spectrum at time index k = 0. The Wiener-Khinchin relation [Peebles 1993] proves that
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the following expression is equivalent to the average process power

rxx(0) =
1

2π

[∫ π

−π

σ2
ε

|A(ω)|2 e
jωk dω

]∣∣∣∣
k=0

, (4.2)

where the known power density spectrum of an AR-process is substituted into the ex-

pression. It should come as no surprise that this is identical to the process variance σ2
x

[Peebles 1993].

The power equalisation constraint states that P0 = P1 for the two processes X0(n) and

X1(n). This should be tranformed into a constraint on the driving noise variances, which

are our equalisation tools. The constrained process variance obtained when σ2
ε = 1 is given

by

ρxx(0) =

∫ π

−π

1

|A(ω)|2 dω . (4.3)

It follows that the unconstrained process variance rxx(0) = σ2
ε ρxx(0). Hence, from the

power equalisation constraint, the innovation variances must obey

σ2
ε1 = σ2

ε0

ρ
(0)
xx (0)

ρ
(1)
xx (0)

(4.4)

where process indices are introduced on both innovation variances and constrained process

variances.

4.2 Neyman-Pearson Detection

The important Neyman-Pearson lemma [Scharf 1991] states that the hypothesis test which

minimises the detection error probability is a log-likelihood ratio test on the form

L(xn)
Ω1

≷
Ω0

η. (4.5)

The likelihood ratio l(xn) has previously been defined as the ratio of two likelihood func-

tions, and the log-likelihood ratio of two zero-mean Gaussian processes was given in section

2.10 as

L(xn) = ln[l(xn)]

=
1

2
xT

n

{[
R(0)

x

]−1 −
[
R(1)

x

]−1
}

xn +
1

2
ln

|R(0)
x |

|R(1)
x |

.
(4.6)
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A complete test should also contain a decision for the case when L(xn) = η. In this

marginal case, decision Ω0 is made with probability 0 ≤ ψ ≤ 1 for a chosen ψ.

The test is optimum for a chosen false alarm probability: PFA = P (Ω1|H0). The

targetted false alarm probability is used to determine the threshold η from

PFA =

∫
· · ·

∀xn : L(xn)>η

∫
f(xn|a0) dx. (4.7)

The terms “false alarm probability” and “miss probability” are widely used in detection

theory. They stem from applications like radar and sonar, but make no sense in binary

communications. In our problem, the erroneous decisions Ω0|H1 and Ω1|H0 are associated

with the same cost. Hence, we want the class-specific detection error probabilities to be

equal, P (Ω1|H0) = P (Ω0|H1). This leads to a threshold value of η = 0, which provides the

following decision rule for the Neyman-Pearson detector

Q(xn) , xT
n

{[
R(0)

x

]−1 −
[
R(1)

x

]−1
}

xn

Ω1

≷
Ω0

ln
|R(1)

x |
|R(0)

x |
. (4.8)

The statistic Q(xn) on the left-hand side of the inequalities is an inner product of data

vectors weighted by a matrix difference. Such a quadratic form is known to be centrally

χ2-distributed with N degrees of freedom, if the weighting matrix is the inverse covariance

matrix of xn [Scharf 1991]. This is not true in our case, but the quadratic form must clearly

have a χ2-like distribution.

We assume equal a priori probabilities for the two processes, p0 = p1 = 1/2. The

detection error probability is then given by

Pe = p0 P (Ω1|H0) + p1 P (Ω0|H1)

=
1

2

[∫ +∞

ζ

f
(0)
Q (q) dq +

∫ ζ

−∞

f
(1)
Q (q) dq

] (4.9)

where f
(0)
Q (q) and f

(1)
Q (q) is the PDF ofQ(xn) under H0 and H1, respectively. The threshold

and integration limit is defined as ζ = ln |R(1)
x |/|R(0)

x |.
The characteristic function ΦX(ω) of a stochastic variable X was defined in Eq. (2.8),

and we recall that ΦX(−ω) = F{fX(x)}. This relationship can now be exploited, since it

is hard to find the PDF of X explicitly. We have

Pe =
1

2

[∫ +∞

ζ

F−1{Φ(0)
Q (−ω)} dq +

∫ ζ

−∞

F−1{Φ(1)
Q (−ω)} dq

]

=
1

4π

[∫ +∞

ζ

∫ +∞

−∞

Φ
(0)
Q (−ω)ejωq dω dq +

∫ ζ

−∞

∫ +∞

−∞

Φ
(1)
Q (−ω)ejωq dω dq

] (4.10)
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where F−1{Φ(i)
Q (q)} denotes the inverse Fourier transform of the characteristic function of

Q(xn) under Hi, i ∈ [0, 1]. This suggests that Pe can be computed by means of a discrete

version of Eq. (4.10), using inverse FFTs and numerical integrations. This is feasible,

provided we have an expression for ΦQ(ω), which is indeed the case.

The characteristic function of Q(xn) is in this case given by [Scharf 1991]

Φ
(i)
Q (ω) =

∣∣∣I + 2jω
(
R(1)

x − R(0)
x

)−1
R(i)

x

∣∣∣
−1/2

: Hi. (4.11)

An improved method for evaluation of Pe will be demonstrated in the next section.

4.3 Bayes Detection

The decision rule of a Bayes detector says that a data vector should be classified as belong-

ing to the class i whose joint PDF f(xn, ai), i ∈ [0, 1] is maximised for the given observation

xn. From Bayes rule, the joint PDF can be expanded as f(xn, ai) = pi f(xn|ai). For our

two-class detection problem with p0 = p1 = 1/2, the decision rule becomes

f(xn|a1)
Ω1

≷
Ω0

f(xn|a0) . (4.12)

This decision rule is equivalent to the log-likelihood ratio test in Eq. (4.5) with threshold

η = 0, and as such, it represents nothing new. However, we shall in the following benefit

from the studies of the detection error probability of a general Bayes detector, carried out

in [Fukunaga and Krile 1969].

Fukunaga and Krile have derived the Pe for a general Bayes detection problem with

two classes modelled by multivariate Gaussian distributions. Fukunaga assumes unequal

a priori probabilities pi, mean vectors µi and covariance matrices Σi for the two classes.

He proceeds by deriving the exact PDF of a generalised version of the log-likelihood ratio

L(xn) defined in Eq. (2.63), going the way through the characteristic function. The

elegant derivation concludes with an expression for the detection error of a Bayes detector.

Fukunagas and Kriles results are repeated here on a simplified form, after invoking the

conditions specific to our problem.

The crux of their approach is to transform the data vector into a vector with statistically

independent components, yn = [y1, . . . , yN ]T , which once again leads to an application of

the orthogonal decomposition in section 2.11. The transformation provides characteristic
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4.3: Bayes Detection

functions and PDFs that depend only on the eigenvalues {λk}, k = 1, . . . , N obtained from

the generalised eigenvalue problem

R(1)
x uk = λkR

(0)
x uk . (4.13)

From the transformation yn = [u1 · · ·uN ]Txn and the alternative formulation of the log-

likelihood ratio given by Eq. (2.68), it follows [Fukunaga and Krile 1969] that the charac-

teristic function of L(xn) under hypothesis Hi can be calculated as

Φ
(i)
L (ω) =

N∏

k=1

1

(1 − 2jωφik)1/2
exp(−jω lnλk) (4.14)

with hypothesis dependent parameters defined as

φik =

{
1 − 1/λk : i = 0

λk − 1 : i = 1 .
(4.15)

The total characteristic function is a product of N statistically independent characteris-

tic functions, which have the same functional form and differ only in the parameter λk.

Each independent function can be expressed as a product of magnitude and angle. This

decomposition is helpful in the sequel, and is given by

Φ
(i)
L (ω) =

N∏

k=1

M
(i)
k (ω) exp

[
j

N∑

k=1

Θ
(i)
k (ω)

]
(4.16)

where the magnitude component function is

M
(i)
k (ω) =

[
1 + (2φikω)2

]−1/4
(4.17)

and the phase component function is

Θ
(i)
k (ω) = tan−1(2φikω)/2 − ω lnλk . (4.18)

We shall now follow the example of [Fukunaga and Krile 1969] and derive a general

relationship between the detection error probability of the Bayes detector and the charac-

teristic function of the log-likelihood ratio. The Pe for a Bayes detector can be expressed

in terms of the cumulative distribution function (CDF) of the log-likelihood function, eval-

uated at L = 0 for both hypotheses.
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The CDF of L(xn) under hypothesis Hi is defined as

F
(i)
L (L) =

∫ L

−∞

f
(i)
L (l) dl , i = 0, 1 . (4.19)

where f
(i)
L (L) is the PDF of L(xn). For the Bayes detector, we then have

Pe = p0P (ω1|H0) + p1P (ω0|H1)

=
1

2

[
(1 − F

(0)
L (0)) + F

(1)
L (0)

]
.

(4.20)

This is equal to the Pe of a Neyman-Pearson detector defined by Eq. (4.5) with decision

threshold η = 0. Hence, we need to find an expression for F
(i)
L (0), i ∈ [0, 1].

The Fourier transform property for integrals [Oppenheim et al. 1983] is given by the

transform pair ∫ t

−∞

x(τ) dτ =
X(0)

2
+

1

2π

∫ ∞

−∞

X(ω)

jω
ejωt dω . (4.21)

If x(t) is real-valued, the following symmetries hold [Oppenheim et al. 1983]: Re[X(ω)] =

Re[X(−ω)] and Im[X(ω)] = −Im[X(−ω)], where Re[ · ] and Im[ · ] denote real and imagi-

nary part, respectively. Odd parts of the integrand cancel under the doubly infinite integral

on the right hand side. After separating the integrand into even and odd functions and

inserting t = 0, Eq. (4.21) reduces to
∫ 0

−∞

x(τ) dτ =
X(0)

2
− 1

π

∫ ∞

0

Im{X(−ω)}
ω

dω . (4.22)

From the Fourier transform relation between characteristic function and PDF and Eq.

(4.21), we can now show that

F
(i)
L (L) =

Φ
(i)
L (0)

2
+

1

2π

∫ +∞

−∞

Φ
(i)
L (ω)

jω
exp(jωL) dω . (4.23)

and it follows from Eq. (4.22) that

F
(i)
L (0) =

1

2
+

1

π

∫ ∞

0

−Im[Φ
(i)
L (−ω)]

ω
dω (4.24)

where we use the general result that Φ(ω = 0) = 1, for any characteristic function. Using

the magnitude-phase decomposition of the characteristic function as defined in Eqs. (4.17)

and (4.18), Fukunaga and Krile show that

F
(i)
L (0) =

1

2
+

1

π

∫ ∞

0

∏N
k=1M

(i)
k (ω)

ω
sin

[
−

N∑

k=1

Θ
(i)
k (ω)

]
dω . (4.25)
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This is expression is inserted into Eq. (4.20) to obtain the detection error probability of

the Neyman-Pearson detector.

We see that evaluation of Pe requires numerical integration, and unfortunately, the

integration range is infinite. However, Fukunaga has shown that the magnitude component

functions M
(i)
k (ω) are monotonically decreasing functions of ω. Moreover, the integrand

contains the product of these N functions in the numerator, as well as the factor ω in the

denominator. Hence, the range of integration and the number of samples needed for the

integral to converge in numerical integration, is relatively small.

Note that the described Neyman-Pearson detector and likelihood ratio tests in general

can be implemented recursively [Salberg and Hanssen 1999b, Salberg and Hanssen 2000,

Basseville 1988]. These implementations yield suboptimal detectors, but have the advan-

tage that synchronisation information about the ARPSK sequence is provided implicitly.

In this thesis we have restricted ourselves to a study of detectors that operate on blocks

of data that are assumed to be synchronised. I.e., until further notice we assume that the

data vector xn contains samples produced by a single process generator alone.

4.4 Approximate Log-Likelihood Ratio Detection

We shall now pursue a detector which is motivated by the statistical distance measures

presented in section 3. Distance measures whose derivation is based on the likelihood

function approximation for AR-processes were first presented in the work of Itakura and

Saito [Itakura and Saito 1970, Itakura 1975]. These were designed within a framework of

speech recognition, where speech signals are segmented and fitted to different AR-models

describing different sounds.

In our problem setting, we have only two process models, and these are known exactly.

Hence, we need not estimate the model parameters. We further assume that the innovation

variances σ2
ε0 and σ2

ε1 have been chosen, such that they satisfy the power equalisation

constraint. These must also be taken into consideration in the detection problem, unlike in

speech recognition, where only the spectral shape is of general interest. As a consequence,

there are other requirements to a distance measure that can be used for detection in ARPSK

communications.

The detector that we seek is an approximation to the Neyman-Pearson detector defined
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in Eq. (4.8). The approximated log-likelihood ratio (ALR) was derived in section 2.10 as

L(xN
n ) =

N

2

(
1

σ2
ε0

α
T
0 R̂xα0 −

1

σ2
ε1

α
T
1 R̂xα1

)
+
N

2
ln

(
σ2

ε0

σ2
ε1

)
. (4.26)

In the optimal log-likelihood ratio test in Eq. (4.5), the exact log-likelihood ratio can be

replaced with the ALR. This yields the decision rule

1

σ2
ε0

α
T
0 R̂xα0 −

1

σ2
ε1

α
T
1 R̂xα1 + c

Ω1

≷
Ω0

0 (4.27)

where the constant c is the threshold ln(σ2
ε0/σ

2
ε1). This detector is also found in [Dickinson 1981].

We note that neither the ALR detector nor the Neyman-Pearson needs to know the exact

values of the driving noise variances, but only the ratio σ2
ε0/σ

2
ε1 which is determined by the

average power equalisation constraint and the parameter vectors a0 and a1.

To calculate the Pe of the ALR detector, we must determine the PDF of L(xN
n ). We

will from now on omit the scaling factor N/2 in Eq. (4.26). The data dependent part of

the ALR can then be written as

D =

N∑

n=p+1

{
xp+1

n
T
[

1

N − p

(
α0α

T
0

σ2
ε0

− α1α
T
1

σ2
ε1

)]
xp+1

n

}

=
1

N − p

N∑

n=p+1

(
xp+1

n
T
Axp+1

n

) (4.28)

where we define

A = A0 − A1 =
α0α

T
0

σ2
ε0

− α1α
T
1

σ2
ε1

. (4.29)

The individual quadratic forms Qn = xp+1
n

T
Axp+1

n in the summation follow a central χ2-like

distribution with p + 1 degrees of freedom. However, the {Qn} are correlated. Therefore,

on the above form, it is difficult to achieve a statistical description of D. This is why we

seek the alternative form

D = (xN
n )TPxN

n . (4.30)

This is a block formulation of the sum in Eq. (4.28). The matrix P is constructed by

letting matrix A slide down along the diagonal, summing up the N − p contributing block
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4.4: Approximate Log-Likelihood Ratio Detection

matrices and dividing by N − p.

P =
1

N − p




[
A 0

0 0

]
+




0 · · · 0
... A 0

0 0 0


+




0 0 · · · 0

0 0 · · · 0
...

... A 0

0 0 0 0




+ · · ·+
[

0 0

0 A

]



=
1

N − p
TA(A)

(4.31)

where TA : R(p+1)×(p+1) → RN×N is the construction operator that defines the transforma-

tion of a (p+ 1) × (p+ 1) matrix A into a N ×N matrix (N − p)P. The ALR is now on

the form L = D + c, where D is a quadratic form with known characteristic function

Φ
(i)
D (ω) =

∣∣∣I − 2jωPR(i)
x

∣∣∣
−1/2

: Hi . (4.32)

From Eqs. (4.29) and (4.31), it is easy to show that the matrix P is symmetric. Symmetry

is also a known property of correlation matrices of stationary processes [Haykin 1996]. It

follows that PR(i)
x = PR(i)

x

T
. Hence, the matrix product PR(i)

x is also symmetric, and the

characteristic function may be written on the simpler form [Scharf 1991]

Φ
(i)
D (ω) =

1
∏N

k=1(1 − 2jωλ
(i)
k )1/2

: Hi (4.33)

where the {λ(i)
k }N

k=1 are eigenvalues of PR(i)
x . The characteristic function of L follows

readily from the definition

Φ
(i)
L (ω) =

ejωc

∏N
k=1(1 − 2jωλ

(i)
k )1/2

: Hi (4.34)

and from the Fourier transform relation, the PDF of L(xn) is given by

f
(i)
L (L) =

1

2π

∫ ∞

−∞

ejω(L−c)

∏N
k=1(1 + 2jωλ

(i)
k )1/2

dω : Hi . (4.35)

The integral form of f
(i)
L (L) is of course not the most convenient representation, but it

is the best we can obtain, due to the complexity of L. However, the moments of L can

readily be obtained from Φ
(i)
L (ω). We have e.g. that

E{L|Hi} = tr
(
PR(i)

x

)
=

N∑

k=1

λ
(i)
k : Hi (4.36)
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and

Var{L|Hi} = 2tr
[
(PR(i)

x )2
]

: Hi . (4.37)

The Pe for the ALR detector can also be calculated quite conveniently from the procedure

that was derived for the Neyman-Pearson detector in section 4.3. For the ALR detector,

we have

Pe =
1

2

[
1 − F

(0)
L (0) + F

(1)
L (0)

]
. (4.38)

From Eq. (4.22) it follows that

F
(i)
L (0) =

Φ
(i)
L (0)

2
− 1

π

∫ ∞

0

Im{Φ(i)
L (ω)}
ω

dω

=
1

2
+

1

π

∫ ∞

0

Im

[
e−jωc

∏N
k=1(1 + 2jωλ

(i)
k )1/2

]
/ω dω : Hi .

(4.39)

Inserted into Eq. (4.38), this yields

Pe =
1

2
+

1

2π

∫ ∞

0

{
Im

[
e−jωc

∏N
k=1(1 + 2jωλ

(1)
k )1/2

]

−Im

[
e−jωc

∏N
k=1(1 + 2jωλ

(0)
k )1/2

]}
/ω dω .

(4.40)

The integral can be evaluated through numerical integration. We can also decompose

Φ
(i)
L (ω) into a magnitude component and a phase component, as was done with Φ

(i)
L (ω).

We then have

Φ
(i)
L (ω) =

N∏

k=1

M
(i)
k (ω) exp

[
j

N∑

k=1

Θ
(i)
k (ω)

]
(4.41)

where the magnitude component function

M
(i)
k (ω) = [1 + (2λ

(i)
k ω)2]−1/4 (4.42)

and the phase component function

Θ
(i)
k (ω) = tan−1(2λ

(i)
k ω)/2 + ωc/N . (4.43)

are seen to have a similar form to the respective counterparts defined in Eqs. (4.17) and

(4.18) for Φ
(i)
L (ω). With reference to [Fukunaga and Krile 1969], the CDF of Φ

(i)
L (ω) eval-

uated at ω = 0 can now be written as

F
(i)
L (0) =

1

2
+

1

π

∫ ∞

0

∏N
k=1[1 + (2λ

(i)
k ω)2]−1/4

ω
sin

{
−

N∑

k=1

[
tan−1(2λ

(i)
k ω)

2
+
ωc

N

]}
dω .

(4.44)
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By comparison of the exact and approximated log-likelihood ratios in Eqs. (4.6) and (4.26),

respectively, we further see that

xT
n

{[
R(0)

x

]−1 −
[
R(1)

x

]−1
}

xn + ln
|R(0)

x |
|R(1)

x |
' N

{
xT

n [P0 − P1]xn + ln

(
σ2

ε0

σ2
ε1

)}
(4.45)

where the substitution P = P0−P1 is defined by Pi = TA(Ai)/(N−p), i ∈ [0, 1]. We note

that TA(Ai) has only 2p + 1 non-zero diagonals and that the entries on those diagonals

do not have constant value. I.e., the matrices P0 and P1 are not Toeplitz like the inverse

correlation matrices on the left hand side [Haykin 1996].

4.5 Detection with Additive White Noise

We shall now examine how additive white Gaussian noise affects the performance of the

receiver. Assume that the transmitted ARPSK signal is contaminated by white, Gaussian

and zero-mean observation noise v(n) ∼ N [0, σ2
v ]. The received signal is modelled as

y(n) = x(n) + v(n)

= −
p∑

k=1

akx(n− k) + ε(n) + v(n).
(4.46)

Define the observation noise vector of N samples up to and including time n as vn =

[v(n−N + 1), . . . , v(n)]T . The received data vector is then

yn = xn + vn (4.47)

From the assumptions on v(n), we know that yn is also zero-mean and Gaussian, with

correlation matrix

R(i)
y = R(i)

x + Rv

= R(i)
x + σ2

vI : under Hi .
(4.48)

The variance of the received signal is σ2
y = σ2

x + σ2
v and the power spectral density is

S(i)
yy (ω) = S(i)

xx(ω) + Svv(ω)

=
σ2

εi

|A(i)(ω)|2 + σ2
v : under Hi .

(4.49)
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From Eq. (4.46) we can derive that

y(n) = −
p∑

k=1

ak[x(n− k) + v(n− k)] +

p∑

k=0

akv(n− k) + ε(n)

= −
p∑

k=1

aky(n− k) +

p∑

k=0

akv(n− k) + ε(n)

(4.50)

where a0 = 1. The additive noise thus changes the process model from an autoregres-

sive model (AR(p)) to an autoregressive-moving average with exogeneous input model

(ARMAX(p,p,1)) [Box et al. 1994]. This result has an impact on the performance of the

proposed detectors.

The Neyman-Pearson detector is model independent, and will still be optimum in a

minimum detection error probability sense, provided that it knows the exact correlation

matrices of the processes with noise. This requires knowledge of the noise variance, infor-

mation which is not directly available. Estimation of σ2
v deteriorates the performance of

the Neyman-Pearson detector.

The approximate likelihood ratio detector does not need any information about the

exact autocorrelation functions of the transmitted processes, which is an advantage. On

the other hand, it is designed specifically for detection of AR-processes, and does not take

the model change into account. Thus, the accuracy of the ALR detector decreases as

the noise increases and the contribution of the moving average (MA) part of the process

becomes more significant.

4.6 Estimation of Additive White Noise Variance

In order to use the Neyman-Pearson detector, we need to estimate the variance σ2
v of the

additive white noise (In the following, we do not make the assumption that the noise is

Gaussian). Since the processes x(n) and v(n) are uncorrelated, we have from Eq. (4.46)

that

σ2
y = σ2

x + σ2
v (4.51)

which is equivalent to

σ2
v = ryy(0) − rxx(0) . (4.52)

Because of the average process power equalisation constraint, we have r
(0)
xx (0) = r

(1)
xx (0),

where σ2
xi

= r
(i)
xx(0) denotes the variance or average power of process Xi, i ∈ [0, 1]. Hence,
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the average power of the transmission processes with additive noise are also equal under

the two hypotheses, r
(0)
yy (0) = r

(1)
yy (0). Since rxx(0) is known a priori, the additive noise

variance can be estimated from

σ̂2
v = r̂yy(0) − rxx(0) . (4.53)

With the ACF estimator given in Eq. (2.45), this becomes

σ̂2
v =

1

N

N∑

n=1

y2(n) − rxx(0) . (4.54)

From this equation, an estimate of σ2
v is obtained at each receival of a source bit, represented

by the noisy process realisation yn. If the additive noise is stationary, then we can average

over several such estimates to obtain an improved estimate for every bit that is received.

The estimate average can be computed recursively as

σ̂2
v(m) =

(
m− 1

m

)
σ̂2

v(m− 1) +

(
1

m

)[
1

N

N∑

n=1

y2(n) − rxx(0)

]
(4.55)

where σ̂2
v(m) is the averaged estimate obtained at the receival of the mth source bit. From

Eq. (4.54), we find that E{σ̂2
v} = σ2

v , so the estimator is unbiased. From Eq. (4.53) we

further see that the variance of σ̂2
v is equal to the variance of r̂yy(0), which is given by

[Kay 1993] as

Var
{
σ̂2

v

}
=

2

N2

∞∑

m=−∞

∞∑

n=−∞

r2
yy(m− n) . (4.56)

Since limN→∞ Var
{
σ̂2

v

}
= 0, the estimator is consistent [Scharf 1991]. Hence, if the noise

variance can be estimated recursively for a long sequence of received source bits, the per-

formance of the suboptimal Neyman-Pearson detector (with noise variance estimation) will

approach the performance of an ideal Neyman-Pearson detector (where the noise variance

is assumed known), which cannot be realised.

If the additive noise is non-stationary, the noise variance can be estimated by a Kalman

filter [Scharf 1991, Haykin 1996] that tracks the changes of the time-varying environment.

The Kalman filter estimate is optimal in minimum mean squared error sense for Gaussian

processes, both when the noise is stationary and non-stationary. Other estimators with

different degree of memory can be designed using various window functions, but we shall

use the simple estimator defined in Eq. (4.54).
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Figure 4.1: Detection error probabilities Pe(σ̂2
v+

) (left panel) and Pe(ŜNR) (right panel) as a

function of the non-negative estimate of σ2
v and the corresponding SNR estimate (measured

in dB). The ARPSK processes have parameter vectors a0 = [0.4, 0.2]T , a1 = [0.4,−0.2]T

and pulse length N = 32. The true σ2
v = 0.1172, which corresponds to SNR = 10.

There is one problem associated with practical use of the noise estimate in Eq. (4.53).

The estimator might actually give negative values, which has no physical meaning. There-

fore, we replace Eq. (4.53) with the non-negative measure

σ̂2
v+

=
1

2

(
σ̂2

v + |σ̂2
v |
)

=
1

2

[
(r̂yy(0) − rxx(0)) + |r̂yy(0) − rxx(0)|

]
.

(4.57)

This estimator is implemented in the Neyman-Pearson detector.

It is not trivial to evaluate the effect of variance estimation on the detection error

probability, but the exact Pe can be found. The estimator σ̂2
v+

is a stochastic variable

which takes on different values for different process realisations. One specific estimate

value can be produced by many different process realisations, but it is not certain that

the same set of realisations are all correctly classified, regardless of which hypotheses they

represent.

Let Pe(σ̂2
v+

) be the probability that a process realisation that produces the estimate

σ̂2
v+

is wrongly classified. Hence, the overall detection error probability is found as

Pe = E{Pe(σ̂2
v+

)} =

∫ ∞

0

Pe(σ̂2
v+

)fcσ2
v+

(σ̂2
v+

) dσ̂2
v+

(4.58)
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where fcσ2
v+

(σ̂2
v+

) is the PDF of the modified estimator σ̂2
v+

. Hence, Pe(σ̂2
v+

) is the detection

error probability associated with the decision rule

xT
n

{[
R̂(0)

y

]−1

−
[
R̂(1)

y

]−1
}

xn

Ω1

≷
Ω0

ln
|R̂(1)

y |
|R̂(0)

y |
(4.59)

where R̂
(i)
y = R

(i)
x + σ̂2

v+
I, i ∈ [0, 1]. An example of such a Pe(σ̂2

v+
) is shown in figure 4.1.

The ARPSK communications system uses two AR(2)-processes with parameter vectors

a0 = [0.4, 0.2]T and a1 = [0.4,−0.2]T . We have a pulse length of N = 32 and SNR = 10,

which corresponds to an additive noise variance of σ2
v = 0.1172 for σ2

ε0
= 1.

The Pe(σ̂2
v+

) is displayed both as a function of the estimate σ̂2
v+

(left panel) and as a

function of the estimated SNR (right panel), given by ŜNR = 10 log10(σ
2
x/σ̂

2
v+

). We see

that Pe(σ̂2
v+

) and P (ŜNR) are convex functions, and that their minima naturally occur at

the true value of the σ2
v and the SNR, respectively.

The PDF of σ̂2
v+

can be found by considering σ̂2
y = r̂yy(0). The noisy process y(n) is

zero-mean and Gaussian with σ2
y = σ2

x + σ2
v . The estimator σ̂2

y can be seen as a scaled

sum of N quadratic terms, S = (σ2
y/N)

∑N
n=1 s

2(n), where s(n) is standardised Gaussian

(s(n) ∼ N [0, 1]). The sum S is known to follow the χ2 PDF given by Eq. (2.5). We

also need the result that for a linear transformation Y = aX + b of a continuous random

variable X, the PDF of Y is [Larsen and Marx 1986]

fY (y) =
1

|a|fX

(
y − b

a

)
(4.60)

where a and b are real constants and a 6= 0. Together with Eq. (2.5), this is used to show

that σ̂2
y has a χ2-like PDF given by

f
σ̂2

y
(σ̂2

y) =
1

Γ(N/2)σ̂2
y

(
Nσ̂2

y

2σ2
y

)N/2

exp

(
−Nσ̂

2
y

2σ2
y

)
. (4.61)

From this expression, we can show that E{σ̂2
y} = σ2

y (which we already know) and

V ar{σ̂2
y} = 2σ4

y/N . The estimators σ̂2
y and σ̂2

v have equal variance and differ only in

the mean value by the constant σ2
x. Hence, it follows from Eq. (4.60) that

f
σ̂2

v
(σ̂2

v) =
1

Γ(N/2)(σ̂2
v + σ2

x)

[
N(σ̂2

v + σ2
x)

2σ2
y

]N/2

exp

[
−N(σ̂2

v + σ2
x)

2σ2
y

]
. (4.62)
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Figure 4.2: The PDF fcσ2
v+

(σ̂2
v+

) of the non-negative estimator of σ2
v (left panel) and the

integrand Pe(σ̂2
v+

)fcσ2
v+

(σ̂2
v+

) of the integral defining the total Pe for a Neyman-Pearson

detector that uses σ̂2
v+

to estimate σ2
v (right panel). The ARPSK processes have parameter

vectors a0 = [0.4, 0.2]T , a1 = [0.4,−0.2]T , a pulse length of N = 32 and SNR = 10.

The modified estimator σ̂2
v+

maps all negative values of σ̂2
v to zero. This creates a Dirac

delta function at σ̂2
v+

= 0 in the PDF of σ̂2
v+

. Hence, we have

fcσ2
v+

(σ̂2
v+

) =

{
δ(σ̂2

v+)
∫ 0

−σ2
x
f

σ̂2
v
(σ̂2

v) dσ̂
2
v , σ̂2

v+ = 0

f
σ̂2

v
(σ̂2

v+
) , σ̂2

v+ > 0
. (4.63)

This expression is inserted into Eq. (4.58) together with Pe(σ̂2
v+), which can be calculated

from the same equations as the Pe for the ALR detector, that is Eqs. (4.38) and (4.44).

In Eq. (4.44), we only need to substitute the constant c with ς = ln(|R̂(0)
y |/|R̂(1)

y |) and

the eigenvalues {λ(i)
k }N

k=1 with the set {λ̃(i)
k }N

k=1 obtained from the generalised eigenvalue

problem [
(R̂(0)

y )−1 − (R̂(1)
y )−1

]
R(i)

y uk = λ̃
(i)
k uk : Hi . (4.64)

The PDF of the non-negative additive noise variance estimator, fcσ2
v+

(σ̂2
v+

), is shown in

the left panel of figure 4.2. The processes and parameters used in the example are the same

as for figure 4.1. We observe the previously described delta function at σ̂2
v+

= 0, while the

rest of the function follows the χ2-like PDF of fcσ2
v
(σ̂2

v). The maximum of a χ2
N PDF occurs

at N−2. From what we know about the χ2
N PDF and linear transformations, we can show

that the maximum of fcσ2
v+

(σ̂2
v+

) occurs at [(N −2)σ2
v −σ2

x]/N = 0.0732, which is confirmed
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4.7: Detection with Synchronisation Error

by the figure.

When fcσ2
v+

(σ̂2
v+

) is multiplied with P (σ̂2
v+

), we get the integrand of the integral in

Eq. (4.58). This product is plotted in the right panel of figure 4.2. The plot shows how

different values of σ̂2
v+

contribute to the total Pe for the Neyman-Pearson detector that

estimates the additive noise variance. In this example we have Pe = 0.1483, while the ideal

Neyman-Pearson detector (assuming known additive noise variance) provides Pe = 0.1394.

In section 6, the Pe derived assuming known σ2
v is used as a bound for detector perfor-

mance and will be compared with theoretical results and simulation results obtained when

σ2
v is estimated.

The requirement that σ̂2
v+

should be calculated from the samples of only one source

symbol is conservative, since this asserts that the aditive white noise varies very fast. In

practice, it is more reasonable to assume that the additive noise is piecewise stationary,

such that the noise variance estimates can be averaged over the samples of M symbols.

The variance of σ̂2
v+

will then decrease by a factor M . The appropriate choice of M will

depend on the channel, and must be subject to a test for each specific application.

4.7 Detection with Synchronisation Error

Before efficient decoding of the ARPSK communications signal can take place, it is im-

perative that we obtain perfect synchronisation at the receiver [Meyr et al. 1998]. From

the discrete stream of received samples, we have to extract the segments that correspond

to distinct process realisations. That is, we have to identify the discrete time instants

n−N, n− 2N, . . . when the initial samples x(n− kN) of the data vector xn is received.

Synchronisation algorithms for ARPSK communications will not be addressed in this

thesis. In the previous sections, we have assumed that perfect synchronisation has already

been achieved. We will now assess the effect of synchronisation errors on the performance

of the Neyman-Pearson detector. In the analysis, we assume zero additive noise.

Let the incorrectly synchronised data vector be denoted by

xn,ds
= [x(i)(ds + 1), . . . , x(i)(N), x(j)(1), . . . , x(j)(ds)]

T (4.65)

where ds is the synchronisation delay measured in sample intervals T/N . Vector element

x(i)(n) denotes the nth element of a realisation of process Xi. The data vector consists of
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N − ds samples of process Xi and ds samples of process Xj, when source bit i is followed

by source bit j and i, j ∈ [0, 1].

The cross-correlation between two samples from consecutive process realisations repre-

senting the source bits i and j is

E{x(i)(n)x(j)(m)} =

{
rxx(N +m− n) : i = j

0 : i 6= j
. (4.66)

This result occurs since the transmitter consists of two independent signal generators which

are continuously producing streams of the respective process realisations. If two consecutive

process source bits are equal, then the generator will use the last samples of the first bit

realisation to generate the first p samples of the second bit representation. Hence, in this

case, the true correlation matrix of xn,ds
is

R
(i,j,ds)
x,N = R(i)

x : i = j (4.67)

where R
(i,j,ds)
x,N is superscripted by source bits i and j and the synchronisation delay ds,

while the second subscript denotes the dimension of the square matrix.

If, on the other hand, the consecutive source bits are different, then there is no de-

pendence between the samples of the first and and the second bit realisation, since the

transmitter switches abruptly from one process generator to the other. The correlation

matrix of the unsynchronised data vector is thus given by

R
(i,j,ds)
x,N =

[
R

(i)
x,N−ds

0

0 R
(j)
x,ds

]
: i 6= j . (4.68)

Let P
(i,j)
e (ds) denote the detection error probability for the incorrectly synchronised process

realisation defined in Eq. (4.65). The total detection error probability for a synchronisation

delay ds is then given by

Pe(ds) =
1∑

i=0

1∑

j=0

pijP
(i,j)
e (ds) (4.69)

where pij = 1/4 is the probability that xn contains samples representing source symbol

i, followed by samples representing source symbol j. When i = j, we have P
(i,j)
e (ds) =

P
(i,j)
e (0), which is the Pe of an ideal Neyman-Pearson detector under Hi. I.e., the detection

error probability of an incorrectly synchronised receiver is equal to that of an perfectly

synchronised receiver, as long as only one source symbol is transmitted.
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In general, all the P
(i,j)
e (ds) can be calculated from the corresponding characteristic

functions Φ
(i,j,ds)
L (ω), defined as

Φ
(i,j,ds)
L (ω) = |I − 2jω

[
(R(0)

x )−1 − (R(1)
x )−1

]
R

(i,j,ds)
x,N |−1/2 ejωζ

=

N∏

k=1

[1 + (2ωλ
(i,j)
k )2]−1/4 exp

{
j

N∑

k=1

[
1

2
tan−1(2ωλ

(i,j)
k ) +

ω(−ζ)
N

]} (4.70)

where the eigenvalues {λ(i,j)
k }N

k=1 are obtained from the generalised eigenvalue problem

[
(R(0)

x )−1 − (R(1)
x )−1

]
R

(i,j,ds)
x,N uk = λ

(i,j)
k uk . (4.71)

and the constant ζ = ln(|R(1)
x |/|R(0)

x |) has been previously defined as the threshold of the

Neyman-Pearson detector. The relation between P
(i,j)
e (ds) and Φ

(i,j,ds)
L (ω) is given by

P (i,j)
e (ds) =

{
1 − F (i,j,ds)(0) : i = 0

F (i,j,ds)(0) : i = 1
(4.72)

where ds ≤ 16. If ds > 16, then the conditions (i = 0 and i = 1) on the right-hand side of

the above equation should be switched. The CDF F (i,j)(0) can be calculated from

F (i,j,ds)(0) =
1

2
+

1

2π

∫ ∞

−∞

−Im[Φ
(i,j,ds)
L (−ω)]

ω
dω (4.73)

or the simplified expression that can be derived in analogy with Eq. (4.25). The detection

error probability of an unsynchronised ALR detector can be calculted from the exact

same procedure, only substituting the eigenvalues {λ(i,j)
k }N

k=1 with those obtained from the

general eigenvalue problem

PR
(i,j,ds)
x,N uk = λ

(i,j)
k uk (4.74)

and the constant ζ with −c = ln(σ2
ε1/σ

2
ε0).

4.8 A Unifying Framework

We realise that the detection error probability can be calculated from similar procedures

in all the cases that have been studied. This is possible because all the detectors can be

written as the general expression

Q = zTMz + C (4.75)
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where z is the data vector of received process samples, without saying anything about noise

or synchronisation, M is a weighting matrix and C is a threshold constant. The different

cases differ by M, C and the correlation matrices R
(i)
z , i ∈ [0, 1] of z. The detection error

probability can be written as a function of the pulse length N and the eigenvalues {λ(i)
k }N

K=1

of the generalised eigenvalue problem

MR(i)
z uk = λ

(i)
k uk : Hi . (4.76)

We have the detection error probability

Pe =
1

2

[
1 − F

(0)
Q (0) + F

(1)
Q (0)

]
(4.77)

where the cumulative distribution functions F
(i)
Q (0) are calculated from

F
(i)
Q (0) =

1

2
+

1

π

∫ ∞

0

∏N
k=1[1 + (2λ

(i)
k ω)2]−1/4

ω
·

sin

{
−

N∑

k=1

[
tan−1(2λ

(i)
k ω)

2
+
ωC

N

]}
dω .

(4.78)

Table 4.1 lists the appropriate expressions used in calculations of the Pe for: (i) The

ideal Neyman-Pearson (NP) detector with zero additive noise, (ii) the ideal NP detector

with non-zero additive noise, (iii) the suboptimal NP detector implemented with additive

white noise estimator σ̂2
v , (iv) the ideal NP detector with synchronisation error, (v) the

ALR detector and (vi) the ALR detector with synchronisation error.

However, three of the cases include additional requirements to how Pe is calculated. In

case (iii), we must take the expectation value of Pe(σ̂2
v) with respect to the estimate σ̂2

v to

obtain the final Pe value. In case (iv) and (vi), Pe must be calculated for the two values

of the process index j ∈ [0, 1] (cf. the true correlation matrix Rz = R
(i,j,ds)
y ), and then

averaged.
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Detector M C R
(i)
z

(i) NP(σ2
v = 0) [R

(0)
x ]−1 − [R

(1)
x ]−1 ln

(
|R

(0)
x |

|R
(1)
x |

)
R

(i)
x

(ii) NP(σ2
v 6= 0) [R

(0)
y ]−1 − [R

(1)
y ]−1 ln

(
|R

(0)
y |

|R
(1)
y |

)
R

(i)
y

(iii) NP(σ̂2
v) [R

(0)
x + σ̂2

vI]
−1 − [R

(1)
x + σ̂2

vI]
−1 ln

(
|R

(0)
x +cσ2

vI|

|R
(1)
x +cσ2

vI|

)
R

(i)
y

(iv) NP(ds) [R
(0)
y ]−1 − [R

(1)
y ]−1 ln

(
|R

(0)
y |

|R
(1)
y |

)
R

(i,j,ds)
y

(v) ALR 1
N−p

TA

(
α0α

T
0

σ2
ε0

− α1α
T
1

σ2
ε1

)
ln
(

σ2
ε0

σ2
ε1

)
R

(i)
y

(vi) ALR(ds)
1

N−p
TA

(
α0α

T
0

σ2
ε0

− α1α
T
1

σ2
ε1

)
ln
(

σ2
ε0

σ2
ε1

)
R

(i,j,ds)
y

Table 4.1: Summary of calculation procedures for detection error probabilities.
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Chapter 5

Selection of Transmission Processes

It is still a somwhat open question how the parameters of the autoregressive transmission

processes representing bit ’0’ and bit ’1’ should be chosen. It is difficult to design a cost

function that absorbes all logical constraints on the process pair, and it is even harder to

find one that can be optimised with respect to the AR-parameters and the model order.

Even if the problem is simplified and subdivided into several stages, many compromises

must be made. We initiate the discussion by launching the following criteria that the

transmission processes should fulfill.

5.1 Selection Criteria

(i) The processes should provide low detection error probability Pe, in order to meet the

demands of a high performance communications system.

(ii) The distance between the processes should be short, in some statistical sense, so that

eavesdropping is made as difficult as possible for unauthorised listeners.

(iii) The processes should have similar spectral characteristics, again motivated by secu-

rity, which is the main objective of the SPSK communications approach.

(iv) The processes should offer the highest possible resistance to additive white noise.

(v) The processes should offer the highest possible resistance to tone jamming and in-

tensional interference from a hostile source.
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Some of these criteria conflict, as will be demonstrated shortly. Despite this fact, a selection

procedure evolves as we go along and examine and comment on the criteria in more detail.

Criterion (i) is apparently an obvious statement, but the practical significance is that a

target Pe must be specified. Since Pe depends strongly on the pulse length N , and also in

some way on the process order p, these parameters must be chosen as the very first step.

After that, the desired Pe at a given signal-to-noise ratio (SNR) must be decided. The

SNR (measured in dB) is defined as

SNR = 10 log10

(
σ2

x

σ2
v

)
. (5.1)

A natural choice is to specify Pe at σ2
v = 0 (SNR = ∞). Also remark that the choice

of p and N may be affected by practical constraints. The pulse length N determines the

data rate, while both p and N affect the computational complexity of the transmitter and

receiver.

Criterion (i) conflicts with criterion (ii) and (iii), and this illustrates the major com-

promise that has to made in SPSK communications, the trade-off between performance

and security. Processes should be as similar as possible, to avoid eavesdropping, but not

indistinguishable for the authorised receiver. However, security is the first priority and this

should direct the decision when Pe is specified in the first place.

As soon as Pe is specified, the choices of process pairs are infinite in number. Therefore,

one of the processes must be fixed. Criterion (v) can now be used in the selection. An

appropriate wide-band process which utilizes the allocated bandwidth to maximum extent

should be used. The PSD of two possible choices are shown in figure 5.1. The parameter

vectors are a0 = [0.4, 0.2]T for AR(2)-process in the left panel and a0 = [0.4, 0.3, 0.2]T for

the AR(3)-process in the right panel. The spectra have highpass characteristics, but the

bandwidth is relatively wide.

When process ’0’ is selected, the other process must be chosen from a surface in p-

dimensional parameter space. This is the surface of p-dimensional parameter vectors that

provide the specified Pe(N) for the decided pulse length N . The surface is closed, as long

as it is not intersected by the region of parameter space which corresponds to unstable

processes.

The described parameter surfaces are visualised by examples in figure 5.2 and 5.3. Pa-

rameter vector a0 is fixed in both cases. For the AR(2)-process, the set of allowed parameter

vectors at a specified Pe(N): {a1|a0, Pe(N)}p=2, is a curve in the two-dimensional parame-
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Figure 5.1: Power spectral densities of an AR(2)-process with parameter vector a0 =

[0.4, 0.2]T (left) and an AR(3)-process with parameter vector a0 = [0.4, 0, 3, 0.2]T (right)

that can be used as transmission process X0.

ter plane. If the first order parameter of the AR(3)-process is fixed, then {a1|a0, Pe(N)}p=3

is also reduced to a two-dimensional curve. But in general, {a1|a0, Pe(N)}p=3 has dimension

three, as shown in figure 5.3.

All curves are produced by a computer routine which searches the parameter space for

a parameter vector

a1(θ) = [a
(0)
1 + rθ cos θ, a

(0)
2 + rθ sin θ, a

(0)
3 , . . . , a(0)

p ]T , θ ∈ Θ (5.2)

that produce the target Pe with a maximum allowed deviation of Pe/100 for the predeter-

mined pulse length N . In the examples in figure 5.2 and 5.3, N=64. The two-dimensional

search space is defined by a set of direction angles Θ = [0, 2π/40, . . . , 2π] (40 sample val-

ues), after all but two AR-parameters are fixed. The search is carried out through variation

of rθ at a fixed θ. For evaluation of Pe, the theoretical expression for the Neyman-Pearson

detector without additive noise is chosen, since this defines the lower bound of Pe (optimal

detector with respect to Pe).

In figure 5.2, the innermost curve in both panels is the equiprobability curve for Pe =

10−1. The Pe is then decreased in steps of 10−1, and the distance between the points on

a curve and a0 naturally increases with decreasing Pe, but at different rate for different

direction angles θ in the parameter plane. The shape of the equiprobability curve is seen

to converge towards a characteristic shape for the chosen a0, which can be defined as the
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Figure 5.2: Equiprobability curves for Pe for the AR(2)-process a0 = [0.4, 0.2] (upper

panel) and the AR(3)-process a0 = [0.4, 0.3, 0.2] (lower panel). For the AR(3)-process, the

first AR-parameter is fixed at a
(0)
1 = 0.4. Curves are plotted for Pe = [10−1, . . . , 10−6] in

steps of 10−1, for a pulse length of N=64.
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Figure 5.3: Cross-sections of the equiprobability surface for Pe for the AR(3)-process with

parameter vector a0 = [0.4, 0.3, 0.2], shown at different angles. All vectors a1 on the surface

that is indicated by the cross-sections, satisfy the target Pe = 10−3 for a pulse length of

N=64. Cross-sections are obtained for fixed values of the parameter a
(0)
1 .
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shape of the equiprobability curve for Pe → 0.

With decreasing Pe, we also see that the shape of the equiprobability curves deviate

more and more from circular, which would be the shape of curves defining equal Euclidean

distance from a0. This illustrates a point that was made in section 3.1: The Euclidean

distance in the AR-parameter plane is not a good statistical distance measure, and it

becomes worse with decreasing Pe.

In figure 5.3, the equiprobability surface in the 3-dimensional parameter space is in-

dicated by cross-sections. The cross-sections are equiprobability curves obtained in a 2-

dimensional parameter space, after the parameter a
(0)
1 has been fixed. All curves are thus

calculated for the same target Pe = 10−3. The indicated surface is shown at three different

angles as an aid in the visualisation of the shape of the object, which is impossible to

describe in terms of simple geometry.

5.2 Robustness to Additive White Noise

According to criterion (iv), the processes should also be robust to additive noise. On a

given surface in p-dimensional space, all parameter vectors provide the prescribed Pe at

SNR = ∞, but the same processes will produce non-uniform values of Pe at other noise

levels. Thus, consulting criterion (iv) alone, the process with the lowest Pe at non-zero

noise levels should be chosen.

This is not so simple in practice, though. Unfortunately, processes with good noise

resistance properties are observed to be those whose spectral maximum (peak frequency

in the PSD) has the largest separation from the spectral maximum of the fixed process

X0. This can be seen from figure 5.4, where Pe is plotted at non-zero noise levels for two

sets of processes, {a1|a0, Pe(N)}p=2 and {a1|a0, Pe(N)}p=3, which are obtained with the

AR(2)-process a0 = [0.4, 0.2]T and the AR(3)-process a0 = [0.4, 0.3, 0.2]T that were used

in the examples of figure 5.2 and 5.3, respectively. In both cases, we choose N = 64 and

target Pe(N) = 10−4. For the AR(3)-process, the parameter a
(1)
1 = 0.4 is fixed.

In the figure, Pe is displayed as a function of the direction angle θ in the two-dimensional

search space. First of all, we see that there is a relatively large variation in Pe(θ), except

for at SNR = 40, where the noise is negligible. More interestingly, we note that for the

AR(2)-processes, the maximum of Pe(θ) is found for the θ that provides an a1(θ) such that
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Figure 5.4: Detection error probability calculated at different noise levels for the AR(2)-

processes with parameter vectors a1(θ) and a0 = [0.4, 0.2]T (left), and for the AR(3)-

processes with a0 = [0.4, 0.3, 0.2]T and a1(θ), where a
(1)
3 = 0.2 is fixed. In both cases, the

set a1(θ) is chosen such that Pe(θ) = 10−4 at zero additive noise.

the maxima of S
(0)
yy (ω) and S

(1)
yy (ω, θ) match. That is

arg{max
θ

[Pe(θ)]} =
{
θ : arg{max

ω
[S(0)

yy (ω)]} = arg{max
ω

[S(1)
yy (ω)]}

}
(5.3)

However, this is not the exact case for the AR(3)-processes, that have more complex

spectra. Note for instance, that the PSD of process X0 have two peaks of almost the same

magnitude, as seen from the right panel of figure 5.1). A similar type of behaviour to that

of the AR(2)-processes is indeed observed, but we cannot be as firm about the location the

maxima of Pe(θ) as in the former case.

From the observations, we conclude that there is a conflict between criteria (iii) and

(iv). If the peak frequencies of the processes are widely separated, the ARPSK modulation

technique turns into a coarse frequency shift keying (FSK) technique, which means that

security is compromised. If white noise resistance is associated with this hazard, then

criterion (iv) must be rejected from the process selection procedure.

The FSK interpretation gives an intuitive feel of why and how the white noise resistance

varies with different process choices. From classical communications we know that the Pe

of a communications system with additive noise decreases with increasing distance between

two FSK carriers [Gibson 1993]. It is difficult to give an exact mathematical explanation of

the observed behaviour for ARPSK communications. Some remarks can be made though,
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Figure 5.5: Cosh distance between the AR(2)-processes with parameter vectors a0 =

[0.4, 0.2]T and a1(θ) (left), and between the AR(3)-processes with a0 = [0.4, 0.3, 0.2]T and

a1(θ) (right). In both cases, the set a1(θ) is chosen such that Pe(θ) = 10−4 at zero additive

noise.

with aid of the dCOSH distance measure, which is repeated here for convenience

dCOSH(S0, S1) =
1

2π

∫ π

−π

(
S

(1)
xx (ω) − S

(0)
xx (ω)

)2

S
(0)
xx (ω)S

(1)
xx (ω)

dω . (5.4)

From the derivation in section 3.6, we know that the dCOSH measure serves as an

approximation to Pe and is a measure of how the log-likelihood ratio distinguishes between

the transmission processes [Scharf 1991]. It can tell something about what features that

are important for discrimination.

Figure 5.5 shows dCOSH(S0, S1(θ)) for different a1(θ) at zero noise. The function is not

constant like Pe(θ), since it is not a perfect representation of latter. Nevertheless, we know

that the Jeffreys divergence dJ is a convex function of the likelihood ratio [Kailath 1967],

a result which is valid for dCOSH as well, since dCOSH is an asympotic derivative of dJ .

Next consider the normalised measure

dCOSH(S0, S1|σ2
v)

dCOSH(S0, S1)
=

∫ π

−π

(
S

(1)
yy (ω) − S

(0)
yy (ω)

)2

/S
(0)
yy (ω)S

(1)
yy (ω) dω

∫ π

−π

(
S

(1)
xx (ω) − S

(0)
xx (ω)

)2

/S
(0)
xx (ω)S

(1)
xx (ω) dω

=

∫ π

−π
D(ω)G(ω) dω∫ π

−π
D(ω) dω

(5.5)
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Figure 5.6: Inverse normalised Cosh distance dCOSH(θ)/dCOSH(θ|σ2
v) of AR(2)-processes

a1(θ) that satisfy Pe = 10−4 for a0 = [0.4, 0.2]T (left) and of AR(3)-processes that satisfy

Pe = 10−4 for a0 = [0.4, 0.3, 0.2]T with a
(1)
1 = 0.4 fixed (right) with SNR = 10.

where dCOSH(S0, S1|σ2
v) = dCOSH(S

(0)
yy (ω), S

(1)
yy (ω)), D(ω) is the dispersion spectral density

from Eq. (3.25) (the integrand of the Cosh distance) and

G(ω) =
S

(0)
xx (ω)S

(1)
xx (ω)

S
(0)
yy (ω)S

(1)
yy (ω)

(5.6)

with the power spectral densities of processes in noise given by S
(0)
yy (ω) and S

(1)
yy (ω). The

Cosh distance at non-zero noise is dCOSH(θ|σ2
v) , dCOSH(S

(0)
yy (ω), S

(1)
yy (ω, θ)). We attempt

to normalise this function by dD(θ) , dD(S
(0)
xx (ω), S

(1)
xx (ω, θ)) to correct the effects of the

imperfect mapping from Pe to dD.

It is found as a purely empirical result that the inverse normalised Cosh distance (INCD)

dD(θ)/dD(θ|σ2
v) has the same trends as the noise resistance characteristic Pe(θ|σ2

v). This

is seen by comparison of figure 5.6 with figure 5.4. The inversion is done because distance

measures are in general inversely proportional to Pe. From comparing the corresponding

curves of the two figures at low SNR values, the INCD could appear to be a monotone

function of Pe(θ|σ2
v). However, this is counterproved by the curves of the AR(3)-process at

SNR = 0, since dD(θ)/dD(θ|σ2
v) has a different maximum from Pe(θ|σ2

v).

The INCD has a simple analytic form in the spectral domain, which suggest that it

could be a tool when we want to assess properties of processes in noise. It is also less

computationally expensive than the Pe. Still, it is difficult to draw any consise conclusions
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from Eq. (5.5) about the relation between process spectra and resistance to additive white

noise. We are left with the remarks that noise resistance depends to some degree on the

distance between the spectral maxima of the transmission processes. Moreover, the FSK

analogy has shown us that resistance to additive white noise cannot be used a selection

criterion.

5.3 Similarity in the Spectral Domain

The remaining criterion which has not been examined properly is (iii). Hence, similarity in

the spectral domain is singled out as the key point in process selection. There are different

ways of implementing this requirement:

• We can minimise the spectral difference between the processes by minimising one

of the presented spectral distance measures, i.e. the Cosh distance dD or the RMS

log-spectral distance measure d2.

• We may demand that the spectral difference should be evenly distributed over the

total bandwidth, such that features like a distinct difference at a certain frequency

or separation of the process maxima, do not easily reveal process identities for eaves-

droppers. This can be done by minimising the peak log-spectral difference d∞ or

minimising the peak dispersion, defined as maxD(ω). Another idea is to minimise a

flatness index [Kay 1979], calculated on basis of the dispersion spectral density D(ω)

or the squared log-spectral difference |V (ω)|2.

Experience suggests that the first alternative is the best solution. We choose dCOSH as the

preferred spectral distance measure with the following argument.

The logarithmic difference in the log-spectral difference measures (or LP -norms) is in-

troduced by convention to incorporate the knowledge that spectral differences should be

more weighted at low power than at high power. The distance measure often appears in

speech processing, with the motivation that perceived loudness of an acoustic signal is

approximately logarithmic [Rabiner and Juang 1993]. This makes sense in speech recogni-

tion, but does not apply to our problem. Moreover, the choice of the parameter P in the

LP -norm is not governed by any rules. There is no optimality criterion between the dif-

ferent dP measures, only an awareness that the large spectral differences are more heavily

weighted with increasing P .
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The different weighting of linear spectral differences at different power levels is also a

property of the dCOSH measure, but here the weighting falls naturally out of the derivation.

The starting point (i.e. the motivation of the Jeffreys divergence) is that we want to

quantify the dispersion of the likelihood ratio under the different hypotheses. This seems

like a reasonable requisite, since maximum likelihood detection and methods derived from

the likelihood ratio is attractive choices for both authorised receivers [Dickinson 1981] and

eavesdroppers [Basseville 1988].

We could also look at the Cosh distance as the symmetrised Itakura-Saito distance. The

dIS measure arised from a study of linear prediction of speech, where speech was modelled

by Gaussian AR-processes [Itakura and Saito 1970, Gray and Markel 1976], exactly like

our transmission processes. Besides being theoretically appealing [Rabiner and Juang 1993],

we know from figure 3.6 that dCOSH is approximately equal to d2 for small spectral dif-

ference, while large spectral difference are much more weighted by dCOSH . This makes

sense, since these are the differences that could be fatal to the security of an ARPSK

communications system.

From the discoveries in the discussion on robustness to additive white noise, we should

also require that the search for processes X1 is limited to an area of parameter space

such that the separation of the spectral peak frequencies is below a predetermined value,

denoted maximum peak separation ∆ωT . The maximum peak separation criterion is

∆ωpeak ,
∣∣∣arg

{
max

ω
{S(0)

xx }
}
− arg

{
max

ω
{S(1)

xx }
}∣∣∣ < ∆ωT (5.7)

where we define ∆ωpeak as the peak separation. While the targetted Pe(N) determines the

transmission quality, the figure ∆ωT determines security of the communications system.

In the same manner, we may determine a threshold that limits the deviation of the

transmission process PSDs. This threshold could be a maximum allowed value of the

dispersion spectral density, denoted the maximum spectral dispersion DT . We then have

the maximum spectral dispersion criterion

max{D(ω)} < DT . (5.8)

Thus, DT is another figure that determines the security of the system.
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5.4 Selection Procedure

The signal selection procedure which has evolved throughout the discussion is summarised

below and is also shown schematically in figure 5.7.

1. Choose the order p of the autoregressive processes and the number of samples N in

each process realisation.

2. Specify a target detection error probability Pe at zero noise and for pulse length

N . Further specify the maximum spectral dispersion DT and the maximum peak

separation ∆ωT allowed.

3. Choose a wideband process X0 with parameter vector a0 that utilises the allocated

bandwidth to maximum extent.

4. Use a numerical search algorithm to identify the processes that satisfies the con-

strained Pe at zero noise. From these, find the process X1 with parameter vector a1

that minimises the average spectral dispersion dD.

5. Check if the peak separation of the chosen processes exceeds ∆ωT , according to the

maximum peak separation criterion. If it does, return to step 4 and choose a X1 that

gives smaller peak separation. Implicitly, the search for X1 should be restricted to a

set such that ∆ωpeak < ∆ωT .

6. Check if the maximum value of the dispersion spectral density exceeds DT , according

to the maximum spectral dispersion criterion. If it does, return to step 1 and increase

N or alter the performance parameters in step 2.

One question that has not been answered is how large the difference between the trans-

mission processes are allowed to be before we risk that the transmitted signal can be suc-

cessfully eavesdropped. As stated in the introductory description of SPSK communications

(section 1.4), the security of the technique is based on the existence of the Cramer-Rao

lower bound [Larsen and Marx 1986, Scharf 1991], which establishes the lower bound on

the variance of any estimator.

The model order p, process parameter vectors a0 and a1, and pulse length N are all

known to the transmitter and authorised receiver, but must be estimated by an eavesdrop-

per. Hence, it is theoretically possible to calculate the probability that an eavesdropper
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Figure 5.7: Signal selection procedure.
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will estimate parameters that provide a detector which has a Pe that is below (or above)

a critical value.

For instance, let us assume the worst case scenario that an eavesdropper has managed

to obtain the correct value of p and N , and only needs to estimate the process parameter

vectors a0 and a1. Next assume that the eavesdropper uses an unbiased estimator âi

whose variance touches the Cramer-Rao lower bound (CRLB). If we can give a statistical

description of âi, then we can in principle evaluate the statistical properties of the Pe

for an ideal Neyman-Pearson detector (assuming known additive white noise variance)

implemented with the parameter vector estimates instead of the true parameter vectors.

This detection error probability is denoted Pe(â0, â0|a0, a1).

For a moderate sample size Ns, [Box et al. 1994] state that the covariance matrix of

the Yule-Walker AR-parameter estimate can be approximated by

Σâ ' σ2
ε

Ns
R−1

x (5.9)

defining the parameter estimate covariance matrix as Σâ. The approximation is equal to

the asympotic CRLB [Porat and Friedlander 1987, Kay 1993]. Hence, we have

V ar{â(i)
k } ≥ σ2

εi

Ns

[
R(i)

x

]−1

kk
(5.10)

where â
(i)
k is the estimate of the kth parameter of process Xi. The sample size Ns does not

have to be very large before V ar{â(i)
k } becomes relatively small.

The samples used in the parameter estimation must indeed be taken from a sequence

that contains samples of both processes. Moreover, Salberg and Hanssen have shown

[Salberg and Hanssen 1999a] that the PSD of ARPSK signal approaches the mean of the in-

dividual PSDs as N → ∞. However, the discrete signal can be segmented by use of change

detection algorithms [Basseville 1988, Basseville and Nikiforov 1993, Zhang et al. 1994].

Thus, sample sizes in the order of Ns ' N or larger can be obtained, and estimates

over several segments can be averaged. On the other hand, the estimation problem is more

complicated in a practical situation with additive noise [Kay 1979, Wu and Chen 1997,

Davila 1998].

To evaluate E{Pe(â0, â0|a0, a1)} and V ar{Pe(â0, â0|a0, a1)}, we have to solve integrals

of dimension 2p over all estimated parameters. We have e.g.

E{Pe(â0, â0|a0, a1)} =

∫∫∫
Pe(â0, â0|a0, a1)fâ0,â1(â0, â1) dâ0 dâ1 (5.11)
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where fâ0,â1(â0, â1) is the joint PDF of the parameter vector estimates. The figures

E{Pe(â0, â0|a0, a1)} and V ar{Pe(â0, â0|a0, a1)} can be used to benchmark the security

provided by the transmission processes a0 and a1. Unfortunately, the required compu-

tations are too demanding for practical use. What we can do however, is to assess the

Pe(â0, â0|a0, a1) directly. In terms of the general framework in section 4.8, this Pe is cal-

culated from the standard procedure with

M = [R
(0)
ŷ ]−1 − [R

(1)
ŷ ]−1, C = ln

(
|R(0)

ŷ |
|R(1)

ŷ |

)
and R(i)

z = R(i)
y

where R
(i)
ŷ and R

(i)
y are the true correlation matrices calculated from the estimated param-

eter vector âi and the true parameter vector ai, respectively.

The principal issue addressed here needs further investigation. From a further analysis,

we might also be able to find out what influence the choice of p has on the performance

and security of the ARPSK system. This has not been discussed in this thesis, because no

obvious connections have been discovered.
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Results

The process selection procedure presented above is used to choose three possible pairs of

AR(3)-processes that can be used as transmission prosesses. The only part of the procedure

that is neglected is point 6. This is done partly because we have not yet obtained a good rule

on how to choose the threshold DT . In addition, the available computing resources limits

the parameter choice. For practical reasons, we want to run several of the simulations for

a pulse length of N = 64. For much larger N , the limited memory capacity of the available

computers and the precision in numerical computations cause problems. Hence, we must

tolerate that the statistical distance between the processes is relatively large, in order that

the resulting Pe should be in a region of interest.

The chosen process pairs are the combinations of a process X0 with three different

choices of process X1, denoted by X
(i)
1 , X

(ii)
1 and X

(iii)
1 . These are chosen such that the

pairs should produce a Pe of 10−3, 10−4 and 10−5, respectively, at zero noise for the pulse

length N = 64. In digital communications terms, these detection error probabilities are

relatively high. However, they are sufficiently low that we can assess the characteristic

Process AR-parameters σ2
ε Pe(X0, X) dCOSH(X0, X)

X0 [0.4, 0.3, 0.2]T 1.0 0 0

X
(i)
1 [0.7625, 0.2190, 0.3000]T 0.4401 10−3 1.464

X
(ii)
1 [0.7347, 0.1912, 0.3500]T 0.3399 10−4 2.244

X
(iii)
1 [0.7351, 0.1673, 0.3500]T 0.2744 10−5 3.126

Table 6.1: Parameters of the processes which are used in numerical simulations.
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performance of an ARPSK system. The AR-parameters of the processes are given in table

6.1.

In the search for optimal AR-parameters, the third parameter of the X1 was first fixed,

and then varied in small steps to approach a minimum in the AR(3)-parameter plane.

The difficulty of the three-dimensional search explains why the precision of the first two

parameters is much higher than for the third. The table also lists the driving noise variances

determined from the average power equalisation constraint, in addition to the exact Pe and

dCOSH for the chosen pairs.

6.1 Detection Error Probability as Function of N

Figure 6.1 shows Pe as a function of the pulse length N , assuming zero additive white

noise. For each process pair, the Pe is obtained from both the theoretical expression

and numerical simulations. This is done for the Neyman-Pearson (NP) detector and the

approximate log-likelihood ratio (ALR) detector. Empirical results are obtained from

Monte Carlo simulations with 100 000 runs. This number is evidently to low to yield good

results at low Pe, since the variance of the simulation result becomes very large. However,

the number of runs is limited by practical constraints. Nevertheless, the simulation results

are good enough to demonstrate the probability that the theoretical results are correct.

We shall refer to pair (i) as the processes X0 and X
(i)
1 , and so on for pair (ii) and pair

(iii). For each pair, we find that the Pe of the ideal NP detector and the ALR detector

are very close. The Pe(N) for the ideal NP detector and the ALR detector are shown as

a solid line and a dotted line, respectively. At the end point of the curves, it is indicated

which process pair they belong to. Simulation results are plotted on top of the theoretical

curves using various symbols, as explained in the caption of figure 6.1.

From all curves, we see that the Pe drops rapidly with increasing N for all process

pairs. The Pe approaches zero when N goes to infinity. There is always a finite Pe for

finite N . This is in contrast to classical communication systems with deterministic signals

in a noiseless environment. We further see that the Pe of the ideal NP detector is lower

than the Pe of the ALR detector, but that the difference decreases with increasing N . This

is natural, since the NP detector minimises the Pe, the ALR detector is an approximation

to the NP detector, and the approximation becomes better as N increases. The simulation

results correspond very well to the theoretical results for Pe > 10−4, and affirms the theory.
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Figure 6.1: Detection error probability Pe(N) as a function of the pulse length N at zero

noise. Comparison of the theoretical results obtained with the ideal NP detector (solid

lines) and the ALR detector (dashed lines) for each process pair. Empirical results for the

NP detector are marked with ’�’ (process pair (i)), ’◦’ (ii) and ’4’ (iii), while results for

the ALR detector are marked with ’∗’ (process pair (i)), ’×’ (ii) and ’+’ (iii).

6.2 Detection Error Probability as function of SNR

Figure 6.2 shows the Pe as a function of the SNR, when the pulse length is fixed to N = 64.

The ideal NP detector and the ALR detector are assessed through numerical evaluation of

the theoretical results and by virtue of simulation results. The number of runs in Monte

Carlo simulations is again 100 000. The line styles and symbols used to designate different

results are the same as in the previous figure. These are also specified in the figure caption.

Once more, we see from the figure that the Pe has a lower bound for finite values of

N . When the SNR increases (and the additive noise variance becomes negligible), the Pe
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Figure 6.2: Detection error probability Pe(SNR) as a function of the signal-to-noise ratio

for a fixed pulse length of N = 64. Comparison of the theoretical results obtained with

the ideal NP detector (solid lines) and the ALR detector (dashed lines) for each process

pair. Empirical results for the NP detector are marked with ’�’ (process pair (i)), ’◦’ (ii)

and ’4’ (iii), while results for the ALR detector are marked with ’∗’ (process pair (i)), ’×’

(ii) and ’+’ (iii).

tends to a threshold value. We note that the threshold values are equal to the Pe(σ
2
v = 0)

specified in the selection procedure for the respective processes. This result is specific for

SPSK communications, but has no implications for how applicable the technique is. A

noiseless channel is only found in theory. In a practical situation, the important thing to

ensure that the communications system provides acceptable Pe values up to a certain SNR.

It is in this light we must assess detector candidates.

The NP detector is model independent, while the ALR detector assumes that the

received signal is an AR-process. The effect this has on the detector performance difference
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is made clear by figure 6.2. At high SNR values, the noise level is negligible and the ALR

is a good approximation to the true log-likelihood ratio. However, as the SNR drops below

20-30 dB (which is still very little noise), the Pe of the ALR detector increases dramatically.

At 5 dB, the ALR detector is i.e. “guessing” what source symbol is being received. The

performance of the NP detector also deteriorates, but not at the same rate. At 0 dB, the

NP detector still maintains a Pe ≈ 10−1. The observed difference is an indication that the

distance between the assumed AR-model and the actual ARMAX-model grows too large,

and rapidly destroys the capability of the ALR detector, while the NP detector is more

robust to noise. Still, we should note that the change in performance occurs at relatively low

noise levels for the ideal NP detector as well, and this represents the theoretical bound on

detection performance. Simulation results show good resemblance with theoretical results.

6.3 Neyman-Pearson Detector with Additive Noise

Variance Estimator

The ideal NP detector cannot be realised due to the unknown variance of the white additive

noise, and it must therefore be replaced by an NP detector implemented with an additive

noise variance estimator. Hence, the question naturally arising is how close up to the

performance of the ideal detector this sub-optimal detector will come. The answer is found

in figure 6.3, which compares results for different detectors with process pair (i).

In the upper panel, the figure displays the empirical Pe of the NP detector implemented

with the non-negative estimator σ̂2
v+

. The estimate σ̂2
v+

is calculated from the samples

representing M = 1, 4 and 20 source bits. The pulse length is still N = 64, so the

estimator uses a total of NM = 64, 256 and 1280 signal samples in the respective cases.

Only simulation results are shown. Computational complexity and accuracy did not allow

the theoretical expression to be successfully evaluated. The results are obtained from

Monte Carlo simulations with 10 000 runs.

From figure 6.3 we see the following. The Pe of the ideal NP detector (solid line) and

the ALR detector (dotted line) are used as references in the figure. The simulation results

for the suboptimal NP detectors are shown as dashed lines with different symbols (refer

to the figure legend). We see that the suboptimal detectors track the performance of the

ideal NP detector up to a certain SNR level, which depends on M . As the SNR increases,
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Figure 6.3: Detection error probability Pe(SNR) as a function of the signal-to-noise ratio

for process pair (i). Comparison of theoretical performance for the ideal NP detector and

the ALR detector, and the empirical performance of the NP detector implemented with a

non-negative estimator (upper panel) and with an unconstrained estimator (lower panel),

calculated with samples representing M source symbols. The pulse length is N = 64.
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we observe that the individual realisations of suboptimal detector deviate in performance.

The suboptimal NP detector approaches the performance of the ideal NP detector with

increasing M . This is expected, since the variance of σ̂2
v+

is inversely proportional to M .

The behaviour of the suboptimal NP detectors between SNR values of 0 dB and 10

dB is an intriguing observation. The fluctuations where Pe(SNR) is not monotonically

decreasing are considered as a result of the variance in the simulation results, and are

ignored. What we cannot ignore is the intermediate plateau on the transient between high

and low Pe. This is a feature that stands out, by comparison with the ideal NP detector.

The same trend is observed in attempted evaluations of the theoretical Pe, but these results

are not sufficiently accurate to be repeated here.

An explanation is offered, if we look at the results in the lower panel of figure 6.4.

Here, the same results are shown for an NP detector implemented with the unconstrained

estimator σ̂2
v (that allows negative estimates of σ2

v). The different implementations yield

identical performance up till the cut-off which is experienced for the constrained estimator

implementation at around 10 dB. From here, the Pe of the constrained estimator imple-

mentation drops at the same rate as for the ALR detector, while no improvement is found

in the Pe of the unconstrained estimator implementation. It is observed in simulations that

the cut-off represents the SNR value where the unconstrained estimator starts to produce

a significant portion of negative variance estimates.

As the SNR exceeds 25 dB, the Pe of the constrained estimator implementation ap-

proaches a lower bound which depends on M . We see that for M = 20, the lower bound is

still slightly higher than the corresponding bound on the ALR detector. Hence, we expect

that the suboptimal NP detector is better than the ALR detector over the whole range of

SNR values for some choice of M > 20 with the present value of N . For the unconstrained

estimator implementation, we see that the Pe has a minimum somewhere between 0 dB and

10 dB, and approaches a steady state value as the SNR increases from there. From this,

we conclude that negative values of σ̂2
v must be associated with a high degree of erroneous

decisions in the detector.

In figure 6.4, we once again compare the performance of the ideal NP detector and the

ALR detector with the NP detector implemented with the constrained estimator σ̂2
v+

. This

time, the Pe is displayed as a function of the pulse length N for fixed SNR values. The

upper panel shows the results obtained for process pair (i) with fixed SNR of 10 dB (upper

panel), and the lower panel shows the same results for an SNR of 20 dB (lower panel).
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Figure 6.4: Detection error probability Pe(N) as a function of the pulse lengthN , calculated

for process pair (i) at fixed SNR values of 10 dB (upper panel) and 20 dB (lower panel).

Comparison of theoretical results for the ideal NP detector and the ALR detector, and

empirical results for the NP detector implemented with non-negative estimator for different

choices of M , representing the number of process realisations used in the estimator.
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There is nothing surprising about the shape of the Pe(N) curves, but we see that the

rate of change of Pe versus N depends largely on the detector and the SNR. At 10 dB, the

ALR shows the worst performance, and the Pe falls very slowly with increasing N . As in

the case of zero additive noise (figure 6.1), the Pe will approach zero as N goes to infinity.

The Pe of the NP detectors implemented with the constrained estimator is better then for

the ALR, but also decreases relatively slow.

At 20 dB, the ranking of the ALR detector versus the suboptimal NP detectors is no

longer uniform over the range of pulse lengths N . The Pe of the suboptimal is only assessed

through Monte Carlo simulations with 10 000 runs. The fluctuations of the empirical curves

at high values of N are relatively high. Despite the uncertainty implied by the variance

in the simulations, the result indicates that the true Pe of the suboptimal NP detector for

M = 20 probably exceeds the Pe of the ALR detector at some N .

6.4 Detection Error Probability as Function of the

Synchronisation Error

Theoretical results and simulation results for detection with unsynchronised data are shown

in figure 6.5. The Pe is plotted as a function of the synchronisation delay ds divided by the

pulse length N . The measure 0 ≤ (ds/N) ≤ 1, ds = 0, . . . , N gives the synchronisation

error as a fraction of the symbol period T . The upper panel shows theoretical results and

simulation results for the ideal NP detector (marked with circles and cross, respectively),

while the theoretical results for the ALR detector as a reference (solid line). The lower

panel shows theoretical results and simulation results for the ALR detector (circles and

crosses, respectively), with the theoretical results of the ideal NP detector as a reference

(solid line). Process pair (i) is used with a pulse length of N = 64. Empirical results are

obtained from Monte Carlo simulations with 50 000 runs.

From the transmitter and authorised receiver’s point of view, it is beneficial if a syn-

chronisation error causes a significant deterioration of the Pe. Thus, an eavesdropper is less

likely to succeed if perfect synchronisation is not achieved. This is under the condition that

the authorised receiver posesses a robust method that guarantees perfect synchronisation.

For the NP detector, the Pe(ds) is symmetric around N . The maximum value is found

at ds = bN/2c (and ds = dN/2e if N is odd). Here, bxc and dxe denote the nearest integer
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Figure 6.5: Detection error probability Pe(ds/N) as a function of the normalised synchroni-

sation delay 0 ≤ ds/N ≤ 1 at zero noise. Comparison of theoretical results and simulation

results for the ideal NP detector with theoretical results of the ALR detector (upper panel)

and vice versa (lower panel). All results obtained with process pair (i) and pulse length

N = 64.
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Figure 6.6: Detection error probability Pe(ds/N) as a function of the normalised synchro-

nisation delay 0 ≤ ds/N ≤ 1 at SNR values of 10 dB and 20 dB. Comparison of theoretical

results for the ideal NP detector and the ALR detector. All results obtained with process

pair (i) and pulse length N = 64.

less than or equal to x, and the nearest integer greater than or equal to x, respectively.

From the theoretical expression for the Pe(ds) in Eq. (4.69), we find that the maximum is

Pe(bN/2c) =
1

2

[
Pe(0) +

1

2

]
. (6.1)

I.e., it is the mean value between the Pe(ds) when only one process is transmitted and the

Pe(ds) when alternating process realisations are transmitted.

As seen from the figure, the symmetry of Pe(ds) does not hold for the ALR detector.

On the contrary, we observe a distinct feature at small values of ds which is not present at

the corresponding values N −ds. For the synchronisation delays up to ds = 2, the increase

in Pe is very small, but after this it changes at a rate that is similar to what we observe

for the NP detector. This behaviour can be explained as follows.

For an ALR detector with perfect synchronisation, we will find that the p first samples

of the received process realisation contribute less to detectability than the other samples.

For these data points, we do not have access to all of the p precursors which they depend on,
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according to the AR-model. The model-dependendent ALR detector implicitly tests how

the samples of the process realisation fits with the candidate AR-models. In this respect,

the first p samples provide less information. Within the p first samples, x(1), . . . , x(p),

the significance to detectability obviously increases with increasing sample index. This

observation applies to the case of an unsynchronised ALR detector as well. If the first

p samples are replaced by samples from another process, the performance is not much

degraded because the lost samples did not contribute much to the detectability anyway.

Both panels show that the simulation results are very much in agreement with the

results obtained through evaluation of the theoretical expressions of Pe(ds). The Pe(ds) of

the ideal NP detector exceeds the Pe(ds) for the ALR detector for ds ≤ N/2, which clearly

shows the assymmetry for the ALR detector.

In the presence of noise, we expect that performance of the ideal NP detector and the

ALR detector will deviate according to the results of figure 6.2. This is confirmed by figure

6.6, which shows the theoretical Pe(ds) of the ideal NP detector and the ALR detector for

SNR values of 10 dB and 20 dB. With reference to figure 6.2, we know that the deviation

between the Pe(SNR) for the two detectors is small at SNR=20 dB. This is also the case

for the Pe(ds). The deviation between the Pe(SNR) is larger at SNR=10 dB. From figure

6.6, we see that the Pe(ds) of the ALR detector is much higher than the Pe(ds) of the ideal

NP detector at this noise level. However, the maxima remain essentially constant, since

Pe(ds =0) � 1/2.

6.5 Detection with Estimated AR-parameters

Figure 6.7 demonstrates what happens to the Pe when the detector uses a parameter vector

estimate instead of the true parameter vector. Assume that an eavesdropper knows the

correct values of p and N and employs a detector which incorporates estimates of the

AR-parameters for the two transmission processes. With AR(3) transmission processes,

there are 6 parameters to estimate. The Pe(â0, â1|a0, a1) is the detection error probability

experienced by the ideal NP detector implemented with parameter vector estimates â0 and

â1, given that a0 and a1 are the true parameter vectors. It is not possible to visualise how

the Pe(â0, â1|a0, a1) varies with all the free parameters in â0 and â1, but we have attempted

to show how Pe(â0, â1|a0, a1) responds when one or two of the estimated parameters deviate

from their true values.
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Figure 6.7: Detection error probability Pe(â
(0)
k |a0, a1), k = 1, 2, 3 of an ideal NP detector

as a function of estimates â
(0)
1 (upper panel), â

(0)
2 (middle panel) and â

(0)
3 (lower panel)

using process pair (i) and pulse length N = 64. The standard deviations from the true

parameter value are connected with dotted lines to their corresponding Pe, assuming an

optimum estimator using Ns = 64 samples.
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The figure shows results for process pair (i) and pulse length N = 64. At first we assume

that perfect estimates are obtained for the AR-parameters of both processes, except for one

parameter a
(0)
k , k = 1, 2, 3 of process X0. Figure 6.7 shows the theoretical Pe(â

(0)
k |a0, a1) of

an ideal NP detector, as a function of that one parameter which is allowed to vary without

constrain. Referring to the figure, the free variable is a
(0)
1 (upper panel), a

(0)
2 (middle panel)

and a
(0)
1 (lower panel). The behaviour of Pe is almost identical for all cases. The minimum

is found at the true parameter value in each case, and the Pe increases monotonically as we

move away from this minimum. The minimum standard deviation of â
(0)
k can be calculated

from Eq. (5.10). In the plots, the values â
(0)
k ± σâ are marked and connected (dotted lines)

with the corresponding Pe values. Here, σâ denotes the standard deviation of an optimum

estimator â
(0)
k which uses N = 64 samples.

In the next example, the first parameter of both process X0 and X1 is allowed to vary.

Figure 6.8 shows a window of the surface defined by Pe(â
(0)
1 , â

(1)
1 |a0, a1), shown at three

different angles. The minimum which occurs at the true values [a
(0)
1 , a

(1)
1 ] is marked in the

plot. The upper panel gives the best perspective on the whole surface. The view of the

figure in the middle panel is almost in the direction of the â
(1)
1 -axis, and the figure thus

visualises how the Pe varies with â
(0)
1 . For the same reason, the figure in the lower panel

is viewed almost in the direction of the â
(0)
1 -axis. The curve in the upper panel of figure

6.7 is equivalent to the curve at â
(1)
1 = a

(1)
1 = 0.76 in the Pe surface of figure 6.8. It can

be observed that the Pe increases monotonically along the â
(1)
1 -axis as a function of the

distance from a
(1)
1 , as expected. This demonstrates how additional uncertainty is included

in the estimation problem, with respect to the first example and figure 6.7. Hence, we

can imagine how more free parameters will increase the Pe of a detector implemented with

estimated parameter values.
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Figure 6.8: Detection error probability Pe(â
(0)
k , â

(1)
k |a0, a1) of an ideal NP detector as a

function of the estimates â
(0)
k and â

(1)
k , shown at different angles. The result is obtained

using process pair (i) and pulse length N = 64.
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Conclusion and Further Work

7.1 Conclusion

We have in this thesis studied detectors that can be applied in secure digital communica-

tions using a modulation technique named autoregressive process shift keying (ARPSK).

The theoretical bound on detector performance for such a communications system is estab-

lished in terms of the detection error probability of the optimum Neyman-Pearson (NP)

detector.

The detection error probability Pe of the NP detector decreases rapidly with increasing

pulse length N of the stochastic transmission process realisations. As a function of the

signal-to-noise ratio (SNR), we find that the Pe approaches a threshold value as N →
∞. Hence, unlike classical modulation techniques using deterministic signals, ARPSK

produces finite Pe for finite values of N . Furthermore, we find that significant degradation

of the Pe(SNR) starts at relatively high SNR values. The characteristics of the Pe(SNR)

improves with increasing N , but we conclude that N � 100 for the communications to

yield acceptable performance at SNR values that should be tolerated.

The optimum NP detector can not be implemented in a noisy communications channel,

since the probabilistic model of the noise is not completely known. If we assume that the

channel noise is additive and white, the ideal NP detector can be replaced by a noise

compensated version that incorporates an estimator of the additive white noise variance.

In the thesis, the detection error probability is derived for the suboptimal NP detector

implemented with a finite memory estimator, assuming stationary noise. From the results

we see that it is imperative that a sufficient number of samples can be used in the estimate
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of the noise variance. Otherwise, the suboptimal NP yields considerably worse Pe than the

optimal detector at high SNR values. If the noise is Gaussian, the optimum estimate of the

additive white noise variance is provided by a Kalman prediction filter, both for stationary

and non-stationary noise. However, the performance of a real implementation will depend

on how fast the channel noise varies.

An approximated NP detector is obtained from a well-known approximation which

applies to the log-likelihood ratio for autoregressive Gaussian processes. The Pe of this

detector is derived in this thesis, and compared with the NP detector. Since the approx-

imated log-likelihood ratio (ALR) is derived assuming an autoregressive process model,

it does not take allowance for additive noise. Hence the performance of the ALR detec-

tor is degraded at relatively low noise levels, and the degradation is more severe than for

the NP detector. For negligible noise, the ALR detector approaches the NP detector in

performance.

To evaluate how vulnerable the ARPSK communications system is to eavesdropping, we

have derived the Pe of the NP detector and the ALR detector assuming that the receiver is

not perfectly synchronised with the transmitter. The Pe given that the respective detectors

are implemented with estimated values of the AR-parameters is also derived. The results

show that the detectors are not extremely sensitive to small synchronisation errors, but the

sensitivity depends on and increases with the noise level. We further see that the increase

in Pe implied by estimated AR-parameters can be made quite small if a sufficient amount

of process samples is available.

A selection procedure for transmission processes is formulated, based on a proposed

set of criteria that the autoregressive transmission processes should satify. This procedure

takes into consideration that the statistical distance between the processes and the differ-

ence between their spectra should be as small as possible in order to reduce the posibility of

eavesdropping, while at the same time maintaining an acceptable detection error probabil-

ity. From a review of existing statistical distance measures and spectral distance measures,

it is found that the Cosh distance is the appropriate choice for ARPSK communications.

From the previous conclusions, it is questionable whether the ARPSK modulation tech-

nique provides the required protection against eavesdropping. However, a definite answer

can not be given before we have quantified the allowed statistical distance between the

transmission prosesses, given a specified risk that the transmitted message can be success-

fully eavesdropped.
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7.2 Suggestions to Further Work

Even if the described ARPSK technique might not offer the required security, the concept

of stochastic process shift keying (SPSK) should be further investigated. One alternative is

to employ other transmission processes. Another possibility is to stay with AR-processes,

but encode information by means of higher-order statistics. Thus, the pair of transmission

processes will have the exact same second-order statistics (e.q. autocorrelation function

and power spectral density) and must thus be distinguished by their different higher-order

statistics. Estimators of higher-order statistics generally have higher variances and need

more samples to provide good estimates [Brillinger 1975, Mendel 1991] than estimators

of second-order statistics. Hence, the difference in performance between a detector that

knows all system parameters and one that must estimate them might be larger.

Regardless of the choice of transmission processes, the problem of how to obtain syn-

chronisation between transmitter and receiver will be an issue for further work. Another

issue one might want to discuss is how multiple access can be built into the SPSK commu-

nications system.

Since SPSK is associated with finite detection error probabilities even at zero noise,

there is an absolute demand for implementation of error correcting codes. Evaluation of

the improvements that such coding will yield is a topic for future research. As a counterpart

to frequency-hopping in classic narrowband communications [Gibson 1993, Proakis 1995],

an idea would be to implement parameter-hopping in SPSK. This means that system

parameters (like the AR-parameters) should be varied cyclically according to a pattern

that is known only to the transmitter and authorised receiver.
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