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General continuity principles for the Bergman kernel

Klas Diederich and Takeo Ohsawa
(大沢 健夫)

INTRODUCTION

In [4] the authors studied continuity principles for the Bergman kernel $K_{D}(w)$ $:=K_{D}(w, w)$

and the Bergman metric $ds_{D}^{2}$ in dependence of the domain $D$ . More precisely, the following
result was shown:

Theorem
Le$tD\subset \mathbb{C}^{n}$ be a boun$ded$ pseudoconvex domain with $C^{\infty}$ -smooth boundary and

$\{D_{t}\}_{-1\leq t\leq 1}$ a $two-sided$ bumping family of $D$ at some poin$tp\in\partial D$ , where $\partial D$ is strictly
pseudoconvex. Then there is for any $\epsilon>0$ and any neighborhood $U$ of $p$ a number
$t_{0}\in(0,1)$ such that

$|K_{D}(w)K_{D_{t}}^{-1}(w)-1|<\epsilon$

and
$(1-\epsilon)ds_{D}^{2}\leq ds_{D_{t}}^{2}\leq(1+\epsilon)ds_{D}^{2}$

on $D\backslash U$ for all $t\in(-t_{0}, t_{0})$ .

For the precise definition of what was meant by a two-sided bumping family the reader is
refered to [4]. It implies, in particular, that the domains $D_{t}$ are only local perturbations
of $D$ near $p$ in the sense, that for any neighborhood $U$ of $p$ there is a $t_{0}>0$ , such that
$D\backslash U=D_{t}\backslash U$ for all $t\in(-t_{0}, t_{0})$ . Furthermore, a certain monotonicity property of the
$D_{t}$ in dependence of $t$ was required.

In this article, we want to extend such continuity principles to much more general situ-
ations. For instance, for local bumping near a point $p\in\partial D$ we want to eliminate the
hypothesis of strict pseudoconvexity at $p$ , the monotonicity in $t$ and the restriction of the
Bergman kernel to the diagonal. Furthermore, we want to prove another continuity princi-
ple, which allows much more global perturbations of $D$ . Continuity principles for strictly
pseudoconvex domains were proved by R.E.Greene and St. Krantz in [5].

Definition: Let $D\subset \mathbb{C}^{n}$ be a pseudoconvex domain. By a local perturbation family for $D$

near a point $p\in\partial D$ , we mean a family of pseudoconvex domains $\{D_{t}\}_{0\leq t\leq 1}$ , such that
$D=D_{0}$ and for each neighborhood $U$ of $p$ there is a $t_{0}>0$ , such that $D_{t}\backslash U=D\backslash U$ for
all $t\in[0, t_{0}]$

Remark: Notice, that we do not make any regularity assumption for the boundaries $\partial D_{t}$

in this definition. Also, there is no monotonicity assumption made for the family $\{D_{t}\}$ .
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Furthermore, in the case of smooth boundaries, such non-trivial local perturbation families
can exist near $p$ even if $\partial D$ is of infinite type at $p$ . For the case of finite l-type of $D$ at $p$,
Cho [2] has constructed nice non-trivial perturbation families.

Our main result for $10$cal perturbations is:

Theorem 1
Let $\{D_{t}\}_{0\leq t\leq 1}$ be a local perturbation family for $D$ near $p\in\partial D$ . Then there is for any

$\epsilon>0$ and any neighborhood $U$ of $p$ a $t_{0}>0$ , such that one has for all $t\in[0,t_{0}]$ an$d$ all
$z,$ $w\in D\backslash U$

$| \frac{K_{D_{t}}(w)}{K_{D}(w)}-1|<\epsilon$ (1)

$\frac{|K_{D_{t}}(z,w)-K_{D}(z,w)|}{K_{D}^{1/2}(z)K_{D}^{1/2}(w)}<\epsilon$ (2)

and
$(1-\epsilon)ds_{D}^{2}(w)\leq ds_{D_{t}}^{2}(w)\leq(1+\epsilon)ds_{D}^{2}(w)$ (3)

Next, we want to state a theorem about uniform continuity of the Bergman kernel and
metric for more global perturbations. For this, we assume, that $D\subset \mathbb{C}^{n}$ is a bounded
pseudoconvex domain with $c\infty$ -smooth boundary and define:

Definition: Let $q\in\partial D$ be an arbitrary point and $V$ an open neighborhood of $q$ . By a
regular perturbation family for $D$ outside $V$ we mean a family $\{D_{t}\}_{0\leq t\leq 1}$ of pseudoconvex
domains with $C^{\infty}$ -smooth boundaries with the following properties:
a) $D=D_{0}$ ,
b) for any neighborhood $U$ of $\partial D\backslash V$ there is a $t_{0}>0$ , such that $D_{t}\backslash U=D\backslash U$ for all
$t\in[0, t_{0}]$ ,
c) there is a function $r=r(t, z):[0,1]\cross \mathbb{C}^{n}arrow IR$ with the following regularity properties:
$r$ is $c\infty$ in $z$ and for all $(\alpha, \beta)\in$ (IN:)2 with $|\alpha|+|\beta|\leq 2$ the derivative $\frac{\partial^{|\alpha|+|\beta|}r}{\partial z^{\alpha}\partial\overline{z}^{\beta}}$ is
continuous on $[0,1]\cross \mathbb{C}^{n}$ . For all $t\in[0,1]_{f}D_{t}=\{z\in \mathbb{C}^{n} : r(t, z)<0\}$ and $d_{z}r(t, z)\neq 0$

for all $z\in\partial D_{t}$ .

We will show in this article

Theorem 2
Let $D\subset \mathbb{C}^{n}$ be a pseudoconvex domain with $c\infty$ -smooth boundary and $q\in\partial D$ an

arbitrary point. Furthermore, let $\{D_{t}\}_{0\leq t\leq 1}$ be a regular perturbation family for $D$ outside
a certain open neighborhood $V$ of $q$ . $Su$ppose, that $\partial D$ is of finite l-type at all points
of $\partial V\cap\partial D$ and let $V’\subset\subset V$ be another open neighborhood of $q$ . Then there is for any
$\epsilon>0$ a $t_{0}>0$ , such that the inequalities (1), (2) and (3) from theorem 1 hold for all
$z,$ $w\in V’\cap D$ and for all $t\in[0, t_{0}]$ .
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Remarks: a) As we will see in section 5, the assumption in theorem 2, that $\partial D$ is of finite
l-type at $\partial V\cap\partial D$ cannot be (totally) dropped.
b) We want to point out, that inequality (2) is much too weak in case the domain $D$ has
finite l-type everywhere, because then it is known from the work of N.Kerzman [6] and
D. Catlin [1], that the Bergman kernel function $K_{D}(z, w)$ is $C^{\infty}$ on $(\overline{D}\cross\overline{D})\backslash \triangle_{\overline{D}}$ , where
$\Delta_{\overline{D}}$ is the diagonal. In this case, the division by $K_{D}^{1/2}(z)K_{D}^{1/2}(w)$ in (2) should no$t$ be
necessary as long as the pair $(z, w)$ stays away from the diagonal. In general, however, it
is needed.

The research of this article was done, while the first-named author was supported by a
visiting fellowship of the Japanese Society for the Promotion of Science and was visiting
the Department of Mathematics of the School of Science of Nagoya University. He would
like to thank these institutions for their generous support and help. -The authors thank
the referee for pointing out a mistake in the original counterexample in section 5 and some
misprints.

1. A NEW VARIANT OF SOLVING THE $\overline{\partial}$-EQUATION IN $L^{2}$ -SPACES

It will be very convenient for the purpose of this article to have a new variant of solving
the $\overline{\partial}$-equation in certain $L^{2}$ -spaces given by K\"ahler metrics and weight functions. Since
this also night be useful for other purposes, we explain it first.

We will use the following notations: $X$ is a connected, paracompact complex manifold of
dimension $n$ . For a Hermitian metric $ds^{2}$ on $X$ and a continuous function $\varphi$ : $Xarrow \mathbb{R}$ and
any measurable $(p, q)$ -form on $X$ we set

$\Vert u\Vert_{ds^{2},\varphi}^{2}$ $:= \int_{X}e^{-\varphi}|u|^{2}dV$

where $|u|=|u|_{ds^{2}}$ denotes the pointwise norm of $u$ and $dV$ means the volume form with
respect to $ds^{2}$ . Furthermore, for any $C^{\infty}$ strictly plurisubharmonic function $\psi$ : $Xarrow \mathbb{R}$

we will denote by $\partial\overline{\partial}\psi$ also the K\"ahler metric induced by $\psi$ on $X$ (the usual abuse of
notation).

One has

Theorem 3
Suppose, that the manifold $X$ admits a complete K\"aAler metric and let $\psi$ : $Xarrow 1R$

be a $C^{\infty}$ strictly plurisubharmonic $fu$nction satisfying the est$im$ate $\partial\overline{\partial}\psi\geq\partial\psi\overline{\partial}\psi$. Fur-
thernore, let $\varphi$ : $Xarrow \mathbb{R}$ be an arbitrary plurisubharmonic $c\infty$ -function. Then, for any

$\overline{\partial}$-closed $(n, 1)$ -form $v$ on $X$ satisfyin$g\Vert v\Vert_{\partial\overline{\partial}\psi,\varphi}<\infty$, there is a measurable $(n, 0)$ -form $u$

satisfying $\overline{\partial}u=v$ and $\Vert u\Vert_{\varphi}\leq C\Vert v\Vert_{\partial\overline{\partial}\psi,\varphi}$ with a $n$umerical constant $C>0$ (independent
of $X,$ $\psi,$

$\varphi,$ $v$ ).
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Proof: Fix any complete K\"ahler metric $ds^{2}$ on $X$ and set $ds_{\epsilon}^{2}$ $:=\partial\overline{\partial}\psi+\epsilon ds^{2}$ for any $\epsilon\geq 0$ .
Then we have $||v\Vert_{\epsilon,\varphi}$ $:=||v\Vert_{ds_{e,\varphi}^{2}}\leq\Vert v||_{\partial\overline{\partial}\psi\varphi}$

)

since $v$ is of type $(n, 1)$ . Since $\partial\overline{\partial}\psi\geq\partial\psi\overline{\partial}\psi$

we have the following estimate as a special case of what was proved in Proposition 1.6 of
[8]:

$(i\partial\overline{\partial}(\varphi+\psi) A \Lambda_{\epsilon}f, f)_{\epsilon,\varphi}\leq C_{0}(\Vert\overline{\partial}f\Vert_{\epsilon,\varphi}^{2}+\Vert\partial_{\epsilon\varphi}arrow,f\Vert_{\epsilon,\varphi}^{2})$ (4)

for any $\epsilon\geq 0$ and any $c\infty$ compactly supported $(n, 1)$ -form $f$ on $X$ .
(Here $\Lambda_{\epsilon}$ denotes the adjoint of the exterior multiplication by the fundamental form of $ds_{\epsilon}^{2}$ ,
$(\cdot, \cdot)_{\epsilon,\varphi}$ is the inner product associated to $\Vert\cdot\Vert_{\epsilon,\varphi}$ and $\partial_{\epsilon,\varphi}^{arrow}$ is the adjoint of $\overline{\partial}$ with respect
to $\Vert\cdot\Vert_{\epsilon,\varphi}.$ )
Now, by a straightforward computation as in the proof of Proposition 1.3 in [7] one obtains
from (4)

$|(f, v)_{\epsilon,\varphi}|^{2}\leq C_{0}\Vert v\Vert_{0,\varphi}^{2}(\Vert\overline{\partial}f\Vert_{\epsilon,\varphi}^{2}+\Vert\partial_{\epsilon,\varphi}arrow f\Vert_{\epsilon,\varphi}^{2})$ (5)

for any $f$ as above. Since for $\epsilon>0$ the metric $ds_{\epsilon}^{2}$ is complete, the estimate (5) implies,
that there is a $u_{\epsilon}$ satisfying $\Vert u_{\epsilon}\Vert_{\epsilon,\varphi}^{2}\leq C_{0}\Vert v\Vert_{0,\varphi}^{2}$ and $\partial u_{\epsilon}=v$ , whenever $\epsilon>0$ . Letting
$\epsilon\searrow 0$ , we obtain the desired solution as weak limit of a subsequence of $(u_{\epsilon})_{\epsilon>0}$ . $\square$

2. THE MAXIMIZING FUNCTIONS

As already done in [4], we consider the so-called maximizing functions defined by

Definition: Let $D$ be a bounded domain in $\mathbb{C}^{n}$ . We denote by $\Vert\cdot\Vert=\Vert\cdot\Vert_{D}$ the $L^{2}$ -norm
on $D$ with respect to the Lebesgue-measure and put

$H^{2}(D)$ $:=\{f\in \mathcal{O}(D) : \Vert f\Vert<\infty\}$

For a point $w\in D$ and for any $\alpha\in \mathbb{N}_{0}^{n}$ we define $D^{\alpha}$ $:= \frac{\partial^{|\alpha|}}{\partial z^{\alpha}}$ and

$H_{(\alpha)}^{2}(D;w)$ $:=$ { $g\in H^{2}(D):D^{\beta}g(w)=0\forall\beta\in \mathbb{N}_{0}^{n}$ with $|\beta|\leq|\alpha|,$ $\beta\neq\alpha$ }

By $B_{D}^{(\alpha)}(z, w)\in H_{(\alpha)}^{2}(D, w)$ we denote the (unique) function satisfying

$D^{\alpha}B_{D}^{(\alpha)}(w, w)= \max\{|D^{\alpha}g(w)|$ for $g\in H_{(\alpha)}^{2}(D;w)$ with $\Vert g\Vert_{D}\leq 1\}$

and we write $D^{\alpha}B_{D}^{(\alpha)}(w):=D^{\alpha}B_{D}^{(\alpha)}(w, w)$ .

The main part of the proofs of theorems 1 and 2 consists, in fact, in showing the following
st atement
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Theorem 4
Suppose, that the domain $D$ and the perturbation family $\{D_{t}\}_{0\leq t\leq 1}$ for $D$ satisfy either

the conditions of theorem 1 or the conditions of theorem 2. Let $U$ be an arbitrary open
neighborhood of $p$ (in the situation of theorem 1) and let $V’\subset\subset V$ be an arbitrary
neighborhood of $q$ (in the situation of theorem 2). Furthermore, fix an $\alpha\in \mathbb{N}_{0}^{n}$ . Then
there is for any $\epsilon>0$ a $t’>0$, such that

$| \frac{D^{\alpha}B_{D_{t}}^{(\alpha)}(w)}{D^{\alpha}B_{D}^{(\alpha)}(w)}-1|<\epsilon$ (6)

for all $t\in[0, t’]$ an$d$ for all $w\in D\backslash U$ (in the situation of theorem 1) resp. $w\in V’\cap D$ (in
the situation of theorem 2). In fact, one also has for $\hat{D}_{t’}$

$:= \bigcap_{t\in[0,t]}D_{t}$ the inequali$ty$

$| \frac{D^{\alpha}B_{D_{t}}^{(\alpha)}(w)}{D^{\alpha}B_{\hat{D}_{t}}^{(\alpha)}(w)}-1|<\epsilon$ (6’)

for all $t$ and $w$ as above.

Remark: We take this opportunity to point out, that definition 1 and the estimate in
Theorem 2 in [4] should have been written exactly as the above definition resp. the
inequality (6).

Notice, that the statements about the continuity of the Bergman kernel on the diagonal
and the continuity of the Bergman metric in theorems 1 and 2 are immediate consequences
of theorem 4 (see also [4]). But also the continuity inequality (2) follows from theorem
4 in both situations. In order to show this, we show at first the following lemma about
maximizing functions:

Lemma 1
Let $w\in D$ and $\alpha\in \mathbb{N}_{0}^{n}$ be given and suppose that $f\in H_{(\alpha)}^{2}(D)$ is a function with

$||f\Vert\leq 1$ and such that

$| \frac{D^{\alpha}f(w)}{D^{\alpha}B_{D}^{(\alpha)}(w)}-1|<\epsilon$

Then one has
$\Vert f-B_{D}^{(\alpha)}(\cdot, w)\Vert<C\epsilon$

wiih a numerical constant $C>0$ .

Proof: Let $(g_{j})_{j\in IN_{0}}$ be a complete orthonormal basis for $H_{(\alpha)}^{2}(D)$ with $go=B_{D}^{(\alpha)}(\cdot, w)$ .
Then one has for all $j=1,2,3,$ $\ldots$ necessarily $D^{\alpha}g_{j}(w)=0$ , since otherwise a function $g$

of the form $g=ag_{0}+bg_{j}$ could be constructed with $\Vert g\Vert=1$ , but $|D^{\alpha}g(w)|>D^{\alpha}g_{0}(w)$ .
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We represent $f= \sum_{j}^{\infty_{=0}}c_{j}g_{j}$ . Then $D^{\alpha}f(w)=c_{0}D^{\alpha}g_{0}(w)=c_{0}D^{\alpha}B_{D}^{(\alpha)}(w)$ , such that we
obtain from the hypothesis of the theorem the estimate

$|c_{0}-1|<\epsilon$

From this, we get $\Vert f\Vert^{2}-|c_{0}|^{2}=\sum_{j1}^{\infty_{=}}|c_{j}|^{2}\leq 1-|c_{0}|^{2}\leq 1-(1-\epsilon)^{2}\leq 2\epsilon$, such that we
now can estimate

$\Vert f(\cdot)-B_{D}^{(\alpha)}(\cdot, w)\Vert^{2}=|1-c_{0}|^{2}+\sum_{j=1}^{\infty}|c_{j}|^{2}\leq\epsilon^{2}+2\epsilon\leq 3\epsilon$

(if $\epsilon\leq 1$ ) . $\square$

With this lemma, it is now easy to show, that inequality (2) (from theorem 1 and 2) also
is a consequence of theorem 4. Namely:

Proof of inequality (2): Suppose, we are in a situation, where (6’) is valid for $\alpha=0$ . Then
we can apply lemma 1 to the function $f$ $:=B_{D_{t}}(\cdot, w)|\hat{D}_{t’}$ and obtain $\Vert(B_{D_{t}}(\cdot, w)|\hat{D}_{t’})-$

$B_{\hat{D}_{t}}(\cdot, w)\Vert<C\epsilon$ . This implies according to the definition of the maximizing function and

the fact, that always $B_{D’}(z, w)=K_{D}^{-1/2}(w)K_{D’}(z, w)$ for any domain $D’\subset\subset \mathbb{C}^{n}$ and any
point $z\in D’$ , the estimate

$|B_{D_{t}}(z, w)-B_{\hat{D}_{t’}}(z, w)|\leq C\epsilon K_{\hat{D}}^{1/_{t}2}(z)$

From this, (2) follows easily. Namely, writing $K_{t}$ $:=K_{D_{t}}$ and we get

$| \frac{K_{t}(z,w)}{K_{\hat{D}}^{1/_{t}2}(z)K_{t}^{1/2}(w)}-\frac{K_{\hat{D}_{t’}}(z,w)}{K_{\hat{D}}^{1/_{t}2}(z)K_{\hat{D}}^{1/_{t}2}(w)}|<C\epsilon$

Next, we estimate

$G$ $:= \frac{|K_{t}(z,w)|}{K_{\hat{D}}^{1/_{t}2}(z)}|\frac{1}{K_{t}^{1/2}(w)}-\frac{1}{K_{\hat{D}}^{1/_{t}2}(w)}|$

Together with $| \frac{K_{t}(w)}{K_{D_{t}}\wedge(w)}-1|<\epsilon$
, which is a consequence of (6’), and the fact, that

$|K_{t}(z, w)|\leq K_{t}^{1/2}(z)K_{t}^{1/2}(w)|$ , one obtains $G<C’\epsilon$ . This gives

$\frac{|K_{t}(z,w)-K_{\hat{D}_{t’}}(z,w)|}{K_{\hat{D}}^{1/_{t}2}(z)K_{\hat{D}}^{1/_{t}2}(w)}<C’’\epsilon$

for $aUt\in[0, t’]$ . By using thuis twice, namely for $t=0$ and for arbitrary $t$ , the inequality
(2) follows easily.
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Next we will show an important general estimate on the behavior of the mass of maximiging
functions near the boundary of pseudoconvex domains. It will for us be a useful tool in the
proof of theorem 1. Namely, by being able to use it in the case of local perturbation families,
we can avoid in theorem 1 any monotonicity hypothesis with respect to the perturbations.

Theorem 5
Let $D$ be any bounded pseudoconvex domain in $\mathbb{C}^{n}$ and $p\in\partial D$ an arbitrary point. Then

there exists a positive number $C$ , depending only on the dimension $n$ and the diameter of
$D$ , such that for any $\alpha\in \mathbb{N}_{o}^{n},$ $\tau>0,$ $\eta>0$ and $w\in D$ With $|w-p|\geq\eta$ the estimate

$\Vert B_{D}^{(\alpha)}(\cdot, w)\Vert_{D\cap B(p,E(\eta))}<C\eta^{\tau}$

holds. (’Here $B(p, r)$ denotes the open ball ofradius $r$ centered at $p$ and $E(\eta)=E_{\tau,\alpha}(\eta)$ $:=$

$\exp(-\exp(\eta^{-(n+|\alpha|+r)})).)$

Proof: In a first part of the proof we assume, that $D\subset B$ $:=B(O, e^{-1})$ and $p=0$ . The
result then has to be proved only for $\eta<e^{-1}$ . We put

$F(z)$ $:=\log(\log(-\log|z|))$ and $W_{k}$ $:=\{z\in B:k-1<F(z)<k\}$
for $k\in$ IR and write $\psi(z)$ $:=-\log(-\log|z|)$ . Let $\chi$ : $\mathbb{R}arrow \mathbb{R}$ be any $C^{\infty}$ -function
satisfying $\chi|(-\infty, 1/2)=1$ and $\chi|(1, \infty)=0$ and put $\rho_{k}(z)$ $:=\chi(F(z)-k)$ . Given any
point $w\in D\backslash B(p, \eta)$ we define $\varphi_{w}(z)$ $:=2(n+|\alpha|)\log|z-w|$ . Since $d\rho_{k}=\chi^{l}(F(z)-k)dF$ ,
we have

$|d \rho_{k}|_{\partial\overline{\partial}\psi}\leq\sqrt{2}e^{-k}\sup|\chi’|$

Hence we obtain
$|d \rho_{k}|_{\partial\overline{\partial}\psi}\leq\sqrt{2}\eta^{N}\sup|\chi’|$ (7)

if $k\geq$ -Nlog $\uparrow l+1$ . We also observe that (8)

$\sup\{|z-w|^{-2(n+|\alpha|)}$ : $z\in B(p, E(\eta))\}=(\eta-E(\eta))^{-2(n+|\alpha|)}<2^{2(n+|\alpha|)}\eta^{-2(n+|\alpha|)}$

We now put $v_{k}$
$:=\overline{\partial}(p_{k}(z)B_{D}^{(\alpha)}(z, w))\wedge dz_{1}\wedge\cdots\wedge dz_{n}$ . Then $v_{k}$ is a $C^{\infty}(n, 1)$ -form on

$D$ satisfying $\overline{\partial}v_{k}=0$ and $suppv_{k}\subset\overline{W}_{k}$ . Moreover, from (7) and (8) we obtain

$\Vert v_{k}\Vert_{\partial\overline{\partial}\psi,\varphi_{w}}^{2}<C_{0}\eta^{2r}$ if $k\geq-(n+|\alpha|+\tau)\log\eta+1$

Here $C_{0}=2^{n+|a|+1} \sup|\chi’|^{2}$ . We fix $k:=-(n+|\alpha|+\tau)\log\eta+1$ . Since $D$ is pseudoconvex,
also $D\backslash \{w\}$ admits a complete K\"ahler metric. Therefore, theorem 3 gives us an $(n, 0)$ -form
$u_{k}$ on $D\backslash \{w\}$ satisfying $\overline{\partial}u_{k}=v_{k}$ and

$| \int_{D\backslash \{w\}}\frac{u_{k}\wedge\overline{u}_{k}}{|z-w|^{2(n+|\alpha|)}}|\leq C\Vert v_{k}||_{\partial\overline{\partial}\psi,\varphi_{w}}^{2}<CC_{0}\eta^{2\tau}$ (9)
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Let $u_{k}=f_{k}(z)dz_{1}\wedge\cdots\wedge dz_{n}$ . Then the integrability property (9) implies that the function
$\rho_{k}(z)B_{D}^{(\alpha)}(z, w)-f_{k}(z)$ extends holomorphically to $D$ and lies in $H^{2}(D)$ . We call it $g_{w}(z)$ .
It enjoys the following properties: $g_{w}\in H_{(\alpha)}^{2}(D)$ and

$D^{\alpha}g_{w}(w)=D^{\alpha}B_{D}^{(\alpha)}(w, w)$ (10)

$\Vert g_{w}||_{D}\leq 1+C_{1}\eta^{r}$ (11)

(Here one can take $C_{1}=\sqrt{CC_{0}}.$ )
From (10) and (11) we obtain

$|(1+C_{1}\eta^{\tau})^{-1}D^{\alpha}g_{w}(w)-D^{\alpha}B_{D}^{(\alpha)}(w, w)|=C_{1}\eta^{\tau}(1+C_{1}\eta^{\tau})^{-1}D^{\alpha}B_{D}^{(\alpha)}(w)$ (12)

By applying lemma 1 to this, we get

$\Vert(1+C_{1}\eta^{r})^{-1}g_{w}-B_{D}^{(\alpha)}(\cdot, w)\Vert_{D}\leq C_{2}\eta^{\tau}$ (13)

for some numerical constant $C_{2}$ . This shows, that, in the case $D\subset B(O, e^{-1})$ , it suffices
for the proof of the desired inequality of Theorem 5 to show, that

$\Vert(1+C_{1}\eta^{\tau})^{-1}g_{w}\Vert_{D\cap B(p,E(\eta))}<C_{3}\eta^{\tau}$

This, however, follows immediately from (9), if one uses, that $g_{w}(z)=f_{k}(z)$ on $D\cap$

$B(p, E(\eta))$ . The general case can very easily be deduced from this. $\square$

3. PROOF OF THEOREM 1

As we have already observed, theorem 1 is a consequence of theorem 4 in the situation of
theorem 1. It is, therefore, this, what we have to show here. In doing this, theorem 5 is
an extremely useful tool.

We are given a local perturbation family $\{D_{t}\}_{0\leq t\leq 1}$ for $D$ at a point $p\in\partial D$ . We fix an
$\epsilon>0$ and a neighborhood $U$ of $p$ and define $\delta_{0}$ $:= \inf_{z\in\partial U}|z-p|$ . Of course, we may assume,
that $\delta_{0}<1$ . Given any $\delta\in(0, \delta_{0})$ , we can choose a $t_{0}>0$ so that $D_{t}\backslash B(p, E_{1,\alpha}(\delta))=$

$D\backslash B(p, E_{1,\alpha}(\delta))$ for $aUt\in[0,t_{0}]$ .
Let now $w\in D\backslash U$ be any point. Then, for $\hat{D}=\hat{D}_{t_{0}}$

$:= \bigcap_{t\in[0,t_{0}]}D_{t}$ there is according to
theorem 5 a constant $C>0$ , such that

$\Vert B_{\hat{D}}^{(\alpha)}(\cdot, w)\Vert_{\hat{D}\cap B(p,E_{1,a}(\delta))}<C\delta^{|\alpha|+1}$ (14)
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Hence, by using the same cut-off functions $p_{k}$ for suitable $k$ as in the proof of theorem 5
and by applying the O-machinery with the K\"ahler metric $\partial\overline{\partial}(-\log(-\log(A|z-p|)))$ with a
suitable constant $A>0$ and weight $2(n+|\alpha|)\log|z-w|$ to the form $v_{k}$ $:=\overline{\partial}(\rho_{k}B_{\hat{D}}^{(\alpha)}(z, w))\wedge$

$dz_{1}\wedge\cdots dz_{n}$ we can produce holomorphic functions $g_{t}\in H_{(\alpha)}^{2}(D_{t};w)$ satisfying

$D^{\alpha}g_{t}(w)=D^{\alpha}B_{\hat{D}}^{(\alpha)}(w, w)$ (15)

and
$\Vert g_{t}\Vert_{D_{t}}\leq 1+C’\delta^{|\alpha|+1}$ (16)

for all $t\in[0, t_{0}]$ . Here the constant-C’ depends only on $n$ and the diameter of $D$ . By using
the monotonicity of $D^{\alpha}B_{\hat{D}}^{(\alpha)}$ with respect to the domain $\hat{D}$ (observe, that $\hat{D}\subset D\cap D_{t}$ ),
we obtain (6) from (15) and (16) after assuming, that $\delta$ was chosen sufficiently small. $\square$

Remark: Notice, that it also follows from this proof, that

$| \frac{D^{\alpha}B_{D_{t}}^{(\alpha)}(w)}{D^{\alpha}B_{\hat{D}}^{(\alpha)}(w)}-1|<\epsilon$ (17)

for all $t\in[0, t_{0}]$ .

4. PROOF OF THEOREM 2

As we know already, for proving theorem 2 it suffices to show theorem 4 in the situation
of theorem 2. In order to do this, we sh$ow$ at first:

Lemma 2
Let $D$ be a bounded pseudoconvex domain in $\mathbb{C}^{n}$ With $C^{\infty}$ -smooth boundary, and let

$W\subset\partial D$ be a (relatively) open subset. Suppose, that there exists a neighborhood $U$ of
$\partial_{\partial D}W$ in $\mathbb{C}^{n}$ and $a$ $C^{\infty}$ function $r$ : $\mathbb{C}^{n}arrow \mathbb{R}$ satisfying

a) $D=\{z : r(z)<0\}$ ,
b) $dr$ vanishes $no\mathfrak{n}^{f}lJere$ on $\partial D$ ,
c) $\partial\overline{\partial}(-\log(-r))\geq\partial r\overline{\partial}r/2r^{2}$ on $D$ and there exists a $\delta>0$ , such that

$\partial\overline{\partial}(-\log(-r))\geq(-r)^{-\delta}\partial\overline{\partial}|z|^{2}+\frac{\partial r\overline{\partial}r}{2r^{2}}$ on $D\cap\overline{U}$

Then there exists a $C^{\infty}$ function $p:Darrow \mathbb{R}$ satisfying the following properties:

$W\backslash U\subset\partial\{z:\rho(z)<c\}\cap\partial D\subset W$ for any $c\in \mathbb{R}$ (18)

$\lim_{carrow\infty}$ ($\sup\{|d\rho(z)|_{\partial\overline{\partial}(-\log(-r))}$ : $z\in D,$ $p(z)>c\})=0$ (19)
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Proof: Let $\tau$ be any real-valued $c\infty$ function on $\partial D$ satisfying $\tau|W\backslash U=0$ and $\tau|\partial D\backslash (U\cup$

$W)=1$ and let $\tilde{\tau}$ : $\overline{D}arrow \mathbb{R}$ be any $c\infty$ extension of $\tau$ from $\partial D$ to $D$ . Put $p(z);=\tau(z)$ .
$\log(-\log(-r(z)))$ . Then (18) is clearly satisfied by $p$ . As for (19), it follows imnediately
from c), since

$dp= \log(-\log(-r))d\tau+\frac{\tau}{r\log(-r)}dr$

$\square$

Proof of Theorem 4 in the situation of Theorem 2: Let the situation of Theorem 2 be given.
Since $\partial D$ is of finite l-type at all points of $\partial V\cap\partial D$ , there exists, because of condition
c) of the definition of a regular perturbation family, a $t_{0}>0$ , such that the functions
$r_{t}$ $:=r(t, \cdot):\mathbb{C}^{n}arrow \mathbb{R}$ satisfy c) with a fixed $\delta>0$ on $D_{t}\cap U_{0}$ for all $t\in[0,t_{0}]$ and a
fixed neighborhood $U_{0}$ of $\partial V\cap\partial D$ (notice, that finite l-type is an open condition with
respect to such perturbations and that the l-type is uniformly bounded, see [3]). Let now
$W$ $:=V\cap\partial D$ and choose a $c\infty$ function $p$ on $D$ satisfying (18) and (19) of Lemma 2.
Since $\partial\{z : \rho(z)<c\}$ approaches $\partial D$ as $carrow\infty$ , one can find for any $\epsilon>0$ a $t^{l}\in(0, t_{0})$ ,
such that $\{z;\rho(z)<c+1\}\backslash W\subset D_{t}$ and $|dp|_{\partial\overline{\partial}(-\log(-r_{t}))}<\epsilon$ on $\{z\in D_{t} : p(z)>c\}$ for
any $t\in[0, t’]$ (here we use again condition c) of the definition of a regular perturbation
family). Let $\chi$ : $Etarrow \mathbb{R}$ be a $c\infty$ function as in the proof of Theorem 5, and put
$\omega_{\epsilon}(z)$ $:=\chi(\rho(z)-c)$ . Then we have

$|d \omega_{\epsilon}|_{\partial\overline{\partial}(-\log(-r_{t}))}<\epsilon\sup_{\mathbb{R}}|\chi’|$

for all $t\in[0, t’]$ . Again we put $\hat{D}_{t’}$

$:= \bigcap_{t\in[0,t]}D_{t}$ . The $\omega_{\epsilon}$ are then used as cut-off

functions, when for any $w\in V’\cap D$ good approximate extensions of $B_{\hat{D}_{t}}^{(\alpha)}(\cdot, w)$ from
$\hat{D}_{t’}$ to $D_{t}$ are constructed for $aUt\in[0, t’]$ by using Theorem 3 on $D_{t}$ with the metric
$-\partial\overline{\partial}(\log(-r_{\ell}))$ and weight $2(n+|\alpha|)\log|z-w|$ . We leave the details to the reader. We
obtain from this the desired estimate

$| \frac{D^{\alpha}B_{D_{t}}^{(\alpha)}(w)}{D^{\alpha}B_{D_{t}}^{(\alpha)}(w)}-1|<\epsilon$

for all $t\in[0, t’]$ . $\square$
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5. A COUNTEREXAMPLE

In this section we briefly give an example of a $C^{\infty}$ smooth pseudoconvex domain and a
regular perturbation family for it, for which inequality (1) does not hold, the reason being
the lack of a finite type condition required in Theorem 2.

Let $\triangle^{2}$

$:=$ { $(z_{1},$ $z_{2})\in \mathbb{C}^{2}$ : 1 $z_{1}|<1$ and 1 $z_{2}|<1$ }. Furthermore, let $\{R_{t}\}_{0\leq t\leq 1}$ be any
(continuous) family of convex domains in $\mathbb{R}^{2}=\{(x, y) : x, y\in \mathbb{R}\}$ satisfying

$\partial R_{0}\cap\{xy=0\}=$ { $x\leq-1$ or $y\leq-1$ } $\cap\{xy=0\}$

and
$\partial R_{\ell}\cap\{xy=0\}=$ {$x\leq-2$ or $y\leq-2$ } $\cap\{xy=0\}$

if $t\in(O, 1$]. Let $\hat{R}_{t}$ be the closure of $R_{t}$ in $(IR \cup\{-\infty\})^{2}$ . We set

$D_{t}$ $;=\{(z_{1}, z_{2})\in\Delta^{2}$ : $(\log|z_{1}|,\log|z_{2}|)\in\hat{R}_{t}\}$

Then, with a suitable regularity assumption on $\{R_{t}\}_{0\leq t\leq 1},$ $\{D_{t}\}_{0\leq t\leq 1}$ is a regular per-
turbation family of pseudoconvex domains with $C^{\infty}$ boundaries outside the set $V$ $:=$

{ $(z_{1},$ $z_{2})\in\partial D$ : $|z_{1}|<e^{-2}$ or $|z_{2}|<e^{-2}$ }. But obviously inequality (1) fails to hold for
it, as can be seen in the following way: We define for $\mu\in \mathbb{N}$ the point $w_{\mu}$ $:=1-1/\mu$ and
consider the maximizing function for the bidisc $\triangle^{2}$ :

$f_{\mu}((z, w))$ $:=B_{\Delta^{2}}^{(0)}((z, w),$ $(0, w_{\mu}))= \frac{1}{\pi^{2}}\frac{1-|w_{\mu}|^{2}}{(1-w\overline{w}_{\mu})^{2}}$

Furthermore, we put $\triangle_{\mu}$ $:=\{w\in\triangle : |w-1|<1/\mu^{1/3}\}$ and fix any arbitrarily small $t>0$ .
Then one has $\lim_{\muarrow\infty}(\sup_{D_{t}\backslash (\Delta_{\mu}\cross\Delta)}|f_{\mu}|)=0$. Therefore,

$\lim_{\muarrow\infty}\Vert f_{\mu}\Vert_{D_{t}}^{2}=\lim_{\muarrow\infty}\int_{(\Delta_{\mu}\cross\Delta)\cap D_{t}}|f_{\mu}|^{2}dV=\frac{1}{e^{4}}$

This shows, that, in fact,
$\lim_{\muarrow\infty}\frac{B_{D_{t}}((0,w_{\mu}))}{B_{\Delta^{2}}((0,w_{\mu}))}\geq e^{2}$

On the other hand, it is immediate, that one has

$\varliminf_{\mu\infty}\frac{B_{D_{0}}((0,w_{\mu}))}{B_{\Delta^{2}}((0,w_{\mu}))}\leq e$

Together, it follows, that (1) cannot be satisfied for the family $D_{t}$ .
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