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Abstract

We present a survey of results on solving special cases of the Euclidean Traveling
Salesman Problem. In particular, a sketch is given of an $\mathcal{O}(mn)$ time and $O(n)$ space
algorithm for solving the special case of the n-city Euclidean Traveling Salesman
Problem where $n-m$ cities lie on the boundary of the convex hull of all $n$ cities, and
the other $m$ cities lie on a line segment inside this convex hull.
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Introduction1

The n-city Euclidean Traveling Salesman Problem (TSP) is the
TSP where each city $i$ is represented as a point $p_{i}=(x_{i}, y_{i}),$ $x_{i},$ $y_{i}\in$

$\mathbb{R}$ , in the plalle and the distance $c(p_{i)}p_{j})$ between any pair of ci-
ties $i$ and $j$ is computed according to the Euclidean metric, $i,j=$
$1,$

$\ldots,$
$n$ . Papadimitriou [8] proved the Euclidean TSP to be $\mathcal{N}\mathcal{P}-$

hard. Therefore, it is interesting to investigate whether special cases
of this problem are solvable in polynomial time. The main reference
on special cases of the (general) TSP is the excellent survey by
Gilmore, Lawler and Shmoys [7] (at this moment, Burkard, Deineko.
Van Dal and Van der Veen [2] are working on a survey of recent
results). However, Gilmore, Lawler and Shmoys do not consider
special cases of the Euclidean TSP.

Therefore, first a survey of results on special cases of the Eu-
clidean Traveling Salesman Problem will be presented. Thereafter,
we give a sketch of an $\mathcal{O}(mn)$ time and $\mathcal{O}(n)$ space algorithm for
solving the special case of the n-city Euclidean TSP where $n-n’\iota$

cities lie on the boundary of the convex hull of the $n$ cities, and the
other $m$ cities lie on a line segment inside this convex hull. This
special case of the Euclidean TSP is a generalization of several spe-
cial cases of the Euclidean TSP that will be considered in the next
section.

1This paper is based on the paper (The convex-hull-and-line Traveling Salesman Problem: A solvable
case’ which has been submitted to Comp $u$ tational Geometry: Theory an $d$ Applications, and wbich in turn
is an updated version of Chapter 4 of the Ph.D. thesis of R. van Dal, ‘Special Cases of the Traveling
Salesman Problem’, publislIed by Wolters-Noordhoff bv, Groningen, The Netherlands.
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1 Survey of results on the Euclidean TSP

A well-known result with respect to the Euclidean TSP, presumed
to be first mentioned explicitly by Flood [6], states that ‘in the
euclidean plane the minimal (or optimal) tour does not intersect
itself’. An intersection of a tour $\tau$ is defined as a common point
$v\not\in\{p_{1)}p_{n}\}$ that is shared by two (or more) edges of $\tau$ , or a
common point $w\in\{p_{1}, \ldots,p_{n}\}$ that is shared by three (or more)
edges of $\tau$ . A proof of Flood’s result was given by Quintas and
Supnick [9].

An important consequence of this is the following. Assuming that
not all cities lie on one line, an optimal tour has the property that
the cities on the boundary of the convex hull of the cities are visited
in their cyclic order. On the contrary, if all $n$ cities do lie on one
line and are labeled according to their order on the line, then a totl$\cdot$

is optimal if and only if it is pyramidal, where a tour on $n$ cities is
called pyramidal if it is of the form $(1, i_{1)}\ldots, i_{\Gamma}, n,j_{1}, \ldots,j,,-,.-2)$

with $i_{1}<i_{2}<\cdots<i_{\Gamma}$ and $j_{1}>j_{2}>.$ . . $>j_{??-r-2}$ . Several
authors have formulated conditions on the distance matrix under
which an optimal tour is at least as long as a shortest $p\}^{r}I^{\cdot}amida1$

tour, see e.g. Demidenko $[4]$
)

$[5]$ , Van der Veen [11], and Gilmorc.
Lawler and Shmoys [7]. Moreover, a shortest pyramidal tour can
be found in polynomial time, despite the fact that their number is
exponential. Note that the case where all cities lie on two parallcl
lines corresponds to the case where all cities lie on the boundary of
their convex hull.

Cutler [3] has given an $\mathcal{O}(n^{3})$ time and $\mathcal{O}(n^{2})$ space $d_{L}\backslash ^{7}nalnic$

programming algorithm for solving the so-called 3-line TSP, $i$ . $e.$ .

the Euclidean TSP where all points lie on three distinct parallel
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lines in the plane. Rote [10] extended the results of Cutler by con-
sidering the N-line TSP, $i$ . $e.$ , the Euclidean TSP where all points
lie on $N$ parallel lines in the plane, with $N$ a small $i_{11}tege\iota\cdot$ . He
gave a dynamic programming algorithm which is polynomial for a
fixed number of lines. Moreover, conditions are given such that the
algorithm can also be applied in the case that all points lie on al-
most parallel’ lines. Real-world problems that can be formulated as
an N-line TSP arise in the manufacturing of printed circuit boards
and related devices. However, because the running time of the al-
gorithm is rather high (the exponent of the polynomial time bound
is the number of lines), the algorithm seems to be of theoretical
interest only.

The special case of the Euclidean TSP to be considered in tlie
next section is another extension of the 3-line TSP. It is easy to see
that the class of so-called convex-hull-and-line TSPs contains the
3-line TSP as a special case. Furthermore, we obtain an improve-
ment in both running time and space requirement. Finally, another
interesting special case of the Euclidean TSP, already mentioned by
Cutler [3], is the case where all cities lie on two perpendicular lines.
This problem is still open.

2 The convex-hull-and-line TSP

In this section a sketch of an $\mathcal{O}(mn)$ time algorithm is given for
solving the special case of the n-city Euclidean TSP where $n-?n$
cities lie on the boundary of the convex hull of the $n$ cities, and
the other $m$ cities lie on a line segment inside this convex hull (sce
Figure 1). This special case of the Euclidean TSP will be called the
convex-hull-ancl-line TSP.
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The points on the line segment inside the convex hull $\backslash vill$ bc
labeled consecutively $g_{1},$ $g_{2,}g_{m}$ . $t\lambda^{f}e$ assume $m\geq 1$ . The set of
points $\{g_{1}, g_{2)}\ldots , g_{m}\}$ will be denoted by $\mathcal{G}$ We will also speak of
the line through these points as the line $\mathcal{G}$ . The points that lie on the
boundary of the convex hull of the cities and above or on the line $\mathcal{G}$

will be labeled consecutively $u_{1},$ $u_{2},$ $\ldots$ , $u_{p}$ . The points that lie on
the boundary of the convex hull and below the line $\mathcal{G}$ will be labeled
consecutively $l_{1},$ $l_{2)}\ldots$ , $l_{q}$ . The set of points $\{u_{1)}\ldots , u_{p}, l_{1}, \ldots, l_{q}\}$

will be denoted by $B$ .

Figure 1: An instance of the convex-hull-and-line TSP.

As already stated, in an optimal tour the cities in $\mathcal{B}$ have to
be visited in their cyclic order, otherwise there is an intersection.
Therefore, for each city $g_{i}\in \mathcal{G}$ , it remains to determine between
which two adjacent cities in $\mathcal{B}$ it is visited. The $follo\backslash \nwarrow^{r}ing$ lemmas
give a necessary condition for an optimal tour of the convex-hull-
and-line TSP.
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Lemma 2.1 Let $g_{i)}g_{j}\in \mathcal{G}$ and let $v$ and $w$ be two adjacent
cities in B. If in an optimal tour $\tau$ both $g_{i}$ and $g_{i}$ are visited
between $v$ and $w$ , then all cities that lie between $g$; and $yc_{i}$ on

$\mathcal{G}$ are visited between $v$ and $w$ .

As a consequence of this lemma and the fact that the cities in Z3
are visited in their cyclic order we obtain the following lemma.

Lemma 2.2 An optimal tour can be obtained by splitting the
set of points $B$ into $k+1$ segments

$\{g_{1)}g_{2}, \ldots, g_{i_{1}}\},$ $\{g_{i_{1}+1)}\ldots, g_{i_{2}}\},$
$\ldots,$

$\{g_{i_{k}+1}, \ldots, g_{m}\}$ ,

for $0\leq k<m,$ $0=i_{0}<i_{1}<i_{2}<\cdots<i_{k}<m_{f}$ and inserting
each segment between two adjacent points in $\mathcal{B}$ .

The algorithm will first determine for each possible segment $\{g;$ ,
$g_{i+1)}\ldots$ , $g_{j-1},$ $g_{i}$ }, $1\leq i<j\leq m$ , the cheapest possible way to
insert it between tv$r_{O}$ adjacent cities in $B$ , and then it will determine
the best way to split $\{g_{1}, g_{2)}\ldots , g_{m}\}$ into segments.

In principle, the insertion of a segment $\{g_{i},g_{i+1}, \ldots , g_{j-1}, g_{i}\}$

between two adjacent points $v$ and $w$ in $\mathcal{B}$ can be done in $t\backslash \tau^{r}0$

ways. However, in almost all cases one way should be discarded
because it yields an intersection. Furthermore, inserting a segment
between $u_{1}$ and $l_{1}$ may also result in an intersection in the tour, as
the following lemma shows.

Lemma 2.3 For any optimal tour, the segment $\{g_{i},$ $g_{i+1},$ $\ldots$ ,
$g_{j-1},$ $g_{j}$ } cannot be inserted between $u_{1}$ and $l_{1}$ unless $i=1$ .
Similarly, the segment $\{g_{i}, g_{i+1}, \ldots , g_{j-1}, g_{j}\}$ cannot be insert-
ed between $u_{p}$ and $l_{q}’\iota\iota$nless $j=m$ ,
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Therefore, the cases mentioned in the above lemma have to be ex-
cluded. Two adjacent points $v$ and $w$ in $B$ will be called admissible
for a segment $\{g_{i}, g_{i+1}, \ldots , g_{j}\},$ $1\leq i<j\leq m$ , if

$\bullet$ $v$ and $w$ lie strictly on the same side of the line $\mathcal{G}$ . or if

$\bullet$ $\{v, w\}=\{u_{p}, l_{q}\}$ and $j=m$ , or if

$\bullet$ $\{v, w\}=\{u_{1)}l_{1}\}$ and $i=1$ .

The possible splittings of $\{g_{1}, g_{2}, \ldots, g_{m}\}$ can be associated $\backslash \backslash \prime if\downarrow h$

paths in an acyclic digraph $D$ with vertex set $\{0,1, \ldots , m\}$ (the
additional vertex $0$ acts as a source) and arcs $(i,j)$ with costs $d_{ij}$

for all $0\leq i<j\leq m$ , where $d_{ij}$ is the minimum cost of inserting
the segment $\{g_{i+1}, g_{i+2}, \ldots , g_{j}\}$ between two admissible $ad.|ac$ent
points in $B$ .

It is easy to see that if we associate with the arc $(i,j)$ the segment
$\{g_{i+1}, g_{i+2)}\ldots, g_{j}\}$ , then there is a one-to-one correspondence be-
tween the splittings of $\{g_{1}, g_{2}\ldots , g_{m}\}$ into segments and tlre paths
in $D$ from $0$ to $n’\iota$ . For example, the splitting $\{\{g_{1}, g_{2}, g_{3}\},$ $\{g_{1}, g_{\overline{9}}\}$ ,
$\{g_{6}\},$ $\{g_{7}, g_{S}, g_{9}, g_{10}\}\}$ corresponds to the path $0,3,5,6,10$ . Morc-
over, the length of a path $0,$ $i_{1)}i_{2)}i_{k},$ $m$ in $D$ represents th$(\backslash$

minimal total costs of inserting the corresponding segments $\{g_{1},$ $g_{2}$ ,
. . . , $g_{i_{1}}$ }, $\{g_{i_{1}+1)}\ldots, g_{i_{2}}\}$

) , $\{g_{i_{k}+1}, \ldots, g_{m}\}$ . $Evidentl\backslash 7$ a short-
est path from $0$ to $m$ in $D$ determines an optimal tour for thc
convex-hull-and-line TSP, as the following theorem shows.

Theorem 2.1 Let $\sigma$ be the initial subtour for a convex-hull-
and-line $TSP$ that visits only the cities on the boundary of the
convex hull in their cyclic order. Then a tour $\tau$ is optimal if
and only if it can be obtained by inserting the points in $B$ into

$\sigma$ in such a way that the corresponding path in the digraph $D$
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has shortest length. As a consequence, the length of an optimal
tour is the length of the initial subtour $\sigma$ plus the length of a
shortest path in $D$ ,

In the first phase of our algorithm we compute the cost of a shortest
path of the acyclic digraph by a dynamic programming $rectl\cdot sioll$ .

and in the second phase we use this path to construct all $opti_{1}na1$

tour.
Let us briefly discuss how to compute the values $d_{ij}$ . Clearly, for

a fixed value of $j$ , and for all $i,$ $0\leq i<j$ , the cost of inserting the
segment $\{g_{i+1}, g_{i+2)}\ldots , g_{j}\}$ between $u_{k}$ and $u_{k+1},$ $k=1,$ $\ldots$ , $p-1$ .

(between $l_{k}$ and $l_{k+1},$ $k=1,$ $\ldots$ , $q-1$ , respectively) can be com-
puted in $\mathcal{O}(mn)$ time, but we will show that the time complexity
can be improved to $\mathcal{O}(n)$ time.

Let $A=(a_{ik})_{0\leq i<j,1\leq k<p}$ be the $j\cross(p-1)$ matrix with entries

$a_{ik}=c(u_{k)}g_{i+1})+c(g_{i+1)}g_{j})+c(g_{j}, u_{k+1})-c(u_{\lambda\cdot,1+1}u_{p}.)$ .

Clearly, our problem will be solved if we determine the $1ni_{11}i_{l1’1tll1}$ in
each row of the $mat_{1}\cdot ix$ . Let $j(i)$ be the index of the leftmost $co1_{11}nn$

containing the minimum value in row $i$ of A. $A$ is called monotone
if $i_{1}<i_{2}$ implies that $j(i_{1})\leq j(i_{2}).$ $A$ is totally monotone if every
submatrix of $A$ is monotone. Aggarwal et al. [1] have shown that
all row minima can be computed in $\mathcal{O}(j+p)$ time if the matrix $A$

is totally monotone. It is easy to prove that A $=(a_{il_{\iota}}.)$ is totally
monotone (actually. in our paper we prove that $A$ has an $e\nwarrow^{r}()n$

stronger property).
Finally, we only need to store the values $d_{ij}fo1^{\cdot}$ a fixed $jfo1^{\cdot}$

each of the $m$ iterations in the first phase, and hence in this $pl_{1}as\mathfrak{c}$

the algorithm needs only $\mathcal{O}(n)$ space. Finally, we state $ol1^{\cdot}$ main
theorem.
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Table 1: Coordinates of points.

1 $(177,177)$ 11 $(1000,32)$

2 $(355,355)$ 12 $(1000,268)$

3 $(381,381)$ 13 $(1000,681)$

4 $(457,457)$ 14 $(1000,822)$

5 $(632,632)$ 15 $(1000,992)$

6 $(789,789)$ 16 $(993,993)$

7 $(164,0)$ 17 $(794,1000)$

8 $(171,0)$ 18 $(57,1000)$

9 $(387,0)$ 19 $(0,1000)$

10 $(409,0)$ 20 $(0,329)$

Theorem 2.2 The convex-hull-and-line $TSP,$ $i$ . $e_{f}$ the n-city
Euclidean $TSP$ where $n-m$ cities lie on the boundary of the
convex hull of the $n$ cities and the other $m$ cities lie on a line
segment inside the convex hull, can be soZved in $\mathcal{O}(mn)$ time
and $\mathcal{O}(n)$ space.

Example Let $n=20$ and the coordinates of the points are given
in Table 1. The $m=6$ points on the line segment inside the convex
hull of the 20 points are 1, 2, 3, 4, 5 and 6. The initial subtour
is (7,8,9,10,11,12,13,14,15,16, 17,18,19,20). A shortest path $fr\cdot o\ln$

$0$ to 20 is 0,1,20 and the length of this path is 43 $+801=844$
(rounded to integers). This means that in order to obtain an optimal
tour we have to insert point 1 and segment {2,3,4,5,6} into the
initial subtour. Point 1 is inserted between 7 and 20 and segment
{2,3,4,5,6} is inserted between 17 and 18. So, an optimal tour is

(1, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 6, 5, 4, 3, 2, 18, 19, 20)
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Figure 2: An instance of the convex-hull-and-line TSP and its solution.

and the length of this tour is 4694 (see Figure 2).
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