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ABSTRACT: Marsaglia and Zaman recently proposed new classes of random num-
ber generators, called add-with-carry (AWC) and subtract-with-borrow (SWB), which are
capable of quickly generating very long period (pseudo)-random number sequences using
very little memory. We show that these sequences are essentially equivalent to linear
congruential sequences with very large prime moduli. So, the $AWC/SWB$ generators can
be viewed as effcient ways of implementing such large linear congruential generators. As
a consequence, the theoretical properties of such generators can be studied in the same
way as for linear congruential generators, namely via the spectral and lattice tests. We
also show how the equivalence can be exploited to implement efficient jumping ahead
facilities for the AWC and SWB sequences. Our numerical examples illustrate the fact
that $AWC/SWB$ generators have extremely bad lattice structure in high dimensions.
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1. THE AWC AND SWB GENERATORS

Marsaglia and Zaman [10] proposed the following types of random number generators,
called add-with-carry (AWC) and subtract-with-borrow (SWB). Let $b,$ $r$ , and $s$ be positive
integers, where $b$ is caUed the base and $r>s$ are caUed the lags. The AWC generator is
based on the recurrence

$x_{i}$ $=$ $(x_{i-s}+x_{i-r}+c_{i})mod b$ , (1)
$c_{i+1}$ $=$ $I(x_{i-s}+x_{i-r}+c;\geq b)$ , (2)

where $c_{i}$ is called the carry, and $I$ is the indicator function, whose value is 1 if its ar-
gument is true, and $0$ otherwise. That generator is extremely fast, since it requires no
multiplication, and the modulo operation can be performed by just subtracting $b$ if and
only if $x_{i-s}+x_{i-r}+c_{i}\geq b$ . The maximum possible (or full) period is $b‘+b^{s}-2$ . It is
attained when $M=b‘+b^{S}-1$ is prime and $b$ is a primitive root modulo $M$ (see [10]). For
example, one can take $b$ around $2^{31}$ and $r$ around 20, yielding a period of approximately
$2^{620}$ if the full period conditions are satisfied. This goes much beyond the requirements
of most applications.

To produce values $\{u;\}$ whose distribution (hopefully) approximates the $U(O, 1)$ dis-
tribution, one can use $L\leq r$ successive values of $x_{j}$ to produce one $u_{i}$ as follows [2]:

$u;= \sum_{j=1}^{L}x_{Li-j+1}b^{-j}$ . (3)

Assuming that $L$ is relatively prime to $M-1$ , the sequences $\{u;\}$ and $\{x;\}$ have the same
periods. If $b$ is small, or if more precision is desired, take a larger $L$ . If $b$ is large enough
(e.g., a large power of two), one can just take $L=1$ . Here, the digits of $u_{i}$ are filled up
from the least signfficant to the most significant one. The sequence $\{u_{i}\}$ defined by (3) is
an analogue of the Tausworthe sequence $[11, 13]$ . For the latter, the digits of $u_{i}$ are filled
up by a linear feedback shift register sequence modulo two (i.e., $b=2$). The difference
with (1) is the presence of the carry and the fact that $b$ is not necessarily equal to two.

The AWC has a variant called complementary AWC, or AWC-c, based on:

$x_{i}$ $=$ $(2b-1-x_{i-s}-x_{i-r}-c_{i})mod b$ (4)
$=$ $(-x_{i-s}-x_{i-r}-c_{j}-1)mod b$ ,

$c_{i+1}$ $=I(x_{i-s}+x_{i-r}+c;\geq b)$ . (5)

The SWB also comes in two flavors, which we will call SWB-I and SWB-II, based on the
recurrences:

$x_{i}$ $=$ $(x_{i-s}-x_{i-r}-c_{i})mod b$ , (6)
$c_{i+1}$ $=$ $I(x_{i-s}-x_{i-r}-c_{i}<0)$ , (7)
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and

$x_{i}$ $=$ $(x_{i-r}-x_{i-}$. $-c_{i})mod b$ , (8)
$c_{i+1}$ $=$ $I(x_{i-r}-x_{i-s}-c;<0)$ , (9)

respectively. Here, $c_{i}$ is called the borrow.

We $wiU$ use the general notation $AWC/SWB$ to refer to any of those four variants.
For each of them, the maximum possible period is $M-1$ , achieved when $M$ is prime and
$b$ is a primitive root modulo $M$ , where the value of $M$ depends on the variant, as shown
in Table 1.

In all cases, the $u_{i}’ s$ can be produced from the $x_{j}’ s$ as in (3). For a full period
$AWC/SWB$ generator, the $x_{i}’ s$ are provably almost equidistributed in up to $r$ dimensions,
i.e., among all (overlapping) r-dimensional vectors of successive values of $x_{i}’ s$ , over the
whole period, every r-dimensional vector with components in $\{0, \ldots , b-1\}$ appears exactly
once, except for a tiny percentage of exceptions [10].

The $AWC/SWB$ methods can be viewed as slight modifications to the so-called additive
or subtractive methods discussed in Knuth [3]. The only difference in implementation
is that for the latter, there is no carry or borrow ($c_{i}=0$ for all $i$ ). But in terms of
period length, this makes an enormous difference: for example, if $b=2^{e}$ (a power of
two), the maximal period lengths for the additive and subtractive generators are only
$(2^{f}-1)2^{e-1}\approx 2^{\tau+e-1}$ , which falls way short of $b^{f}+b^{s}-2\approx 2^{re}$ , unless $e=1$ . The
additive and subtractive generators belong to the more general class of lagged-Fibonacci
generators. See $[4, 9]$ for more details.

Marsaglia and Zaman [10] give alist of parameter sets for SWB-I generators, for which
the order of $b$ modulo $M$ is very large or near the maximum. Those generators do not
have full period, but a large period anyway. Finding full period generators with a very
large period is hard, because checking the primitivity requires the factorization of $M-1$ ,
which is a difficult task in practice when $M$ is large. For example, for $M$ around $2^{1000}$ ,
the best factorization programs currently available typically cannot factorize $M-1$ in
reasonable time.
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In this paper, we analyze the structure of the sequence $u;,$ $i=1,2,$ $\ldots$ , produced by
an $AWC/SWB$ generator. That sequence turns out to be practically the same as the
sequence produced by a linear congruential generator (LCG). More precisely, we have the
following. Let $s_{i}=$ $(x_{i-r+1}, \ldots , x_{i}, c_{i+1})$ be the state of the $AWC/SWB$ generator at step
$i$ . Equation (3) transforms the state $s_{Li}$ into the uniform variate $u_{i}$ . Suppose that $M$

(given in Table 1) is prime and let $b^{*}$ be the multiplicative inverse of $b$ modulo $M$ , i.e.,
such that $b^{*}bmod M=1$ . That inverse can be computed easily as $b^{*}=b^{M-2}mod M$ .
Consider the following LCG with modulo $M$ and multiplier $A=b^{*}$ :

$X_{i}$ $=$ $AX_{i-1}mod M$, (10)
$v_{i}$ $=$ $X_{i}/M$ , (11)

$w_{i}$ $=$ $v_{Li}=X_{Li}/M$ . (12)

Our main result is:

THEOREM 1. Let $\{u_{i}, i\geq 0\}$ be the sequence (3) produced by an $AWC/SWB$ generator,
while $\{w_{i}, i\geq 0\}$ is the sequence produced by (12). If $s_{0}$ and $X_{0}$ correspond, $then_{f}$ for
all $i\geq r$ , the (fractional) digital expansions in base $b$ of $u_{i}$ and $w_{i}$ have the same first $L$

digits. In other words, one has
$u_{i}=b^{-L}\lfloor b^{L}w_{i}\rfloor$ . (13)

The condition $s_{0}$ and $X_{0}$ correspond” means that the two sequences must have cor-
responding initial seeds. Otherwise, (13) will hold after an appropriate shift of one of
the two sequences. Equation (13) means that $u_{i}$ is a truncated version of $w_{i}$ : only the
first $L$ fractional digits in base $b$ are kept, the others are chopped off. As a consequence,
$|u_{i}-w;|\leq b^{-L}$ . So, the sequences (3) and (12) are the same, if they have corresponding
initial seeds, up to a precision of $b^{-L}$ . For example, it could be reasonable to take $b>2^{30}$

and $L=2$ , in which case the first 60 bits of $u_{i}$ and $w_{i}$ will be the same. For all practical
purposes, considering the limited precision of floating point numbers on computers, one
can then safely assume that $u_{i}=w_{i}$ .

We call (10-12) the $LCG$ representation of the corresponding $AWC/SWB$ generator.
For a theoretical evaluation of the structural properties of an $AWC/SWB$ generator, one
can study the lattice structure of its LCG representation. We discuss that in Section 2.
In Section 3, we illustrate those properties with numerical examples. Some of them are
generators taken from Marsaglia and Zaman [10]. It turns out that all the generators
examined perform extremely badly, in the spectral test, in dimensions $r+1$ and higher.
At the end of Section 2, we show that this holds in general: for all $AWC/SWB$ generators
with $L=1$ , the distance between the hyperplanes in the lattice of the associated LCG is
at least $1/\sqrt{3}$ in all dimensions larger than $r$ . The full version of the paper will appear
soon somewhere.
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2. LATTICE STRUCTURE AND SPECTRAL TEST

It is well known that linear congruential generators have a lattice structure which can
be analyzed through the Beyer and spectral tests {3, 4, 7]. More precisely, suppose we
construct points in $[0,1)^{t}$ by taking $t$ successive values produced by the generator:

$w_{\ell,i}=(w_{i}, \ldots, w_{i+t-1})$ .

Let $T_{t}$ be the set of all such points, for all possible initial states $X_{0}\in Z_{M}$ :

$T_{t}=\{w_{t,i}=(w_{i}, \ldots, w_{i+t-1})|i\geq 0, X_{0}\in Z_{M}\}$ .

Then $T_{t}$ is the intersection of a lattice $L_{t}$ with the unit hypercube $[0,1)^{t}$ . The Beyer
quotient is defined as the ratio $q_{t}$ of the lengths of the shortest and longest vectors in
a Minkowski-Reduced Basis of that lattice. A value of $q_{t}$ close to one indicates that
the points of $L_{t}$ are rather “uniformly” distributed, while a very small value indicates the
opposite (a “bad” lattice structure). The lattice structure also means that the points lie in
a set of equidistant parallel hyperplanes. Let $d_{t}$ be the distance between those hyperplanes
in dimension $t$ . Generally speaking, we would like $d_{t}$ to be as small as possible, because
larger values of $d_{t}$ (close to 1) mean thicker slices of space containing no points.

The LCG that produces the points $T_{t}$ is in fact equivalent to

$Y_{1}$. $=$ $\tilde{A}Y_{i-1}mod M$ , (14)
$w_{i}$ $=$ $Y_{i}/M$, (15)

where $Y_{0}=X_{0}$ and $\tilde{A}=A^{L}mod M=b^{M-L-1}mod M$ . If the multiplier $\tilde{A}$ above is
replaced by its inverse $\tilde{A}^{*}=b^{L}mod M$ , then it will produce the same sequence $\{w_{i}\}$ , but
in reverse order. Since the reverse sequence has the same lattice structure as the original
one, applying the spectral or Beyer test with the multiplier $b^{L}$ or $A^{L}$ will yield the same
results.

Consider now the points produced by an AWC or SWB generator:

$u_{t,i}=(u_{i}, \ldots, u_{i+t-1})$ ,

assuming that $s_{0}=\psi(X_{0})$ . It follows from Theorem 1 that $|u_{i}-w_{i}|<b^{-L}$ . Therefore,
the Euclidean distance between $w_{t,i}$ and $u_{t,i}$ is bounded by $b^{-L}\sqrt{t}$. If that bound is
small with respect to the Euclidean distance $d_{t}$ between hyperplanes, then the AWC
or SWB generator inherits the lattice structure of the associated LCG, with some small
(often negligible) added “noise” due to the truncation. We will examine specific numerical
examples in the next section.

The following result shows that $AWC/SWB$ generators with $L=1$ always have a bad
lattice structure in dimensions larger than $r$ . We give a simple proof here for completeness.
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LEMMA 1. For the $LCG(10-11)_{f}$ one has $d_{t}\geq 1/\sqrt{3}$ for all $t\geq r+1$ .

PROOF. Consider the AWC generator (the proof is similar for the other variants).
One has

$X_{i-r}+X_{i-s}-X;\equiv(b^{r}+b^{s}-1)X_{i}\equiv MX_{j}\equiv 0$ $(mod M)$ .

So, by following the same reasoning as in Section 3.3.4 of Knuth [3], it follows that the
dual lattice has a vector of square length equal to 3, and the conclusion follows. 1

3. NUMERICAL EXAMPLES

3.1 Example 1: A SmaII SWB Generator

Consider the SWB-I generator with $(b, s, r, L)=(2,2,9,9)$ . Here, $x_{i}=(x_{i-2}-x_{i-9}-$

$c_{i})mod 2$ ,

$u;= \sum_{j=1}^{9}x_{9i-j+1}2^{-j}$ ,

and the period is $2^{9}-2^{2}=508$ . Figure 1 shows a two-dimensional plot of the pairs of
successive points $(u_{i}, u_{i+1})$ produced by this generator over its entire period. The starting
values were $s_{0}=(x_{-8}, \ldots, x_{0}, c_{1})=(1,0, \ldots, 0)$ . This looks like a typical lattice structure
of a (bad) LCG.

The LCG representation of that SWB generator is

$Y_{i}=170Y_{i-1}mod 509$ ; $w_{i}=Y_{i}/509$ ,

where $Y_{i}=X_{Li}$ and 170 is the inverse of $2^{9}(=3)$ modulo 509. Since $u_{i}$ isjust the truncated
version of $w_{i}$ , the points produced by the SWB generator do not form exactly a lattice,
but it really takes sharp eyes see that the points in Figure 1 are not exactly aligned on
the three lines. The approximation is quite good indeed.

If the multiplier 170 was replaced by 3, we would get the same graphic, but refiected
$with\cdot respect$ to the diagonal $u;=u_{i+1}$ . Hence, the points of the LCG representation will
be on three lines of slope 3 instead of slope 1/3.
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Figure 1: All pairs of successive points for the SWB generator of Example 1.
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3.2 Example 2: A ”Classroom“ AWC Generator

We now examine the “classroom” AWC generator given in Section 7 of Marsaglia and
Zaman [10], for which $(b, s,r, L)=(6,2,21, L)$ . The sequence is defined by

$u_{i}= \sum_{j=1}^{L}x_{Li-j+1}6^{-j}$ ,

where $x_{i}$ is generated by $x_{i}=(x_{i-21}+x_{i-2}+c_{i})mod 6$ . We will look at different values
of $L$ . Since $M=6^{21}+6^{2}-1=21,936,950,640,377,891$ is prime and $b=6$ is a primitive
root modulo $M$ , the sequence of $x_{i}’ s$ have period $M-1$ . When $L$ is relatively prime to
$M-1$ , the $u_{i}’ s$ also have that same period. According to Marsaglia and Zaman [10], the
$x_{j}’ s$ , if used directly, could provide an excellent simulation of independent throws of a
dice.

The LCG representation is given by

$X_{Li}=Y_{i}=(6^{*})^{L}Y_{i-1}mod M$ ; $w_{i}=Y_{i}/M$ .

The following values of $L$ are relatively prime to $M-1:L=1,3,7,9,11,17,19$. For
small $L$ , like 1 or 3, the resolution is much too low and as a result, the LCG is not a good
approximation of the AWC sequence. We have computed the values of $q_{t}$ and $d_{t}$ for the
corresponding LCG’s for the other values of $L$ . The results are given in Table 2. For all
those values of $L$ , the lattice structure turns out to be quite bad in low dimensions. In
fact, it is amazing to see how terrible are some of those multipliers in lower dimensions
(e.g., for $L=17$ and $L=19$). The upper bound $6^{-L}\sqrt{t}$ on the noise is much smaller
than the distance between hyperplanes, except for $L=7,9,11$ in dimension 2 and $L=7$

in dimension 3.

3.3 Example 3: A Larger SWB Generator

One SWB-I generator recommended by Marsaglia and Zaman (1991) has parameters
$(b, s, r, L)=(2^{32},6,21,1)$ . That generator does not have full period, it has 192 subcycles
of period $(2^{666}-2^{186})/3$ each (besides the two trivial cycles of period 1). The LCG
representation has modulus $M=2^{672}-2^{192}+1$ and multiplier $A=(2^{32})^{*}mod M=$

$2^{160}-2^{640}mod M$ .

$1!Ve$ can study the lattice structure formed by the vectors of successive points in the
. union of all the subcycles (for a single cycle, the points do not necessarily form a lattice,
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Figure 2: 2000 pairs of successive points for the SWB of Example 2, with $L=19$ .
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but for the union of all cycles, they do). Table 3 gives the values of $d_{t}$ and $q_{t}$ for $t$ up to 30.
The bad behavior in dimensions larger than 21 is in accordance with Lemma 4. We recall
that for dimensions smaller or equal to 21, the lattice structure of the associated LCG
provides only limited information on the behavior of the $AWC/SWB$ generator, because
the truncation error is as large as the distance between the successive hyperplanes. But
the small values of $d_{t}$ for $t\leq 21$ agree with the fact that over the full period, the points
are very evenly distributed over the unit hypercube.
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3.4 Example 4: The RANMAR SWB Generator

James [2] recommends the SWB-I generator with parameters $(b, s, r, L)=(2^{32}-5,22,43,1)$ .
That generator is also given in [10] and used as a component of the combined generator
proposed in [8]. Since $b$ is primitive modulo $M=b^{43}-b^{22}+1$ , the (full) period length
is $M-1=2^{1376}-2^{704}+1$ . The LCG representation has modulus $M$ and multiplier
$A=(2^{32}-5)^{*}mod M=(2^{32}-5)^{21}-(2^{32}-5)^{42}mod M$.

Table 4 gives the values of $d_{t}$ and $q_{t}$ for that LCG generator, for up to $t=50$ . In
all dimensions $t\leq 43$ , one has $d_{t}\leq b^{-1}$ , while for $t\geq 44$ , we have $d_{t}=1/\sqrt{3}\approx 0.577$ ,
in accordance with Lemma 4. So, using that generator for applications which require
points in large dimensional spaces could lead to problems. L’Ecuyer [5] has applied a
few statistical tests to this generator and found that it fails (rather spectacularly) the
“birthday spacing” test proposed by Marsaglia [7].

4. Conclusion

We have shown in this paper that the $AWC/SWB$ generators are essentially equivalent
to LCGs with large moduli. So, they can be viewed as (extremely) efficient ways of
implementing LCGs with (huge’ moduli. The difference is a “truncation error” of size
at most $b^{-L}$ . When the associated LCG has a lattice structure with distance between
hyperplanes significantly larger than $b^{-L}\sqrt{t}$ in dimension $t$ , the $AWC/SWB$ generator
also inherits that lattice structure. Our examples illustrate how bad could be that lattice
structure for the generators proposed in [10]. In fact, it turns out that all $AWC/SWB$

generators with $L=1$ have a very bad lattice structure in dimensions larger than $r$ .
Therefore, such $AWC/SWB$ generators should not be used directly by themselves. To
make those generators useful, one would have to find appropriate combinations with
other types of generators, with good theoretical properties. This could be a subject for
further research.
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