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Monte Carlo Methods With Variance Reductions
For System Reliability Evaluation

FERFTFERELER BARE

Hiromitsu Kumamoto
Dept. of Precision Mechanics, Faculty of Engrg, Kyoto Univ.

1 INTRODUCTION

This paper briefly describes several Monte Carlo methods the author has developed
for calculating the reliability (or equivalently unreliability, availability or unavailability)
of a large complex system represented by a logic model such as a Boolean function,
a reliability block diagram or a fault tree. More detailed descriptions can be found
in references [2]-[6]. When a direct or a crude Monte Carlo method is used, a large
number of trials are required to obtain reasonably precise estimates of the reliability.
The Monte Carlo methods presented in this paper are based on variance-reduction
techniques, and resultant variance reductions are proved theoretically. A usual term-
wise calculation and a decomposition method become impractical for large systems
since the reliability involves a large number of terms. Although several approximations
have been proposed [1], they yield only lower and upper bounds of the reliability.

2 PROBLEM STATEMENT

2.1 Assumptions

1) The system has n components, numbered 1,..., n.

2) Each components is either functioning or failed.

3) States of components are statistically independent.

4) The system is either functioning or failed. The system is coherent.
5) Every state vector has a non-zero probability.

2.2 Notation

1) z;: component state (random variable).

(1)

~_ J 1, if component ¢ is functioning
‘71 0, otherwise

2) T;: 1 — z; is a complement of z;.

— _ | 1, if component 7 is failed
T, = .
0, otherwise

3) z: (z1,...,%,) is a component state vector.
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4) T (T1,..,Tpn) = (1 —2q,...,1 — z,) is a complement vector of z.
5) b: (by,...,b,) is a sample vector of = or 7.

6) b: (b1,...,b,) = (1 —by,...,1~b,) is a complement vector of b.
7) 2: is a suffix denoting a component.

8) ¢(z): coherent structure function of z [1].

_ | 1, if system ¢ is functioning
9(z) = { 0, otherwise (3)
The coherent function can be regarded as a monotonically increasing function with
some trivial exceptions such as exclusions of irrelevant variables, zero function, etc.

9) ¥(T): 1 — ¢(z), complement of .

0, otherwise

_ 1, if system i is failed
¢(w)5{ 11 system ¢ 1S Ialle (4)

This function is also coherent and monotonically increasing with respect to 7.

10) v, p: suffix denoting Monte Carlo trial.

11) N: sample size, i.e., total number of Monte Carlo trials.

12) R: system reliability (or availability).

13) @: system unreliability (or unavailability).

14) Ry = 1 — Qo: direct Monte Carlo estimator.

15) Ry =1 — @1: bound Monte Carlo estimator.

16) Ry, =1 — Q,: dagger-sampling Monte Carlo estimator.

17) R3 =1 — Q3: coverage Monte Carlo estimator.

17) Ry =1 — Q4 less-information Monte Carlo estimator.
The problem is to calculate the system reliability,

R = Pr{g(z) =1} ()
=2 9(0)Pr{z =1} (6)
= E.{¢()} (M)

or equivalently, the problem is a calculation of system unreliability

Q= Pr{y(@) =1} = S v(@Pr{z = b} = Bx{v(2)} ®

3 DIRECT MONTE CARLO

Generate N independent samples ¢y, ..., cy of . Evaluate R or ) by the unbiased
binomial estimator :

N N
Ry=N71 2—21 $(c,), Qo=N71 ;'/’(Eu) (9)

This estimator has variance

Var{Ro} = Var{Qo} = N"'R(1 - R) (10)
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4 BOUND MONTE CARLO [2]

Let ¢z(z) and ¢y(z) be two binary functions satisfying (11) and (12).

¢1(b) < ¢(b) < du(b), for all b. (11)

ér(b) = 1 for some b
éu(b) = 0 for some b (12)

Lower and upper bound functions ¢r(z) and ¢y(z) can be constructed by using partial
path sets and cut sets of ¢(z) [1], respectively.
Assume that system reliability can be calculated easily for functions ¢y and ¢y .

Rp =) ¢r(b)Pr{z = b} (13)
b

Ry =) ¢u(b)Pr{z = b} (14)
b
The following inequalities hold:
O0<R,<R<Ry<l1 (15)

If the equality Ry = Rp, holds, then R = R = Ry and the problem is trivial; R can be
obtained without the use of the Monte Carlo methods. In the discussion that follows
we assume the inequality

Ry — Ry >0 (16)
Apply the straight-forward control variate method to (6); we have

R = Z[¢( ) — ¢r]Pr{z = b} + Z¢L(5)P7‘{ﬂl7 = b} (17)
= Z[¢ (b)]Pr{z = b} + Ry (18)

We consider now generating random samples with probability different from Pr{z =
b} according to the importance sampling method. Define two sets.

X = {8le(t) - gu(b) = 1) (19)
Y = {bléu(b) - () = 1) (20)
Since X C Y, we rewrite (18) as follows:
R = Y[6(b) - su(0)Pr{z = b} + Ry (21)
(o - B X10) — 6elPr{y = 1) + B, (22)

beY
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where y = (y1,...,Ys) € Y is a natural containment of z within set Y.
Pr{y =b} = Pr{z = b}/[Ru — RyL] (23)

Since ¢,(b) = 0 for all b € Y, we rewrite (22) as follows:

R = [Ru—Ri)Y é(b)Priy = b} + Ry (24)
beY
= [Ru— Ri]- E{é(y)} + Ry (25)
A new Monte Carlo method is obtained from (25): Generate N independent samples
S1,...,8N of y. Evaluate R by the unbiased binomial estimator R,
N
Ri=1-0Q1= N_I[RU - RL] Z 925(3,,) + Rj, (26)
v=1

It can be shown that this estimator has a smaller variance than the direct Monte Carlo
estimator.

Var{R,} = N '(Ry— R)(R- R;) (27)
< Var{Ry} = N7'R(1 - R) (28)

A sampling method is given in reference [2].

5 DAGGER-SAMPLING MONTE CARLO (3]

5.1 DAGGER-SAMPLING

In dagger-sampling, a small number of uniform random numbers generate a large
number of sample vectors which are negatively correlated. This can be best illustrated
by simple examples.

Consider first the case where each component fails with probability 0.01, i.e., Pr{z; =
0} = Pr{z; =1} = 0.01 for component :. Dagger-sampling generates 100 samples for
component 1 in the manner shown in Figure 1. »

A group of 100 intervals between 0 and 1 is introduced for component 1. Interval
v is used for generating samples for component 1 in trial v, and has subinterval [(v —
1) x 0.01,v x 0.01). The length of the subinterval is equal to 0.01, the probability of
the occurrence of component 1 failure. The first interval has subinterval [0,0.01), and
the last interval [0.99,1).

Only one uniform random number is generated for the group of 100 unit-intervals.
Assume that the random number falls in subinterval of interval v. Then, component
1 is assumed to be failed in trial v and not to be failed in the other 99 trials. For
example, random number 0.4256 determines that component failure occurs in trial 43
and does not occur in the other 99 trials (Fig. 1). The component failure occurs with
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Trial No. 100 Intervals Binary Value
0.0 0.4256 0
L | — 0
2 09_2%)1 | 1.0 0
0.0 -i0.02 | 1.0

3 iy ; !

003 | 0
N

i Y 042,043 10 ,
!
|

0.0 | :
100 B f 0.99}_1:0 0

Figure 1: Generation of 100 samples for component 1. (Dagger-sampling; binary value
is the one for T;)

Trial No. Random Numbers(J) Binary Value
1 —- 4 ) 0
0.0 0.01 1.0
2 0 8&601 1.0 1
3 '+ A 0
0.0 0.01 1.0
|
{
100 — 4 1 0
0.0 0.01 1.0

Figure 2: Generation of 100 samples for component 1. (Direct Monte Carlo)
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Trial No. Intervals for Xy Intervals for X2
Event 1 Event 2
L P
i i e
R AL e
. % , ko L 1o
o 0
R =03 [/R1=3 B =04, [11R]=2

Figure 3: Dagger-sampling in general case.

probability 0.01 in each trial. One uniform random number pierces 100 intervals, and
determines 100 trials for the component 1: hence the description "Dagger-sampling.”

Samples for component 2 are generated similarly by using another uniform random
number for the group of 100 intervals. Any number of component state vectors can be
sampled by independent repetitions of each 100 generations.

The direct Monte Carlo method in this example generates 100 samples for compo-
nent 1, using 100 uniform random numbers (Figure 2). Thus, dagger-sampling needs
only 1/100 the random numbers of the direct Monte Carlo method. '

We now consider the general cases where component ¢ fails with probability P;. Let
[1/P;] be the largest integer not larger than 1/P;. Dagger-sampling generates [1/P}]
samples for event i, using one random number in the manner shown in Figure 3: we
introduce [1/P;] subintervals; the length of each subinterval is P;; if the random number
is less than [1/P;)P;, then one out of [1/P;] samples is the occurrence of component
i failure, similarly to Fig. 1; otherwise, all [1/P;] samples are the non-occurrence of
component ¢ failure (see trials 4-6 for component 1).

5.2 Dagger-Sampling Estimator

Let z,...,2zy be N component state vectors generated by the dagger-sampling.
The system unreliability or unavailability () = 1 — R can be estimated by the unbiased
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binomial estimator ), = 1 — R,.

N
Q2 = N_l Z ¢(ZV) : (29)

v=1

The variance of (), is given by:

N
Var{@s} = N7 (Z Var{(z)} + ¥ Cov{u(z) ¢(zp)}) (30)
v=1 vép
The first sum of the r.h.s. of (30) is the variance of direct Monte Carlo estimator @y =
1 — Ry, since Var{y(c,)} = Var{y(c,)} and Cov{¥(c,),?¥(c,)} = 0 for component
state vectors ¢, and €, generated by the direct Monte Carlo.

In dagger-sampling, two sample vectors z, and z, are not independent, but are cor-
related because a smaller number of uniform random numbers generates more sample
vectors. Fig. 1 and 3 show that: if a component failure occurs during a trial, then
the failure does not occur in other trials for the same group. Thus, the correlation of
two sample vectors z, and z, is negative as long as the vectors have some elements in
the same group: if elements z,; and z,; in trials ¥ and p are generated by a common
random number, then

E{z,,ﬂ-zp,,-} —_ E{Zu1i}E{Zp’i} = —-HZ <0 (31)

Since the structure function 9(T) is coherent, it is monotonically increasing with respect
to T. Thus, the negative correlation between z, and z, also applies to ¥(z,) and ¥(z,),
and we have, from (30) that

Var{Qs:} < Var{Qo} (32)

6 COVERAGE MONTE CARLO [4]

6.1 More Nomenclature and Notation

1) IEF: inclusion-exclusion formula.

2) SOP: sum of products.

3) CV: coefficient of variation.

4) C;: a minimal cut set of function (%) [1].
5) j,k: suffix denoting a minimal cut set.

6) m: total number of minimal cut sets.

7) g;(b): structure function of C}, i.e.,

o) =Ilo=T10-0b) | (33)

1€C; 1€C;

1, if minimal cut set j is occurring

- { 0, otherwise
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8) a(d): coverage of vector b, nonnegative integer,
o(b) =3 g;(b)
J=1
9) By: set of vectors b whose coverage is no less than k,

By = {bla(b) > k}

10) P;: Pr{z; = 1}, failure probability of component i.
11) Dy: value of the first SOP of IEF (assumed available).

ZPr{C} >

7=1

I1 P

1€C5

12) Dy: value of the second SOP of IEF (assumed available).

D, =33 Pr{C,C} =YY { Il P’]

j=1k>j J=1k>j |i€C;UCk

13) D: Dy — Q is a difference between the first IEF and the true unreliability.

6.2 Coverage Monte Carlo Estimator

The system unavailability @ is
Q=) _¥(b)Pr{z =1b}
[

This can be rewritten as :
Q=) Pr{z=1t}
EEB]

This is also expressed by:
Q= Z[l/a )lg; () Pr{z = b}
beB, i=1
A final expression of D = D; — @) can be derived as
D= Y 3 32/al) gHel)Priz =5
" beB, i=15>k
or equivalently

- D = DB, {2/a(b)}
(5,5,k) ~ g;j(b)g(b)/Ds, j < k

(35)

(39)

(40)
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Thus, the coverage estimator is:

N
Qs = D1~ N7D; 3 2/a(R) (45)
v=1
The pair (5,k), 7 < k in (44) can be sampled from a discrete distribution of
{1,2,...,m(m — 1)/2} by the alias method. Component b; of b can be sampled as
follows: If component i is in C; U Cy, then b; = 1; otherwise, b; = 1 or 0 with P; or
1 — P;, respectively.
It can be proved that the coverage estimator yields smaller variance than the direct
Monte Carlo. Further, the CV of the estimator converges to zero as the comiponent
failure probabilities get smaller.

7 LESS-INFORMATION MONTE CARLO [5]

7.1 Further Notation

1) Z;(t): state of component ¢ at time ¢

— 1, if component 2 is failed
0={ ; (46)

T; i
0, otherwise

t): (F1,...,T») component state vector at time ¢.
:(t): Pr{z;(t) = 1} probability that component i is failing at time .
z(if): 1- P,'(t)
t): probability that the system is failed at time ¢.
: time to failure of component .
(Th Tn)
8) T': time to failure of the system.

[N
3 2

3
4

(%)

6

.‘!“@Dm

-~

)
)
)
)
) i
)
)

7.2 General Framework
7.2.1 Direct Monte Carlo

The system failure probability is:
Q(t) = Pr{T <t} = E.{Pr{T < t|7}} (47)

To compute Q(t) by a direct Monte Carlo method, we first generate time to failure of
each component. A direct Monte Carlo estimator is

N
Qo(t) = N1 Z Pr{T, <t|r,}, 7, ~ Pr{r} (48)

v=1

Pr{T < t|r} is either one or zero when ¢ is fixed since T is a function of 7.
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7.2.2 Less-Information Monte Carlo

We now derive a Monte Carlo method based on less prior information than time to
failure of components. Suppose prior information is Y which provides less information
than 7. In other words, knowledge of 7 implies knowledge of Y, but the reverse is not
true. Q(t) can be expressed by

Q(t) = Pr{T <t} = Ey{Pr{T < t|Y}} (49)

Thus, a proposed Monte Carlo estimator based on prior information Y is

N
Q4(t) = N> Pr{T, <t|V,}, Y, ~ Pr{Y} (50)
v=1
It can be shown that the variance of the proposed estimator does not exceed that of
the direct estimator. The proposed estimator based on less prior information requires
exact computation of Pr{T < t|Y'} that is not immediately possible. If this is possible,
then we can obtain some variance reduction.

7.3 Uniform Distribution of Time to Failure

Suppose that only the chronological order of component failures (¢, ..., %, ...,i,) =
S, is available and that u-th component failure causes the system failure: component ¢,
fails first, 2,, fails last, and system failure occurs when component ¢, fails. Information
S clearly has less information than 7. In order to construct a Monte Carlo method
based on S, we must be able to compute Pr{T < t|S;}. It can be shown that this
quantity can be calculated by ‘

7=u Pr{j, 51}
7:0 Pr{j7 Sl}

where j is the number of components that failed in the period (0, t].

Assume that time to failure of component 7 is distributed uniformly in a period
(0,¢], and also uniformly in the other period (¢, + r] given component ¢ is functioning
at time ¢ (r is an arbitrary positive number). The two periods have probabilities P;(t)
and 1 — P;(t), respectively. Then,

Pr{T <t|S5;:} = (51)

Y= ¥

Pr{T <t|5:} = nz—uw (52)
P Py() Ay () A1)
LETTTT e )

This gives the sequential destruction method previously described in [7]. Note that the
system unreliability at a particular time ¢ is being evaluated by an artificial introduction
of uniform time to failure distribution.
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7.4 Exponential Distribution of Time to Failure

Suppose that time to failure of component 7 is exponential with failure rate param-
eter \;, i.e., P, =1 —exp(—Ait). Given S, = (4y,...,1,), i.e., the failure order of the
first u components where failure u causes the system failure, we would like to compute
Pr{T < t|S,}.

We can compute it by solving numerically a set of linear differential equations. This
method takes excessive computation time for large systems. Another method is to
compute the inverse of the Laplace transformation of Pr{T < t|S,} as described in [6].
However, this method may have serious round-off errors.

We derive a formula for computing Pr{T < ¢|Y'} based on prior information Y =
Ss = ({t1,...,%u-1}, %) where failure u causes the system failure and {-} denotes a set,
1.e., the order of the first u — 1 failures does not matter; S, implies S3.

It can be shown that Pr{T < ¢|S3} is

_ Js W (v)dv
PT{T S t|53} = m (54)
U, (v) = exp(—A;,v) 1j_jl[l — exp(—)\ijv)][._f[ lexp(—/\ijv)] (55)
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