
Title Shimura curves as intersection of Humbert surfaces and
defining equations of QM-curves of genus two

Author(s) HASHIMOTO, Ki-ichiro; MURABAYASHI, Naoki

Citation 数理解析研究所講究録 (1993), 843: 184-198

Issue Date 1993-06

URL http://hdl.handle.net/2433/83569

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39215804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


184

Shimura curves as intersection of Humbert surfaces
and defining equations of QM-curves of genus two

早大理工数学科 橋本 喜一朗 (Ki-ichiro HASHIMOTO)
早大理工数学科 村林 直樹 (Naoki MURABAYASHI)

1 Introduction
Let $A$ be a simple principally polarized abelian variety of dimension two over the complex
number field $C$ , and let End $(A)$ be the algebra of endomorphisms of $A$ . Then, as is well
known, the Q-algebra $End^{O}(A)$ $:=End(A)\otimes zQ$ belongs to either one of the following
types:
(i) a CM field of degree four,
(ii) an indefinite quaternion algebra,
(iii) a real quadratic field, or
(iv) the rational number field Q.
Let $A_{2,1}$ be the moduli space of the isomorphism classes of $A$ with principal polarization.
The moduli of $A$ in each case has dimension 0,1,2,3, respectively, whose components in the
first three cases are called (i) CM-points, (ii) Shimura curves, (iii) Humbert surfaces. On
the other hand, it is also well known that the Torelli map gives a birational morphism from
$A_{2,1}$ to the moduli space $\mathcal{M}_{2}$ of curves of genus two.

In this paper, we are interested in constructing, in concrete way, an $al$gebraic family of
curves of genus two whose jacobian varieties belong to the case (ii) above. Namely we
wish to find out an equation of a fibre space, the base space of which is a Shimura curve
and fibres are curves of genus two whose jacobian have quaternion multiplications. Call
such curves simply “QM-curves”. We shall give defining equations of algebraic family of
QM-curves in the case where the endomorphism ring is, generically, a maximal order $\mathcal{O}$ of
the indefinite quaternion algebra over $Q$ which ramifies exactly at {2,3} or {2,5}. To the
best of our knowledge, not a single example of such curve has been known before. Here we
should point out that examples of defining equations of Shimura curves have been given by
Kurihara [15], Jordan-Livn\’e [11]. However, they are not moduli-theoretic, hence are not
helpful for our purpose.
The method of our construction is roughly as follows. In a classical work of G.Humbert
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[7], one can find general approach, as well as concrete solutions in some cases, to the
similar problem for the case (iii), i.e., to construct families of curves of genus two whose
jacobian varieties have real multiplication of given discriminant. (cf. $[2],[16]$ ). Especially,
Humbert gives explicite form of “modular equations” for discriminant 5 and 8, in terms of
the coefficients of the curves $y^{2}=f(x)$ . Our idea is simply to combine these two equations
in a suitable way. Indeed, if one can arrange the coordinate system in such a way that the
two real multiplications generate $\mathcal{O}$ , then the fibre space we are looking for will be obtained
as a component of the intersection of the two Humbert’s families. The determination of the
possible components are carried out by studying quaternion modular embeddings of the
upper half plane to the Siegel upper half plane of degree two. Although the calculations
needed to find out the components are quite complicated, they can be perfomed by using
computer symbolic manipulation.
The main results are given as theorems 2.1 in \S 2. As an application, we can give an
equation of a family of supersingular curves of genus two over the field $\overline{F}_{p}$ of characteristic
$p=3,5$ . The proofs will be given in the latter sections. In \S 3, we recall briefly some results
of Humbert [7] which are needed for our constructions. In \S 4, we study, in some detail,
quaternion modular embeddings of the upper half plane to the Siegel upper half plane of
degree two, in the case of the maximal orders of the quaternion algebra with discriminant
6 and 10. A more general treatment is given by [5].

2 Statement of main results
Let $B$ be an indefinite division quaternion algebra over $Q$ , and let $\mathcal{O}$ be a maximal order of
B. We denote by $D_{B}$ the product of primes at which $B$ ramifies, and call it the discriminant
of B. Let $\alpha\alpha’$ be the canonical involution on $B$ , and let $Tr(\alpha)$ $:=\alpha+\alpha’,$ $Nr(\alpha)$ $:=\alpha\alpha’$

be the reduced trace, reduced norm on $B$ , respectively. Then $\mathcal{O}^{(1)}$ $:=\{\alpha\in \mathcal{O}|Nr(\alpha)=1\}$

is regarded as a Fuchsian group of $SL_{2}(R)$ and the compact Riemann surface $\mathcal{O}^{(1)}\backslash \mathfrak{H}$ is
identified with the C-valued points of the Shimura curve $S_{B}$ (cf. [19],[20]). $S_{B}(C)$ has the
following interpretation. Let $\rho$ be an element of $\mathcal{O}$ such that $\rho^{2}=-D_{B},$ $\rho \mathcal{O}=\mathcal{O}\rho$ . The
existence of such element can be shown by using strong approximation theorem, or by direct
construction of $\mathcal{O}$ (cf. $[8],[5]$ ). Then the involution of $B$ defined by $\alpha-\alpha$

“ $:=\rho_{1}^{-1}\alpha’\rho_{1}$ is
positive, and it satisfies $O^{*}=O$ . Then we have

$S_{B}(C)\underline{1:1}\{(A, i, \Theta)|(A, \Theta)$

: principally polarized abelian
$surface\}$$i:\mathcal{O}=*\rangle End(A)$

Rosati involution w.r. $t\Theta_{1\mathcal{O}}=*$

Hence we have a ratinal map

$S_{B}arrow A_{2,1}(C)\cong Sp(4, Z)\backslash \mathfrak{H}_{2}$ $\approx$ $\mathcal{M}_{2}(C)$

Now the problem we are interested to solve is to describe the image of the Shimura curve
$S_{B}$ in $\mathcal{M}_{2}$ . More precisely, we look for an equation of the following form:

$S$ : $Y^{2}=f(X;s,t)$ $\in\overline{Q}[X, s, t]$
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where $f$ is separable of degree 5 or 6 in $X$ , and $\overline{Q}(s, t)=\overline{Q}(S_{B})$ is the function field of $S_{B}$

over Q.

Here we shall give an answer to this problem in the two cases where $D_{B}=6,10$ . Our
results are:

Theorem 2.1 (i) Case of $D_{B}=6$ .
$S_{6}$ : $Y^{2}=X(X^{4}-PX^{3}+QX^{2}-RX+1)$ ,

with

$g(s, t)$ $=$ $s^{2}+(7t^{4}-8t^{3}+18t^{2}-8t+7)=0$ ,

$RP$ $=$ $\ovalbox{\tt\small REJECT}\pm(3t^{2}-2t+3)\{(5t^{4}+4t^{3}-2t^{2}+4t+5)\pm(t^{2}+1)s\}8t(t^{2}+1)(t^{2}-t+1)$

$Q$ $=$ $\ovalbox{\tt\small REJECT}(t^{4}+1)(2t^{8}-6_{2}t^{7}+3t-6t-2t_{2}-6t+2t(t-1)^{6_{2}}(t^{2}+^{5}1)^{2}(t^{4}-t+^{3}1)^{3t^{2}-6t+2)}$

(ii) Case of $D_{B}=10$ .
$S_{10}$ : $Y^{2}=X(P^{2}X^{4}+P^{2}(1+R)X^{3}+PQX^{2}+P(1-R)X+1)$ ,

with

$g(s, t)$ $=$ $s^{2}-(t^{2}.-2)(2t^{2}+1)=0$ ,

$P$ $=$ $\frac{4(2t^{2}+1)(t^{4}-t^{2}-1)}{(t^{2}-1)^{2}}$

$R=$ $\frac{(t^{2}-1)s}{t(t^{2}+1)(2t^{2}+1)}$

$Q$ $=$ $\frac{(t^{4}+1)(t^{8}+8t^{6}-10t^{4}-8t^{2}+1)}{t^{2}(t^{2}-1)^{2}(t^{2}+1)^{2}}$

Remark 2.2 The genera of Shimura curves $S_{B}$ are zero for $D_{B}=6,10$ . So one could
obtain the families of QM-curves over $P^{1}$ , while our familes are over the elliptic curve
$g(s,t)=0$ . Indded, our families are reduced to those over $P_{f}^{1}$ since the two fibres on
$(s, \pm t)$ are easily seen to be isomorphic.

By specializing $(s, t)$ to those points $(s_{0},t_{0})\in\overline{Q}^{2}$ such that $g(s_{0}, t_{0})=0$ , one can obtain as
many QM-curves defined over $\overline{Q}$ as one wishes. However, one should note that the curve
$Y^{2}=f(X;s_{0},t_{0})$ may be a split curve, i.e., the jacobian can split to a product of two
elliptic curves with complex multiplication.

Finally, we note that the reduction of a Shimura curve at the prime where $B$ ramifies
gives a moduli of supersingular abelian varieties (cf. [18]). Moreover, it is known that the
number of irreducible components of the moduli of such curves is one for $p\leq 11$ (cf. [12]).
Thus as a corollary to the above theorems, we obtain the following:
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Corollary 2.3 For $p=3,5$ , a family of supersingular curves of genus two over the field
$\overline{F}_{p}$ of characteristic $p$ is given by the following equation:
(i) For $p=3$

$\overline{S}_{6}$ : $Y^{2}=X(X^{4}-PX^{3}+QX^{2}-RX+1)$ ,

with
$P$

$=$ $\pm 1-\sqrt{-1}$
$R$

$Q$ $=$ $\frac{(t^{4}+1)^{3}}{t^{2}(t^{2}-1)^{2}(t^{2}+1)^{2}}$

(ii) For $p=5$

$\overline{S}_{10}$ : $Y^{2}=X(P^{2}X^{4}+P^{2}(1+R)X^{3}+PQX^{2}+P(1-R)X+1)$ ,

with

$P$ $=$ $\frac{-(2t^{2}+1)(t^{4}-t^{2}-1)}{(t^{2}-1)^{2}}$

$R=$ $\frac{(t^{2}-1)}{\sqrt{2}t(t^{2}+1)}$

$Q$ $=$ $\frac{(t^{4}+1)(t^{8}-2t^{6}+2t^{2}+1)}{t^{2}(t^{2}-1)^{2}(t^{2}+1)^{2}}$ .

3 A work of Humbert
Let

$\tau=(\begin{array}{ll}\tau_{1} \tau_{2}\tau_{2} \tau_{3}\end{array})$

be a element of the Siegel upper half space $\mathfrak{H}_{2}$ of degree 2. Put $A_{\tau}=C^{2}/L_{\tau}$ with $L_{\tau}$ the

lattice generated by the columns of the matrix $(\tau 1_{2})$ . Put $a=(11t_{2}^{2})$ and $b=(\begin{array}{l}11/2\end{array})$ .

For $z=(\begin{array}{l}z_{1}z_{2}\end{array})$ in $C^{2},\cdot$ the 2-dimensional holomorphic theta function with characteristic

$\{\begin{array}{l}ab\end{array}\}$ is defined by

$\theta(z)=\sum_{n\in Z^{2}}e^{\pi i^{t}(n+a)\tau(n+a)+2\pi i^{2}(n+a)(z+b)}$
,

where $n$ is written as a column vector and ${}^{t}v$ denotes the transpose of a column vector $v$ .
The following lemma is well known:

Lemma 3.1 Let $p,$ $q$ be column vectors in $Z^{2}$ . Then

$\theta(z+\tau p+q)=e^{-\pi i^{t}p\tau p-2\pi i^{t}p(z+b)+2\pi i^{t}aq}\theta(z)$ .

Moreover, $\theta(z)$ is an odd function.



188

We denote by $\Theta$ the divisor of zeros of $\theta(z)$ on $A_{\tau}$ . Then $(A_{\tau}, \Theta)$ is a principally polarized
abelian surface. From now on, we assume that $\Theta$ is isomorphic to a curve $C$ of genus two.
We recall the Humbert’s notation of 2-torsion points of $A_{\tau}$ (see [7]). Let

$x= \frac{1}{2}(\begin{array}{l}\epsilon+\lambda\tau_{1}+\lambda’\tau_{2}\epsilon’+\lambda\tau_{2}+\lambda’\tau_{3}\end{array})$ $mod L_{\tau}$

be a 2-torsion point of $A_{\tau}$ with $\epsilon,$
$\epsilon’,$ $\lambda,$ $\lambda’\in\{0,1\}$ . Then the Humbert’s notation is given

by the following table:

Table 1 : Humbert’s notation

The next lemma follows from Lemma 3.1:

Lemma 3.2

$\Theta\cap A_{\tau}[2]=\{(11)$ , (22), (31), (41), (23), (24), $\}$

where $A_{\tau}[2]$ is the set of 2-torsion points of $A_{\tau}$ .

Let
$\phi$ : $A_{\tau}arrow P^{3}$

be a morphism corresponding to the complete linear system $|2\Theta|$ . The image of $\phi$ is a
quartic surface in $P^{3}$ and can be identified with the quotient space $A_{\tau}/\{\iota\rangle$ where $\iota$ is the
involution of $A_{\tau}$ given by $x-x$. This image is called the Kummer surface of $A_{\tau}$ and
is denoted by $Kum(A_{\tau})$ .

For every $x\in A_{\tau}[2]$ , we put
$\Theta_{x}$ $:=T_{x}(\Theta)$
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and
$\overline{\Theta_{x}}$

$:=\phi(T_{x}(\Theta))$

where $T_{x}$ denotes the traslation by $x$ .
Since $2T_{x}(\Theta)\in|2\Theta|$ , there exists a unique hyperplane $H_{x}$ in $P^{3}$ such that the intersection

divisor of $H_{x}$ and $Kum(A_{\tau})$ is equal to the divisor $2\overline{\Theta_{x}}$ . $H_{x}$ is called the singular plane of
$Kum(A_{\tau})$ . From $now$ on, we denote $\phi((ij))(1\leq i,j\leq 4)$ by the same notation $(ij)$ and
call them double points of $Kum(A_{r})$ . Then singular planes can be uniquely represented by
sixteen symbols $kl(1\leq k, l\leq 4)$ such that the following conditions are satisfied:

1. The set of the six double points lying on the singular plane $kl$ is
{ $(ij)|i=k,$ $j\neq l$ or $i\neq k,$ $j=l$ }

2. The set of the six singular planes passing through the double point $(ij)$ is
{ $kl|k=i,$ $l\neq j$ or $k\neq i,$ $l=j$ }

We take a hyperplane fi in $P^{3}$ which does not contain (11) and fix it. Figure 1 represents
the section by $\Pi$ of the six singular planes of $Kum(A_{\tau})$ passing through (11).

Figure 1 : The section

On each line in the figure we mark the symbol of the corresponding singular plane : 12,
13, 14, 21, 31, 41 ; on the intersection of two lines we mark the symbol of the double point,
different from (11), lying on the two corresponding singular planes. Therefore, the point
$(ij)$ in Figure 1 is the projection of the double point $(ij)$ from the double point (11) on $\Pi$ .
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Remark 3.3 Let $D$ be a curve on $Kum(A_{\tau})$ , Then the projection of $D$ from (11) on II
intersects to six lines in Figure 1 at $po\underline{in}ts(ij)$ or touches them because the singular plane
$H_{x}$ touches $Kum(A_{\tau})$ along the conic $\Theta_{x}$ .

Proposition 3.4 There exists a conic $\Gamma$ in II which touches six lines in Figure 1.

PROOF. Consider the tangent cone to $Kum(A_{\tau})\subset P^{3}$ at the double point (11) and let $\Gamma$

be the section of it by II. Then it follows that $\Gamma$ satisfies the above condition. $\square$

We can take a homogeneous coordinate $x,$ $y,$ $z$ of II $\cong P^{2}$ such that. $\Gamma$ is given by the
equation $yz=x^{2}$ and any three among six contact points are given by

$(x ; y ; z)=(0$ ; $0$ ; 1 $)$ , (1 ; 1; 1), $(0$ ; 1; $0)$ .

So it may be assumed that the line 14, 21, 12, 13, 31, 41 are given by the equation

$y+2a_{1}x+a_{1}^{2}z=0$ , $y+2a_{2}x+a_{2}^{2}z=0$ , $y+2a_{3}x+a_{3}^{2}z=0$ ,
$y=0$ , $y+2x+z=0$, $z=0$

respectively.

Proposition 3.5 $C$ is isomorphic to the curve given by the equation $y^{2}=x(x-1)(x-$
$a_{1})(x-a_{2})(x-a_{3})$ .

Now we consider the endomorphism ring End$(A_{\tau})$ of $A_{\tau}$ . Analytically,

End$(A_{\tau})=\{\alpha\in M_{2}(C)|\exists M\in M_{4}(Z)$ s.t. $\alpha(\tau 1_{2})=(\tau 1_{2})M\cdot\cdot(*)\}$ .

Let $M=(\begin{array}{ll}A BC D\end{array})$ . Then we have that

$(*)\Leftrightarrow\tau B\tau+D\tau-\tau A-C=0\cdots(**)$ .

We let $E$ be the Riemann form associated to the polarization O. $E$ defines an involution on
End $(A_{\tau}),$ $\alphaarrow\div\alpha^{o}$ , called the Rosati involution. It is determined by $E(\alpha z, w)=E(z, \alpha^{o}w)$

for all $z,$ $w\in C^{2}$ . We have that

$\alpha^{Q}=\alpha\Leftrightarrow A={}^{t}D,$ $B=(\begin{array}{ll}0 b-b 0\end{array}),$ $C=(\begin{array}{ll}0 c-c 0\end{array})$ .

Put $A=(\begin{array}{ll}a_{1} a_{2}a_{3} a_{4}\end{array})$ . Under the assumption $\alpha^{O}=\alpha$ , it follows that

$(**)\Leftrightarrow a_{2}\tau_{1}+(a_{4}-a_{1})\tau_{2}-a_{3}\tau_{3}+b(\tau_{2^{2}}-\tau_{1}\tau_{3})+c=0$ .

Then
Tr $\alpha=a_{1}+a_{4}$ , $\det\alpha=a_{1}a_{4}-a_{2}a_{3}+bc$ .

So the discriminant of the characteristic polynomial of $\alpha$ is

$(a_{1}+a_{4})^{2}-4(a_{1}a_{4}-a_{2}a_{3}+bc)=(a_{4}-a_{1})^{2}-4a_{2}(-a_{3})-4bc$.
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Definition 3.6 (Humbert [7]) For an element $\tau=(\begin{array}{ll}\tau_{1} \tau_{2}\tau_{2} \tau_{3}\end{array})$ of $\mathfrak{H}_{2}$ , it is said that $\tau$

has a singular relation with invariant $\triangle$ if there exists an element $(a, b, c, d, e)(\neq 0)\in Z^{5}$

such that:

1. $a,$ $b_{i}c,$ $d,$ $e$ are relatively prime

2. $a\tau_{1}+b\tau_{2}+c\tau_{3}+d(\tau_{2^{2}}-\tau_{1}\tau_{3})+e=0$

3. $\Delta=b^{2}-4ac-4de$ .

As we have stated above, a singular relation of $\tau$ with invariant $\triangle$ corresponds to endomor-
phisms of $A_{\tau}$ fixed by the Rosati involution such that the discriminant of their characteristic
polynomial is $\triangle$ . Define

$N_{\Delta}=\{\tau\in \mathfrak{H}_{2}|\tau$ has a singular relation with invariant $\triangle\}$

and
$H_{\Delta}=image$ of $N_{\Delta}$ under the canonical map $\mathfrak{H}_{2}arrow Sp(4, Z)\backslash \mathfrak{H}_{2}$

where $Sp(4, Z)$ is the symplectic group over $Z$ and $Sp(4, Z)\backslash \mathfrak{H}_{2}$ denotes the quotient space
for the well known $ac$tion. $H_{\triangle}$ is called the Humbert surface of invariant $\triangle$ . The following
result, which is stated explicitly in [2], p.212, is essentially due to Humbert:

Proposition 3.7 Each point of $H_{\triangle}$ can be represented by $\tau\in \mathfrak{H}_{2}$ satisfying an equation
$a\tau_{1}+b\tau_{2}+\tau_{3}=0$ with $b^{2}-4a=\Delta,$ $b=0$ or 1.

Proposition 3.8 (Humbert [7]) If $\tau\in \mathfrak{H}_{2}$ has a relation

$-\tau_{1}+\tau_{2}+\tau_{3}=0$ ,

there exists a conic $D$ in $\Pi$ which passes through five points

(34), (14), (33), (22), (24)

and touches the line 41 (see Figure 1). Conversely, if the latter holds, $\tau$ has a singular
relation with $\triangle=5$ .

Using this proposition, Humbert calculated a modular equation of $H_{5}$ .

Theorem 3.9 (Humbert [7]) there exists a conic in $\Pi$ which satisfies the conditions in
Theorem 3.8 if and only if the identity

4 $(a_{1}^{2}a_{3}-a_{2}^{2}+a_{3}^{2}(1-a_{1})+a_{2}-a_{3})(a_{1}^{2}a_{2}a_{3}-a_{1}a_{2}^{2}a_{3})$

$=$ $(a_{1}^{2}a_{3}(a_{2}+1)-a_{2}^{2}(a_{1}+a_{3})+a_{2}a_{3}^{2}(1-a_{1})+a_{1}(a_{2}-a_{3}))^{2}$

holds.
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Humbert $al$so calculated a modular equation of $H_{8}$ .

Proposition 3.10 (Humbert [7]) If $\tau\in \mathfrak{H}_{2}$ has a relation

$-2\tau_{1}+\tau_{3}=0$ ,

there exists a curve of degree 4 and genus 1 in $Kum(A_{\tau})$ which passes through double points

(32), (34), (42), (44).

Projecting from (11) on II, there exists a conic in $\Pi$ which passes through the four points
in $\Pi$ corresponding to the above double points and touches the line 21 and 13. Conversely
if such a conic exists in II, $\tau$ has a singular relation with $\triangle=4$ or 8.

Theorem 3.11 (Humbert [7]) Consider a conic $y=x^{2}$ and its six tangents

$l_{\delta}$ : $y+2\delta x+\delta^{2}=0$,

$\delta=\infty,$ $0,$ $b_{1},$ $b_{2},$ $b_{3},$ $b_{4}$ . Then there exists a conic which passes through the four points

$l_{b_{1}}\cap l_{b_{2}}$ , $l_{b_{2}}\cap l_{b_{3}},$ $l_{b_{3}}\cap l_{b_{4}},$ $l_{b_{4}}\cap l_{b_{1}}$

and touches $l_{\infty}$ and $l_{0}$ if and only if the identity

$(b_{1}b_{3}-b_{2}b_{4})^{2}-\cross$

$(4b_{1}b_{2}b_{3}b_{4}((b_{1}+b_{3})(b_{2}+b_{4})-2b_{1}b_{3}-2b_{2}b_{4})^{2}-(b_{2}-b_{4})^{2}(b_{1}-b_{3})^{2}(b_{1}b_{3}+b_{2}b_{4})^{2})=$

holds. Moreover, the first factor corresponds to $\triangle=4$ and the latter corresponds to $\triangle=8$ .

4 Modular embedding of quaternion algebras with
$D=6$ and 10

4.1 The case of $D=6$

Let
$B_{6}=Q+Qi+Qj+Qij,$ $i^{2}=-6,$ $j^{2}=2,$ $ji=-ij$

be the quaternion algebra over $Q$ with discriminant 6 and let

$\mathcal{O}_{6}=Z+Z\frac{i+j}{2}+Z\frac{i-j}{2}+Z\frac{2+2j+2ij}{4}$

be a maximal order of $B_{6}$ . Put $\rho_{1}=i$ and consider an involution on $B_{6},$ $\alpha\alpha^{*}$ $:=$

$\rho_{1}^{-1}\alpha’\rho_{1}$ , where ’ is the canonical involution on $B_{6}$ . Then it holds $\mathcal{O}_{6}^{*}=\mathcal{O}_{6}$ . Since $\rho_{1}^{2}=$

$-6<0$ , it is positive : $Tr(\alpha\alpha^{*})>0$ (if $\alpha\neq 0$ ) where Tr denotes the reduced trace of $B_{6}$

over Q.
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It is known that the complex upper half plane $\mathfrak{H}$ can be embedded into $\mathfrak{H}_{2}$ by using
$(B_{6}, O_{6}, \rho_{1})$ . We shall state this process. We fix an isomorphism $bfB_{6}\otimes_{Q}Rarrow M_{2}(R)$

given by

$i(\begin{array}{ll}0 -16 0\end{array})$ , $j(\sqrt{2}0-\sqrt{2}0)$

and identifying them. For an element $z\in \mathfrak{H}$ , we define the map

$f_{z}$ : $B_{6}\otimes_{Q}Rarrow C^{2},$ $\alpha\alpha(\begin{array}{l}z1\end{array})$ .

Put $D_{z}=f_{z}(\mathcal{O}_{6})$ . It follows that $D_{z}$ is a lattice in $C^{2}$ . Define a pairing

$E$ : $D_{z}\cross D_{z}arrow Z$

by $E(f_{z}(\alpha), f_{z}(\beta))=Tr(\rho_{1}^{-1}\alpha\beta’)$ . It is well known that $E$ is an alternating Riemann form
on $T_{z}$ $:=C^{2}/D_{z}$ . So $T_{z}$ is an abelian variety. By selecting a symplectic basis of $D_{z}$ and
changing the coordinate of $C^{2},$ $T_{z}$ is isomorphic to $C^{2}/<(\Omega(z)1_{2})>where$

$\Omega(z)=(-\frac{3\sqrt{2}}{4}z-\frac{1}{2}-\frac{\sqrt{2}}{8z}\frac{3}{2}z-\frac{1}{4z}$ $- \frac{3\sqrt{2}}{4}z-\frac{1}{2}-\frac{\sqrt{2}}{8z}\frac{3}{4}z-\frac{1}{2}-\frac{1}{8z})\in \mathfrak{H}_{2}$.

and $<(\Omega(z)1_{2})>=L_{\Omega(z)}$ . Thus we get an embedding $\Psi$ : $\mathfrak{H}arrow \mathfrak{H}_{2},$ $z\Omega(z)$ . It is
easy to check the lemma:

Lemma 4.1.1 $\Omega(z)$ has two singular relations:

$-\tau_{1}+2\tau_{3}+1=0$ with $\Delta=8$ ,
$\tau_{2}-\tau_{3}+(\tau_{2^{2}}-\tau_{1}\tau_{3})-1=0$ with $\Delta=5$ .

On the other hand, the following theorem is well known:

Theorem 4.1.2 (Shimura) Let $A$ be a principally polarized abelian variety of dimension
2 such that

1. End$(A)\supseteq \mathcal{O}_{6}$

2. The Rosati involution coincides with the involution $*$ on $\mathcal{O}_{6}$ .

Then there exists $a$ element $z\in \mathfrak{H}$ such that $T_{z}$ is isomorphic to $A$ as principally polarized
abelian variety.

By Lemma 4.1.1 and Theorem 4.1.2, we have

Proposition 4.1.3 Let $A$ be as above. Then there is $\tau=(\begin{array}{ll}\tau_{1} \tau_{2}\tau_{2} \tau_{3}\end{array})\in \mathfrak{H}_{2}$ such that

1. $A\cong A_{\tau}$
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2. $\tau$ has two singular relations in Lemma 4.1.1

To combine the modular equations for $\triangle=5$ and 8, we prepare some lemmas.

Lemma 4.1.4 Let $\tau$ be an element of $\mathfrak{H}_{2}$ which has two singular relations in Lemma 4.1.1.
Set

$M_{1}=(\begin{array}{llll}0 0 -1 00 0 0 -11 0 1 00 1 0 0\end{array})$ , $M_{2}=(\begin{array}{lll}1 11 21 21 13 24 4-1 0-2 1\end{array})\in Sp(4, Z)$

an $d$

$\tau’=(\begin{array}{ll}\tau_{1}’ \tau_{2^{/}}\tau_{2} \tau_{3}’\end{array}):=\tau\cdot M_{1}$ , $\tau^{u}=(\begin{array}{ll}\tau_{1}^{n} \tau_{2’’}\tau_{2}^{\pi} \tau_{3}^{u}\end{array}):=\tau\cdot M_{2}\in \mathfrak{H}_{2}$

where $\tau\cdot N=(\tau B+D)^{-1}(\tau A+C)$ for $N=(\begin{array}{ll}A BC D\end{array})\in Sp$ ( $4$ , Z), Then the singular

$relation-\tau_{1}+2\tau_{3}+1=0$ is changed by $M_{1}$ to

$-2\tau_{1’}+\tau_{3}’=0(\triangle=8)$

and $\tau_{2}-\tau_{3}+(\tau_{2^{2}}-\tau_{1}\tau_{3})-1=0$ is changed by $M_{2}$ to

$-\tau_{1}’’+\tau_{2}^{u}+\tau_{3’’}=0(\triangle=5)$ .

This lemma can be checked by a direct calculation. Putting $M=M_{1}^{-1}M_{2}=(\begin{array}{ll}A BC D\end{array})$ ,

$\tau’\cdot M=\tau$“.

Consider the isomorphism

$\Phi$ : $A_{\tau’}$ $=$ $C^{2}/<(\tau’1_{2})>$

$=$ $C^{2}/<(\tau’A+C\tau’B+D)>arrow C^{2}/<(\tau^{u}1_{2})>=A_{\tau’’}$

induced by the mateix $(\tau’B+D)^{-1}$ .

Lemma 4.1.5 For an element

$Q= \frac{1}{2}(\epsilon_{1}\epsilon_{1}I_{\lambda_{1}^{1}\tau_{2’}^{1}+\lambda_{1}^{1}\tau_{3}^{2’}}^{\lambda\tau+\lambda’\tau},$ $)$ mod $L_{\tau’}\in A_{\tau’}[2]$ ,

we put
$\Phi(Q)=\frac{1}{2}(\epsilon_{2}’+\lambda_{2}\tau_{2}\epsilon_{2}+\lambda_{2^{\mathcal{T}}1’’,\prime I_{\lambda_{2}\tau^{2}}^{\lambda_{2}’\tau_{3}^{u_{/}}}})$ mod $L_{\tau’’}\in A_{\tau’’}[2]$

where $\epsilon_{i},$
$\epsilon_{i}’,$ $\lambda_{i},$ $\lambda_{i}’(i=1,2)\in\{0,1\}$ . Then

$(\begin{array}{l}\epsilon_{2}\epsilon_{2}\lambda_{2}\lambda_{2}\end{array})=(\begin{array}{llll}0 1 1 11 0 1 11 0 1 00 1 0 1\end{array})(\begin{array}{l}\epsilon_{1}\epsilon_{1}\lambda_{1}\lambda_{1}\end{array})$ .
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Theorem 4.1.6 Put

$F_{1}(X, Y,. Z)$ $=$ 4 ($X^{2}Z-Y^{2}+Z^{2}(1-X)+(Y-Z))(X^{2}YZ-XY^{2}Z)$

$-(X^{2}Z(Y+1)-Y^{2}(X+Z)+YZ^{2}(1-X)+X(Y-Z))^{2}$

$F_{2}(X, Y, Z)$ $=$ $4XYZ((X+Y)(Z+1)-2XY-2Z)^{2}$

$-(Z-1)^{2}(X-Y)^{2}(XY+Z)^{2}$ .

Let $C$ be a curve of genus 2 defined over $C$ such that $Jac(C)$ satisfies the two conditions
in Theorem 4.1.2. Then $C$ has a model

$y^{2}=x(x-1)(x-a_{1})(x-a_{2})(x-a_{3})$

such that
$F_{1}(a_{1}, a_{2}, a_{3})=F_{2}(a_{1}, a_{2}, a_{3})=0$ .

PROOF. By Proposition 4.1.3 and Lemma 4.1.4,

$Jac(C)\cong A_{\tau’’}arrow^{\Phi}A_{\tau’}$ .

We shall consider on $A_{\tau’’}$ . $C$ has a model in Proposition 3.5 for $\tau=\tau’’$ . By The-
orem 3.10 there exists a curve of degree 4 and genus 1 in $Kum(A_{\tau’})$ passing through
(32), (34), (42), (44). Using Lemma 4.1.5, we see that $\Phi$ induces

{(32), (34), (42), (44)} $arrow^{\Phi}$ {(34), (41), (13), (22)}.

So we have a curve of degree 4 and genus 1 in $Kum(A_{\tau’’})$ passing through (34), (41), (13), (22).
Projecting from (11) on \ddagger I, we obtain a conic in $\Pi$ which passes through

$14\cap 12,12\cap 21,21\cap 31,31\cap 14$

and touches 13 and 41. Hence the second factor of the left side of the equation in Proposition
3.11 vanishes at $b_{1}=a_{1;}b_{2}=a_{3},$ $b_{3}=a_{2},$ $b_{4}=0$ . Therefore

$F_{2}(a_{1}, a_{2}, a_{3})=0$ .

On the other hand, by Theorem 3.8 and Proposition 3.9 we have

$F_{1}(a_{1}, a_{2}, a_{3})=0$

口
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4.2 The case of $D=10$

Put
$B_{10}=Q+Qi+Qj+Qij,$ $i^{2}=-10,$ $j^{2}=13,$ $ji=-ij$
$\mathcal{O}_{10}=Z+Z\frac{1+j}{2}+Z-\frac{i+ij}{2}+Z\frac{30j+ij}{13}$

and consider an involution on $B_{10},$ $\alpha-\alpha^{**}$ $:=\rho_{2}^{-1}\alpha’\rho_{2}$ , where $\rho_{2}=i$ . We identify
$B_{10}\otimes_{Q}R$ with $M_{2}(R)$ by

$i(\begin{array}{ll}0 1-10 0\end{array})$ , $j\mapsto(\sqrt{13}0-\sqrt{13}0)$ .

We have

$\Omega(z)=\frac{1}{13z}(1_{-360z-\frac{1-\sqrt{2}}{2}+5(1+\sqrt{2})z^{z_{2^{2}}}}80z+\frac{3-2\sqrt{2}}{4}-\frac{5(3+2\sqrt{2})}{2}$
$-360z_{1-60z-10z}- \frac{1-\sqrt{2}}{2}+5(1_{2}+\sqrt{2})z^{2})$

Lemma 4.2.1 $\Omega(z)$ has two singular relations:

$-4\tau_{1}+56\tau_{2}+12\tau_{3}+(\tau_{2^{2}}-\tau_{1}\tau_{3})+830=0$ with $\triangle=8$ ,
$-5\tau_{1}+55\tau_{2}+15\tau_{3}+(\tau_{2^{2}}-\tau_{1}\tau_{3})+830=0$ with $\triangle=5$ .

Lemma 4.2.2 Let $\tau$ be an element of $\mathfrak{H}_{2}$ which has two singular relations in Lemma 4.2.1.
Set

$N_{1}=(\begin{array}{llll}1 1 0 01 1 -1 117 18 -26 2731 30 -4 4\end{array})$ , $N_{2}=(\begin{array}{llll}1 1 0 01 1 1 -114 13 27 -2631 32 5 -5\end{array})$

and
$\tau’=(\begin{array}{ll}\tau_{1’} \tau_{2^{/}}\tau_{2^{/}} \tau_{3}’\end{array}):=\tau\cdot N_{1}$ , $\tau’’=(\begin{array}{ll}\tau_{1}^{u} \mathcal{T}_{2}^{//}\tau_{2}^{u} \tau_{3}’’\end{array}):=\tau\cdot N_{2}$.

Then the first singular relation in Lemma 4.2.1 is changed by $N_{1}$ to

$-2\tau_{1’}+\tau_{3’}=0(\triangle=8)$

and the second is changed by $N_{2}$ to

$-\tau_{1’’}+\tau_{2’’}+\tau_{3’’}=0(\triangle=5)$ .

Set
$N=N_{1}^{-1}N_{2}=(\begin{array}{ll}A BC D\end{array})$

Consider the isomorphism $\Phi$ : $A_{\tau’}arrow A_{\tau’’}$ as in \S 4.1.
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Lemma 4.2.3 Let notations be as in Lemma 4.1.5. Then

$(\begin{array}{l}\epsilon_{2}\epsilon_{2}’\lambda_{2}\lambda_{2}’\end{array})=$ . $(\begin{array}{llll}1 0 1 10 1 1 11 1 1 01 1 0 1\end{array})(\begin{array}{l}\epsilon_{1}\epsilon_{1}\lambda_{1}\lambda_{1}\end{array})$ .

Theorem 4.2.4 Let $C$ be a curve of genus 2 defined over $C$ such that

1. End(Jac(C)) $\supseteq O_{10}$

2. The Rosati involution coincides with the involution $**$ on $\mathcal{O}_{10}$ .

Then $C$ has a model

$y^{2}=x(x-1)(x-a_{1})(x-a_{2})(x-a_{3})$

such that
$F_{1}(a_{1}, a_{2}, a_{3})=F_{2}(a_{1}, a_{2}, a_{3})=0$.

PROOF.

{(32), (34), (42), (44)} $arrow^{\Phi}$ {(23), (12), (31), (44)}
$\frac{T_{(21)}}{}$

{(34), (41), (13), (22)}.

口
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