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\S 1. INTRODUCTION

Spaces of holomorphic maps between complex manifolds have played an important
role in topology and mathematical physics. In this note, we shall consider the topology
of spaces of holomorphic self-maps of the Riemann sphere $S^{2}=\mathbb{C}\cup\{\infty\}$ and announce
the main results of [GKMY].

For a non-negative integer $d$ , let $Ho1_{d}$ be the space of all holomorphic maps from
$S^{2}$ to $S^{2}$ of degree $d$ . Let $Ho1_{d}^{*}$ be the subspace of $Ho1_{d}$ consisting of all maps which
preserve a basepoint of $S^{2}$ . The corresponding space of continuous maps of degree
$d$ is denoted by $Map_{d}$ , and the subspace of based maps by $Map_{d}^{*}$ . We call the map
$f$ : $Xarrow Y$ a homotopy equivalence up to dimension $d$ if the induced homomorphism
$f_{*}$ : $\pi_{j}(X)arrow\pi_{j}(Y)$ is bijective for all $j<d$ and surjective for $j=d$. It is an
elementary fact that $Ho1_{d}$ and $Ho1_{d}^{*}$ are connected spaces. For $d=1$ , it is easy to see
that $Ho1_{1}\cong PSL_{2}(\mathbb{C})$ and $Ho1_{1}^{*}\cong \mathbb{C}^{*}\cross \mathbb{C}$ . The following general results were obtained
by Epshtein, J.D.S Jones and Segal:

Theorem $0$ ([Ep], [Se]). Let $d$ be a positive integer.
(1) $\pi_{1}(Ho1_{d})=\mathbb{Z}/2d$ .
(2) $\pi_{1}(Ho1_{d}^{*})=\mathbb{Z}$ .
(3) The natural in $cl$usion maps

$i_{d}$ : $Ho1_{d}^{*}arrow Map_{d}^{*}$ and $j_{d}$ : $Ho1_{d}arrow Map_{d}$

ar$e$ homotopy $eq$ uivalences up to dimension $d$ . $\square$

The stable homotopy type of $Ho1_{d}^{*}$ was studied in [CCMM] and in this note we shall
extend the above result by determing some further homotopy groups of the spaces $Ho1_{d}$

and $Ho1_{d}^{*}$ . Our main results are as follows:
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Theorem 1.
(1) For $k\geq 2$ ,

$\pi_{k}(Ho1_{d})=\int\pi_{k}(S_{3})\pi_{k}(S^{3})\oplus\pi_{k}(S^{2})$ $d=2d=1$

$(\mathbb{Z}/2$ $d\geq 3,$ $k=2$

(2) If $k\geq 3$ and $d\geq 3$ , then $\pi_{k}(Ho1_{d})=\pi_{k}(Ho1_{d}^{*})\oplus\pi_{k}(S^{3})$ .
(3) In particular, if $d>k\geq 3$ , then $\pi_{k}(Ho1_{d})=\pi_{k+2}(S^{2})\oplus\pi_{k}(S^{3})$ .

Theorem 2. The space $Ho1_{2}may$ be identified with a homogeneous space of the form
$(SL_{2}(\mathbb{C})\cross SL_{2}(\mathbb{C}))/H$, where $H$ is isomorphic to $\mathbb{C}^{*}\rangle 4\mathbb{Z}/4$ . In this semi-direct product,
the action of $\mathbb{Z}/4=<\sigma$ : $\sigma^{4}=1>is$ given by $\sigma\cdot\alpha=\alpha^{-1}$ for $\alpha\in \mathbb{C}^{*}$ . In particular,
$Ho1_{2}$ is $hom$otopy $eq$ uivalen$t$ to $(S^{3}\cross S^{3})/(S^{1}\aleph \mathbb{Z}/4)$ .
Theorem 3.

(1) The universal cover of $Ho1_{2}^{*}$ is homotopy equivalent to $S^{2}$ .
(2) The universal cover of $Ho1_{2}$ may be identified with a homogeneous space of the

form $(SL_{2}(\mathbb{C})\cross SL_{2}(\mathbb{C}))/D$ , where $D$ is isomorphic to $\mathbb{C}^{*}$ . In particular, It is
$hom$otopy $eq$ uivalent to $S^{3}\cross S^{2}$ .

In this note, we shall discuss only Theorem 2 and (1) of Theorem 3, referring to
[GKMY] for the remaining results.

Acknowled.qements: The first, second and fourth authors are indebted to the Mathemat-
ics Department of Tokyo Institute of Technology for its hospitality. A gap in an earlier
version of the proof of Theorem 3 was filled thanks to a suggestion of Professor A. Kono.
The authors are grateful to Professors Cohen and Kono for their kind assistance.

\S 2. SKETCH PROOF OF THEOREM 2

From now on, we identify $Ho1_{d}$ with the space of functions $f=p_{1}/p_{2}$ , where $p_{1},p_{2}$

are coprime polynomials such that $\max\{\deg(p_{1}), \deg(p_{2})\}=d$ . The group $Ho1_{1}$ acts on
$Ho1_{d}$ by pre- and post-compositions: for $(A, B)\in Ho1_{1}\cross Ho1_{1}$ and $f\in Ho1_{d}$ we have

$(A, B)\cdot f(z)=A\langle f(B^{-1}(z))$ .
The following proposition is well known:

Proposition 2.1. The group $Ho1_{1}\cross Ho1_{1}$ acts transitively on $Ho1_{2}$ . $\square$

lt is well known that the map

$SL_{2}(\mathbb{C})arrow Ho1_{1}$ , $(\begin{array}{ll}a bc d\end{array})\frac{az+b}{cz+d}$

is a double covering and induces an isomorphism $PSL_{2}(\mathbb{C})\cong Ho1_{1}$ of Lie groups. Thus
the group $G=SL_{2}(\mathbb{C})\cross SL_{2}(\mathbb{C})$ acts (transitively) on $Ho1_{2}$ .
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Lemma 2.2. Let $H$ denote the isotropy $su$bgroup of $SL_{2}(\mathbb{C})\cross SL_{2}(\mathbb{C})$ at $z^{2}\in Ho1_{2}$ .
Then

$H=\{(\pm(\begin{array}{ll}\alpha^{2} 00 \alpha^{-2}\end{array})$ $(\begin{array}{ll}\alpha 00 \alpha^{-1}\end{array}))$ $(\pm(\begin{array}{ll}0 i\alpha^{2}i\alpha^{-2} 0\end{array})$ $(\begin{array}{ll}0 \alpha-\alpha^{-1} 0\end{array}))$ : $\alpha\in \mathbb{C}^{*}\}$ .

Proof. This follows by direct calculation. $\square$

It Is also easy to establish:

Lemma2.3. $LetK=\mathbb{C}^{*}\aleph \mathbb{Z}\prime 4bethegroupdeBnedbytheactionof\mathbb{Z}/4=<\sigma:\sigma^{4}=$

$1>on$ $\mathbb{C}$ “ by $\sigma\cdot\alpha=\alpha^{-1}$ for $\alpha\in \mathbb{C}^{*}$ . Then $H$ and $K$ are isomorphic Lie groups. $\square$

Proof of Theorem 2. The first part of the Theorem follows easily from Proposition 2.1,
Lemma 2.2 and Lemna 2.3. The inclusion map of the maximal compact subgroup
$SU(2)=S^{3}$ of $SL_{2}(\mathbb{C})$ induces the homotopy equivalence $(S^{3}\cross S^{3})/(S^{1}\rangle\triangleleft \mathbb{Z}/4)\simeq$

$Ho1_{2}$ . $\square$

\S 3. THE UNIVERSAL COVER OF $Ho1_{2}^{*}$

In this section, we shall show that the universal cover of $Ho1_{2}^{*}$ is homotopy equivalent
to $S^{2}$ .

$\pi$

Proposition 3.1 ([CS]). There is a fibration $S^{1}arrow Ho1_{2}^{*}arrow \mathbb{R}P^{2}$ .

Remark. R.Cohen and D.Shimamoto ([CS]) deduce this from results of Donaldson ([D])
and Atiyah and Hitchin ([AH]) on monopoles. Although we give an elementary proof
using the homogeneous structure of $Ho1_{2}$ in [GKMY], we shall give here an alternative
direct proof.

Proof. We may identify $Ho1_{2}^{*}$ with the space of all holomorphic self maps $f$ of $S^{2}=$

$\mathbb{C}\cup\{\infty\}$ of degree 2 with basepoint condition $f(\infty)=0$ . Then any $f\in Ho1_{2}^{*}$ is of the
form

$f(z)=(az+b)/(z^{2}+cz+d)$

where the polynomials $az+b$ and $z^{2}+cz+d$ are coprime, $(a, b)\neq\{0,0$ ) and $a,$ $b,$ $c,$ $d\in \mathbb{C}$ .
For each pair $(U, V)$ of subspaces of $S^{2}$ , let $Q_{m,n}(U, V)$ be the space of all disjoint

positive divisors of $Sp^{m}(U)\cross Sp^{n}(V)$ ,

$Q_{m,n}(U, V)=\{(\xi, \eta)\in Sp^{m}(U)\cross Sp^{n}(V) : \xi\cap\eta=\emptyset\}$ ,

where $Sp^{k}(X)$ denotes the k-th symmetric product of $X,$ $Sp^{k}(X)=X^{k}/\Sigma_{k}$ . ( $\Sigma_{k}$ is the
symmetric group on $k$ letters.)
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The action of $\mathbb{C}^{*}$ on $S^{2}=\mathbb{C}U\{\infty\}$ (by multiplication) induces a free action on $Ho1_{2}^{*}$

and the quotient space $Ho1_{2}^{*}/\mathbb{C}^{*}$ may be identified with $Q_{1,2}(S^{2}, \mathbb{C})$ . It suffices to show
that $Q_{1,2}(S^{2}, \mathbb{C})\simeq \mathbb{R}P^{2}$ .

Observe that

$Q_{1,2}(S^{2}, \mathbb{C})\simeq Q_{1,2}(S^{2}, D_{-})=Q_{1,2}(\overline{D}_{+}, D_{-})\cup Q_{1,2}(\overline{D}_{-}, D_{-})$ ,

where $D_{\pm}$ are the open northern and southern hemispheres of $S^{2}=$ { $z\in R^{3}$ : llzll $=1$ }.
The map $u:Q_{1,2}(\overline{D}_{+}, D_{-})arrow Q_{1,2}(\overline{D}_{+}, \{0\})\cong\overline{D}_{+}$ given by

$(\alpha, \beta_{1}+\beta_{2})\mapsto(\alpha, 0+0)$

is a homotopy equivalence.
The map $v:Q_{1,2}(\overline{D}_{-}, D_{-})arrow \mathbb{C}^{*}$ given by

$(\alpha, \beta_{1}+\beta_{2})\mapsto(\alpha-\beta_{1})(\alpha-\beta_{2})$

is also a homotopy equivalence. Regarding the intersection

$Q_{1,2}(\overline{D}+, D_{-})\cap Q_{1,2}(\overline{D}_{-}, D_{-})=Q_{1,2}(S^{1}, D_{-})$ ,

we have the homotopy commutative diagram

$Q_{1,2}(S^{1}, D_{-})arrow Q_{1,2}(S^{1}, D_{-})$

$u\downarrow$ $v\downarrow$

$Q_{1,2}(S^{1}, \{0\})arrow^{f}$ $C^{*}$

It follows from the definition of the map $v$ that the bottom map $f$ is given by the map

$Q_{1,2}(S^{1}, \{0\})\cong S^{1}arrow \mathbb{C}^{*};$ $S^{1}\ni z\mapsto z^{2}\in \mathbb{C}^{*}$ .

Hence

$Q_{1,2}(S^{2}, \mathbb{C})\simeq Q_{1,2}(S^{2}, D_{-})\simeq \mathbb{C}^{*}\bigcup_{fou}Q_{1,2}(\overline{D}_{+}, D_{-})\simeq S^{1}\bigcup_{2}e^{2}\simeq \mathbb{R}P^{2}$. $\square$

Proof of (1) of Theorem 3.
Consider the fibration $S^{1}arrow Ho1_{2}^{*}arrow\pi \mathbb{R}P^{2}$ . Let $p:S^{2}arrow RP^{2}$ and $q$ : $H^{\sim}o1_{2}^{*}arrow Ho1_{2}^{*}$

be the universal coverings. Since $H^{\sim}o1_{2}^{*}$ is simply connected, there Is a lift $\theta$ : $H^{\sim}o1_{2}^{*}arrow S^{2}$

such that $p\circ\theta=\pi\circ q$ . It follows fron diagram chasing that $\theta_{*}$ : $\pi_{j}(H^{\sim}o1_{2}^{*})arrow\pi_{j}(S^{2})$ is
an isomorphism for all $j\geq 2$ . Since both spaces are simply connected, $\theta$ Is a homotopy
equivalence. $\square$
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Remark. Using Theorem 3, we can prove that the $C_{2}$-operad structure on Hol* $=$

$\coprod_{d\geq 0}Ho1_{d}^{*}$ given by [BM] is not compatible with that on $\Omega^{2}S^{2}$ up to homotopy. See
[GKMY] for the details. 口
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