

Title	A Lower Bound of the Expected Maximum Number of Edge- disjoint s-t Paths on Probabilistic Graphs
Author(s)	CHENG, Peng; MASUYAMA, Shigeru
Citation	数理解析研究所講究録 (1993), 833: 80-90
Issue Date	1993-04
URL	http://hdl.handle.net/2433/83414
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

A Lower Bound of the Expected Maximum Number of Edge-disjoint s-t Paths on Probabilistic Graphs

程鵬 Peng CHENG 増山 繁 Shigeru MASUYAMA

豊橋技術科学大学知識情報工学系
Department of Knowledge-Based Information Engineering,
Toyohashi University of Technology,
Toyohashi-shi 441, Japan

Abstract

For a probabilistic graph (G = (V, E, s, t), p), where G is an undirected graph with specified source vertex s and sink vertex t ($s \neq t$) in which each edge has independent failure probability and each vertex is assumed to be failure-free, and $p = (p(e_1), ..., p(e_{|E|}))$ is a vector consisting of failure probabilities $p(e_i)$'s of all edges e_i 's in E, we consider the problem of computing the expected maximum number $\Gamma_{(G,p)}$ of edge-disjoint s-t paths. It has been known that this computing problem is NP-hard even if G is restricted to several classes like planar graphs, s-t out-in bitrees and s-t complete multi-stage graphs. In this paper, for a probabilistic graph (G = (V, E, s, t), p), we propose a lower bound of $\Gamma_{(G,p)}$ and show the necessary and sufficient conditions by which the lower bound coincides with $\Gamma_{(G,p)}$. Furthermore, we also give a method of computing the lower bound of $\Gamma_{(G,p)}$ for a probabilistic graph (G = (V, E, s, t), p).

1 Introduction

We consider a probabilistic graph (G = (V, E, s, t), p), where G is an undirected graph with specified source vertex s and sink vertex t $(s \neq t)$ in which each edge has independent failure probability and each vertex is assumed to be failure-free, and $p = (p(e_1), ..., p(e_{|E|}))$ is a vector consisting of failure probabilities $p(e_i)$'s of all edges e_i 's in E. The expected maximum number $\Gamma_{(G,p)}$ of edge-disjoint s-t paths (namely, s-t paths having no edge in common) in a probabilistic graph (G,p) is useful for network reliability analysis. Note that the problem of computing s,t-connectedness [1,3], namely, probability that there exists at least one operative s-t path, is a special case of computing $\Gamma_{(G,p)}$ in a probabilistic graph (G,p).

However, it is known that the problem of computing $\Gamma_{(G,p)}$ in a probabilistic graph (G,p) is NP-hard, even if G is restricted to several classes, e.g., planar graphs, s-t out-in bitrees and s-t complete multi-stage graphs [2]. Thus, for estimating $\Gamma_{(G,p)}$, it is interesting for us to find its lower bound in a probabilistic graph (G,p).

In this paper, we define a lower bound of $\Gamma_{(G,p)}$ using an s-t path number function of G for a probabilistic graph (G,p), and give the necessary and sufficient conditions by which this lower bound coincides with $\Gamma_{(G,p)}$ and a method of computing this lower bound. This paper is organized as follows:

Graph theoretic terminologies used throughout this paper are described in section 2. A lower bound of $\Gamma_{(G,p)}$ in a probabilistic graph (G,p) is defined in section 3. Section 4 shows the necessary and sufficient conditions by which this lower bound coincides with $\Gamma_{(G,p)}$. Furthermore, we suggest a method of computing the lower bound in section 5.

2 Preliminaries

2.1 Graph Theoretic Terminologies

A two-terminal undirected graph G = (V, E, s, t) consists of a finite vertex set V and a set E of pairs of vertices, called edges, where s and t, called *source* and *sink*, respectively, are two specified distinct vertices of V. For an edge (u, v), the two vertices u and v are said to be end vertices of (u, v), and (u, v) is said to be incident to u and v.

In G = (V, E, s, t), an x-y path π of length k from vertex x to vertex y is an alternating sequence of vertices $v_i \in V$ $(0 \le i \le k)$ and edges $(v_{i-1}, v_i) \in E$ $(1 \le i \le k)$,

$$\pi: (x =) v_0, (v_0, v_1), v_1, ..., v_{k-1}, (v_{k-1}, v_k), v_k (= y),$$

where vertices v_i 's ($0 \le i \le k$) are distinct. i.e., a path denotes a simple path throughout this paper. For short, we also denote an x-y path π by

$$\pi: (x =)v_0, v_1, ..., v_{k-1}, v_k (= y).$$

The vertices $v_1, ..., v_{k-1}$ are called its internal vertices and the vertices $v_0(=s), v_k(=t)$ are called its end vertices. Let $V(\pi)$, $E(\pi)$ denote the set of all vertices and the set of all edges on an x-y path π , respectively. The set of all x-y paths in G is denoted by $P_{xy}(G)$. Paths $\pi_1, ..., \pi_r$ are called *internal* vertex-disjoint paths if they have no vertex in common except their end vertices. s-t paths $\pi_1, ..., \pi_r$ are called edge-disjoint s-t paths if any two of them have no edge in common, and the maximum number of edge-disjoint s-t paths in G is denoted by $\lambda_{st}(G)$.

A graph $G_1 = (V_1, E_1)$ is a subgraph of G = (V, E, s, t), if $V_1 \subseteq V$ and $E_1 \subseteq E$ hold. If G_1 is a subgraph of G, other than G itself, then G_1 is a proper subgraph of G. For a subset $E' \subseteq E$, the subgraph derived from G by deleting all edges of E' is denoted by G - E' (= (V, E - E', s, t)). A subset $E' (\subseteq E)$ is called an s-t edge-cutset if G - E' has no s-t path. An s-t path π is an s-t edge-cut-path if $E(\pi)$ is an s-t edge-cutset. An s-t edge-cutset with the minimum cardinality among s-t edge-cutsets of G is said to be minimum. By well-known Menger's theorem [4], $\lambda_{st}(G)$ is equal to the cardinality of a minimum s-t edge-cutset of G for any G.

2.2 Probabilistic Graph

A probabilistic graph, denoted by (G = (V, E, s, t), p), or (G, p), for short, is defined as follows: (i) G = (V, E, s, t) is a two-terminal graph, where each edge e of E is in either of the following two states: failed or operative (not failed), having known independent failure probability p(e), $0 \le p(e) \le 1$ (or operative probability q(e) = 1 - p(e)), and each vertex is assumed to be failure-free.

(ii) p is a vector consisting of all edge failure probabilities p(e)'s in E.

For a probabilistic graph (G = (V, E, s, t), p), let a subgraph $G - U \subseteq E$ correspond to an event \mathcal{E}_U that all edges of U are failed and all edges of E - U are operative. Clearly, the probability $\rho(G - U)$ of arising a subgraph $G - U \subseteq E$ is computed by the following formula.

$$\rho(G-U) = \prod_{e \in U} p(e) \prod_{e \in E-U} q(e) (=1-p(e)).$$

Furthermore, $\sum_{U \subset E} \rho(G - U) = 1$ holds.

Now, we define the expected maximum number $\Gamma_{(G,p)}$ of edge-disjoint s-t paths in a probabilistic graph (G = (V, E, s, t), p) as follows:

$$\Gamma_{(G,p)} \equiv \sum_{U \subseteq E} \lambda_{st}(G - U)\rho(G - U). \tag{1}$$

It is known that the problem of computing $\Gamma_{(G,p)}$ for a probabilistic graph (G,p) is NP-hard, even if G is restricted to several special classes like planar graphs, s-t out-in bitrees and s-t multi-stage complete graphs, etc. [2]. Thus, it is interesting for us to consider a lower bound of $\Gamma_{(G,p)}$ for estimating it.

3 A Lower Bound of $\Gamma_{(G,p)}$

We define a lower bound of the expected maximum number of edge-disjoint s-t paths in a probabilistic graph.

An s-t path number function f of G = (V, E, s, t) is a one-to-one integral function $f : P_{st}(G) \mapsto \{1, ..., l\}$. The s-t path π with $f(\pi) = k$ is said to be the s-t path of number k, and denoted by π_k . The s-t path with the minimum number in $G - E'(\subseteq E)$ with respect to f is denoted by $\pi_{m(G-E',f)}$. First, we give the following procedure **FEDP** to find edge-disjoint s-t paths in G = (V, E, s, t).

Procedure FEDP

```
Input A graph G = (V, E, s, t) and an s-t path number function f of G.

Output The set of edge-disjoint s-t paths FEDP(G, f).

BEGIN

G' := G; \ FEDP(G, f) := \phi;

WHILE P_{st}(G') \neq \phi DO

BEGIN

Find \pi_{m(G', f)} from P_{st}(G');

FEDP(G, f) := FEDP(G, f) \cup \{\pi_{m(G', f)}\};

G' := G' - E(\pi_{m(G', f)})

END;

Output FEDP(G, f)
```

It is clear that FEDP(G, f) obtained by **FEDP** is a set of edge-disjoint s-t paths in G. Namely, the following formula holds.

$$|FEDP(G,f)| \le \kappa_{st}(G), \text{ for any } G, f.$$
 (2)

For a probabilistic graph (G = (V, E, s, t), p) and an s-t path number function f of G, we now define the value $\underline{\Gamma}_{(G, f, p)}$ as follows:

$$\underline{\Gamma}_{(G,f,p)} \equiv \sum_{U \subseteq E} |FEDP(G-U,f)| \rho(G-U). \tag{3}$$

By formulas (1),(2),(3), $\underline{\Gamma}_{(G,f,p)}$ is a lower bound of $\Gamma_{(G,p)}$, namely, the following formula holds.

$$\underline{\Gamma}_{(G,f,p)} \leq \Gamma_{(G,p)}, \text{ for any } G, f, p.$$

4 Necessary and Sufficient Conditions

In this section, we give the necessary and sufficient conditions by which $\underline{\Gamma}_{(G,f,p)}$ coincides with $\Gamma_{(G,p)}$ in a probabilistic graph (G,p).

4.1 A Necessary and Sufficient Condition of an s-t Path Number Function

By formulas (1),(2),(3), the following Theorem 4.1 immediately holds.

Theorem 4.1. Given (G = (V, E, s, t), p), then $\underline{\Gamma}_{(G, f, p)} = \Gamma_{(G, p)}$ holds iff G has an s-t path number function f satisfying the following formula.

$$|FEDP(G-U,f)| = \lambda_{st}(G-U), \text{ for any } U \subseteq E.$$
 (4)

Definition 4.1. An s-t path number function f of G is called *exact* if f satisfies formula (4). \Box

A graph G=(V,E,s,t) is said to be s-t k-edge-connected if $\lambda_{st}(G)=k$ holds. A graph G is said to be π -edge-cut if π is an s-t edge-cut-path in G. A graph G is said to be π -edge-cut s-t 2-edge-connected if π is an s-t edge-cut-path of G and G is s-t 2-edge-connected. A π -edge-cut s-t 2-edge-connected graph G=(V,E,s,t) is minimal, if $G-\{e\}$ for any $e\in E-E(\pi)$ is not π -edge-cut s-t 2-edge-connected. For example, the graph G shown in Fig.1 is a π -edge-cut s-t 2-edge-connected graph, where $\pi:v_0(=s),v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9(=t)$. But it is not minimal as $G-\{e\}$ is π -edge-cut s-t 2-edge-connected. Furthermore, the set of all π -edge-cut s-t 2-edge-connected subgraphs of an s-t path π of G is denoted by $\mathcal{W}(G,\pi)$. For example, in the graph G given in Fig.1, $W(G,\pi)=\{G-\{e=(u_1,u_2)\},\ G-\{(u_1,v_4),(u_2,v_5),(v_3,v_5)\}$ Clearly, the following Lemma 4.1 holds.

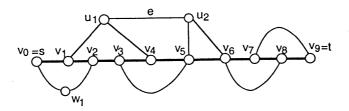


Fig.1 A π -edge-cut s-t 2-edge-connected graph.

Lemma 4.1. If $\lambda_{si}(G) \geq 2$ holds and an s-t path π of G is an s-t edge-cut-path, then $\mathcal{W}(G, \pi) \neq \phi$ holds.

Lemma 4.2. In a graph G = (V, E, s, t), if there exists an s-t path π satisfying $\mathcal{W}(G, \pi) = \phi$, then the following formula holds.

$$\lambda_{st}(G - E(\pi)) = \lambda_{st}(G) - 1.$$

Proof. Clearly, $\lambda_{st}(G - E(\pi)) \leq \lambda_{st}(G) - 1$ holds. Assume that $\lambda_{st}(G - E(\pi)) < \lambda_{st}(G) - 1$ holds. By this assumption, there exists a minimum s-t edge-cutset E^* in $G - E(\pi)$ that satisfies $|E^*| \leq \lambda_{st}(G) - 2$ by Menger's Theorem [4]. Consider graph $G - E^*$, and it is clear that all s-t paths in $G - E^*$ share at least one edge of $E(\pi)$, i.e., π is an s-t edge-cut-path of $G - E^*$. Furthermore, let E' be a minimum s-t edge-cutset of $G - E^*$. As $E' \cup E^*$ is an s-t edge-cutset of G, $|E' \cup E^*| = |E'| + |E^*| \geq \lambda_{st}(G)$ holds. By $|E^*| \leq \lambda_{st}(G) - 2$, we obtain $|E'| = \lambda_{st}(G - E^*) \geq 2$, contradicting the fact that $W(G, \pi) \neq \emptyset$ holds by Lemma 4.1.

We now prove the following Theorem 4.2.

Theorem 4.2. In a graph G = (V, E, s, t), an s-t path number function f of G is exact iff for any $U \subseteq E$ with $P_{st}(G - U) \neq \phi$, $\mathcal{W}(G - U, \pi_{m(G - U, f)}) = \phi$ holds.

Proof. Necessity: Assume that an s-t path number function f of G is exact and that for some $U \subseteq E$ with $P_{st}(G-U) \neq \phi$, $\mathcal{W}(G-U,\pi_{m(G-U,f)}) \neq \phi$ holds. By $\mathcal{W}(G-U,\pi_{m(G-U,f)}) \neq \phi$, G-U has a subgraph $G' \in \mathcal{W}(G-U,\pi_{m(G-U,f)})$. $\lambda_{st}(G') = 2$ holds by the definition of $\mathcal{W}(G-U,\pi_{m(G-U,f)})$. As $\pi_{m(G-U,f)}$ is the s-t path with the minimum number of G' and an s-t edge-cut-path of G', we have $FEDP(G',f) = \{\pi_{m(G-U,f)}\}$ by **FEDP**. Hence, $|FEDP(G',f)| = 1 < \lambda_{st}(G') = 2$ holds, contradicting the fact that f is exact.

Sufficiency: Assume that for any $U \subseteq E$ with $P_{st}(G-U) \neq \phi$, $\mathcal{W}(G-U, \pi_{m(G-U,f)}) = \phi$ holds. Then it is easy to prove that for any $U \subseteq E$, $|FEDP(G-U,f)| = \lambda_{st}(G-U)$ holds by iteratively applying Lemma 4.2.

4.2 A Necessary and Sufficient Condition of s-t Paths

Definition 4.2.(Prohibitive s-t Path Set)

Let $P(\subseteq P_{st}(G))$ be a subset of the set of all s-t paths of G. If, for each s-t path π of P, there is a π -edge-cut s-t 2-edge-connected subgraph $G_{\pi} \in \mathcal{W}(G, \pi)$ in G that satisfies $P_{st}(G_{\pi}) \subseteq P$, then P is called a *prohibitive s-t path set*.

```
Procedure TEST
```

```
Input: A graph G = (V, E, s, t).

Output: Either an s-t path number function f of G or a subset P of P_{st}(G).

BEGIN

P := P_{st}(G); \quad i := 1; \quad Q := \{ \ \pi \in P_{st}(G) \mid \mathcal{W}(G, \pi) = \phi \};

WHILE Q \neq \phi DO

BEGIN

P := P - Q;

REPEAT

Select an s-t path \pi from Q;
f(\pi) := i; \quad i := i + 1; \quad Q := Q - \{\pi\}

UNTIL Q = \phi;
Q := \{ \pi \in P \mid P_{st}(G_{\pi}) \not\subseteq P, \text{ for all } G_{\pi} \in \mathcal{W}(G, \pi) \}

END;

IF P = \phi THEN output f ELSE output P
```

Clearly, the following Lemma 4.3 holds by Definitions 4.1 and 4.2.

Lemma 4.3. If **TEST** outputs an s-t path number function f of G, then f is exact, when a graph G = (V, E, s, t) is input. If **TEST** outputs a subset P of $P_{st}(G)$, then P is a prohibitive s-t path set, when a graph G = (V, E, s, t) is input.

If there is a prohibitive s-t path set $P(\subseteq P_{st}(G))$ where G = (V, E, s, t), then there does not exist any exact s-t path number function f. Otherwise, if G has an exact s-t path number function f, and suppose π_m be the s-t path of the minimum number with respect to f among P. By Definition 4.2,

there is $G_{\pi_m} \in \mathcal{W}(G, \pi_m)$ in G that satisfies $P_{st}(G_{\pi_m}) \subseteq P$. Thus, π_m is also the s-t path of the minimum number with respect to f in G_{π_m} . Therefore, by **FEDP**, $FEDP(G_{\pi_m}, f) = 1 < \lambda_{st}(G_{\pi_m}) = 2$ holds. This leads to a contradiction that f is an exact s-t path number function of G. Hence, by Theorem 4.2 and Lemma 4.3, the following Theorem 4.3 holds.

Theorem 4.3. In a graph G = (V, E, s, t), G has an exact s-t path number function iff it contains no prohibitive s-t path set as its s-t path subset.

4.3 Characterization of Graph Having a Prohibitive s-t Path Set

A graph is connected if there is a path connecting each pair of vertices and otherwise disconnected. A connected component of G is a maximal connected subgraph, which is simply called a component. If there exist vertices x and y, $x \neq v$ and $y \neq v$ such that all the paths connecting x and y have v as an internal vertex, then v is an articulation vertex. A two-terminal connected graph is said to be s,t non-separable if its subgraph obtained by removing s,t is connected. In the following discussion, we assume that G is an s,t non-separable two-terminal connected graph, unless otherwise specified.

Definition 4.3. (s-t 2-edge-connected Articulation Vertex)

A vertex v is said to be an s-t 2-edge-connected articulation vertex of G, if v is an s-t articulation vertex of G and there exist both two edge-disjoint s-v paths and two edge-disjoint v-t paths in G. \Box

For example, in the graph illustrated in Fig.2(a), vertices u, v, w are s-t 2-edge-connected articulation vertices of G.

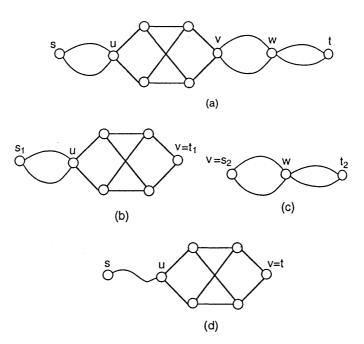


Fig.2 An illustration of separation of G at an s-t 2-edge-connected articulation vertex.

Definition 4.4. (Separation of G at an s-t 2-edge-connected Articulation Vertex)

Assume that G has an s-t 2-edge-connected articulation vertex v. The following sequence of operations is said to be separation of G at an s-t 2-edge-connected articulation vertex v.

- (i) The two components C_1 and C_2 are obtained by removing v from G.
- (ii) v is connected to C_1 (or C_2) with all edges (u, v)'s of G having one end vertex u in C_1 (or C_2).
- (iii) Note that C_1 contains either of s, t. If C_1 contains s (or t) then let s (or t) be s_1 (or t_1) and let v be t_1 (or s_1). s_2 and t_2 are similarly defined for C_2 .

For example, the two graphs illustrated in Fig.2(b),(c) are obtained by separation of the graph given in Fig.2(a) at an s-t 2-edge-connected articulation vertex v.

Definition 4.5. (Prohibitive Graph)

A graph G is said to be a *prohibitive graph*, if G, or one of the graphs derived from G by separations of G at all s-t 2-edge-connected articulation vertices in G is homeomorphic to the graph shown in Fig.3. \Box

The two graphs illustrated in Fig.2(a),(b) are both prohibitive graphs. But the graph given in Fig.2(d), although it contains a subgraph homeomorphic to the graph shown in Fig.3, is not a prohibitive graph as the vertex u is not its s-t 2-edge-connected articulation vertex and it is not homeomorphic to the graph shown in Fig.3. It is easy to verify that for a prohibitive graph G, $P_{st}(G)$ is a prohibitive s-t path set. Thus, we immediately obtain the following Lemma 4.4.

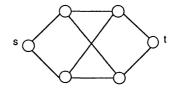


Fig.3 A prohibitive graph.

Lemma 4.4. If G contains a prohibitive graph as its subgraph, then it also has a prohibitive s-t path set as its s-t path subset.

Now, we show that if G has a prohibitive s-t path set as its s-t path subset, then it contains a prohibitive graph as its subgraph. For our aim, we need more definitions.

Definition 4.6. (Attachment Vertex [5][6])

An attachment vertex of a subgraph G_1 in G is a vertex of G_1 incident in G with some edge not belonging to G_1 .

Definition 4.7.(Bridges [5],[6])

Let J be a fixed subgraph of G. A subgraph G_1 of G is said to be J-detached in G if all its attachment vertices are in J. We define a *bridge* of J in G as any subgraph B that satisfies the following three conditions:

- (i) B is not a subgraph of J.
- (ii) B is J-detached in G.
- (iii) No proper subgraph of B satisfies both (i) and (ii).

Definition 4.8. (Degenerate and Proper Bridges. Nucleus of a Bridge [5],[6])

An edge e = (u, v) of G not belonging to J but having both end vertices in J is referred to as a degenerate bridge.

Let G^- be the graph derived from G by deleting the vertices of J and all edges incident to them.

Let C be any component of G^- . Let B be the subgraph of G obtained from C by adjoining to it each edge of G having one end vertex in C and the other end vertex in J and adjoining also the end vertices in J of all such edges. The subgraph B satisfies the conditions (i),(ii),(iii) in Definition 4.7 and is a bridge. Such a bridge is called to be *proper*. The component C of G^- is the *nucleus* of B. \square

For the graph G shown in Fig.4, let J be an s-t path $\pi: v_0(=s), v_1, v_2, v_3, v_4, v_5, v_6(=t)$, then all vertices on π other than v_4 are all attachment vertices of π in G. B_1 , B_2 , B_3 are proper bridges of π in G and B_4 is a degenerate bridge of π in G. By Definitions 4.6,4.7, the following Lemma 4.5 obviously holds.

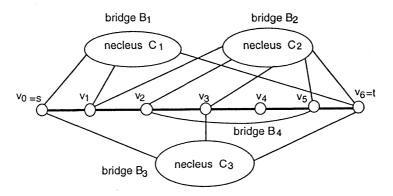


Fig.4 An illustration of attachment vertices, bridges and nuclei.

Lemma 4.5. Let π be an s-t path of G. If there is a proper bridge B of π in G, then any two vertices u, v in B are connected by a path consisting of edges and vertices only in the nucleus of B.

Let $\gamma: v_0, v_1, ..., v_{k-1}, v_k$ be a path from v_0 to v_k of G. If $0 \le i < j \le k$, then the sequence $v_i, v_{i+1}, ..., v_{j-1}, v_j$ is a subpath of γ , and denoted by $\gamma[v_i, v_j]$.

Definition 4.9. (Path Avoiding s-t Path π)

Let π be an s-t path of G. For two vertices v_i, v_j in $V(\pi)$, a path between v_i and v_j consisting of edges not in $E(\pi)$ and vertices not in $V(\pi)$ except v_i, v_j is said to be avoiding π .

For example, the path v_1, u_1, u_2, v_5 is avoiding the s-t path π in the graph G illustrated in Fig.1.

Definition 4.10. (Order Relation with Respect to an s-t Path π)

Let $\pi: v_0(=s), v_1, ..., v_{k-1}, v_k(=t)$ be an s-t path of G. We define an order relation $<_{\pi}$ on $V(\pi)$ with respect to π as follows: For any v_i, v_j $(0 \le i, j \le k), v_i <_{\pi} v_j$ holds iff i < j holds. If $v_i <_{\pi} v_j, v_i <_{\psi} v_j$ is said to be to the left (right) of v_j (v_i).

Definition 4.11.(Intersection Vertex of Two Paths π , α)

Let π , α be two paths of G. A vertex v is called an *intersection vertex* of π , α if π and α have at least three distinct edges incident to v. The set of all intersection vertices of π , α is denoted by $V_{\pi\alpha}$. \square

In the graph G given in Fig.1, for two s-t paths π and $\alpha: v_0(=s), v_1, u_1, u_2, v_6, v_7, v_9(=t)$, we have $V_{\pi\alpha} = \{v_1, v_6, v_7, v_9\}$.

Definition 4.12. (Interlacing Subpaths)

Suppose that G has an s-t path $\pi: v_0(=s), v_1, ..., v_{k-1}, v_k(=t)$ satisfying $\mathcal{W}(G, \pi) \neq \emptyset$. Let $G_{\pi} \in \mathcal{W}(G, \pi)$ be a minimal π -edge-cut s-t 2-edge-connected subgraph of G. Let α, β be two edge-disjoint s-t paths of G_{π} . Let $V_{\pi\alpha} = \{x_1, x_2, ..., x_p\} (\subseteq V(\pi))$ be the set of all intersection vertices of π , α , where $x_1 <_{\pi} x_2 <_{\pi} \cdots <_{\pi} x_p$. Let $V_{\pi\beta} = \{y_1, y_2, ..., y_q\} (\subseteq V(\pi))$ be the set of all intersection vertices of π , β , where $y_1 <_{\pi} y_2 <_{\pi} \cdots <_{\pi} y_q$. Let $V_{\pi\alpha\beta} = \{z_1, ..., z_r\} (\subseteq V(\pi))$ be the set of all vertices which π, α, β have in common, where $z_1 <_{\pi} z_2 <_{\pi} \cdots <_{\pi} z_r$. Subpaths $\alpha[x_i, x_{i+1}]$ of α avoiding α and $\beta[y_j, y_{j+1}]$ of β avoiding α , where either α if α is α if the subpath α if the subpath α if α is α if α is α in α in

In the graph G given in Fig.1, for two edge-disjoint s-t paths; $\alpha: v_0(=s), v_1, u_1, v_4, v_5, u_2, v_6, v_7, v_9(=t), \quad \beta: v_0(=s), w_1, v_2, v_3, v_5, v_6, v_8, v_9(=t),$ we have $V_{\pi\alpha} = \{v_1, v_4, v_5, v_6, v_7, v_9\}, V_{\pi\beta} = \{v_0, v_2, v_3, v_5, v_6, v_8\}, V_{\pi\alpha\beta} = \{v_0, v_5, v_6, v_9\}.$ And subpaths $\alpha[v_1, v_4]$ and $\beta[v_0, v_2]$ are interlacing subpaths, and $\alpha[v_7, v_9]$ and $\beta[v_6, v_8]$ are also interlacing paths. But $\alpha[v_1, v_4]$ and $\beta[v_6, v_8]$ are not interlacing subpaths as $v_5, v_6 \in V_{\pi\alpha\beta}$ are on $\pi[v_0, v_8]$.

In order to show that if graph G has a prohibitive s-t path set $P(\subseteq P_{st}(G))$, then G must contain a prohibitive graph as its subgraph, we can prove the following Lemma 4.6 and Lemma 4.7.

Lemma 4.6. Suppose that G has a prohibitive s-t path set P. Then there is an s-t path π of P whose proper bridge B in G contains two interlacing subpaths $\alpha[x_i, x_{i+1}]$ of α and $\beta[y_j, y_{j+1}]$ of β with respect to π in G_{π} , where G_{π} is a minimal π -edge-cut s-t 2-edge-connected subgraph of G, and α , β are two edge-disjoint s-t paths in G_{π} .

Sketch of Proof. Let P be a prohibitive s-t path set of G. We can find the s-t path π of P satisfying the following condition I by using the following procedure I.

Condition I: There is a proper bridge B of π in G suth that B contains interlacing subpaths $\alpha[x_i, x_{i+1}]$ of α and $\beta[y_j, y_{j+1}]$ of β with respect to π in G_{π} , where G_{π} is a minimal π -edge-cut s-t 2-edge-connected subgraph of G, and α , β are two edge-disjoint s-t paths in G_{π} .

Procedure I: Let π be an s-t path of P. Let B be a proper bridge of π in G. We do the following Loop iteratively.

Loop: If π satisfies Condition I then end. Otherwise, we can find an s-t path π' of P such that there is a bridge B' of π' in G whose nucleus contains the nuleus of B and there are more vertices in the nucleus of B' than in the nucleus of B. Let B, π be B', π' , respectively.

Note that, in each loop, the nucleus of B increases at least by one vertex. Thus the loop will end in at most |V| times, where V is the set of vertices in G.

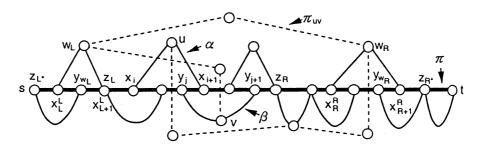


Fig.5 An illustration of the proof of Lemma 4.7.

Lemma 4.7. Suppose that G has an s-t path π satisfying $\mathcal{W}(G,\pi) \neq \phi$. Let α , β be two edge-disjoint s-t paths of $G_{\pi} \in \mathcal{W}(G,\pi)$. Let $V_{\pi\alpha} = \{x_1, x_2, ..., x_p\}$, $V_{\pi\beta} = \{y_1, y_2, ..., y_q\}$ and $V_{\pi\alpha\beta} = \{z_1, ..., z_r\}$

be defined as in Definition 4.12. If a bridge B of π in G contains interlacing subpaths $\alpha[x_i, x_{i+1}]$ of α and $\beta[y_j, y_{j+1}]$ of β in G_{π} with respect to π , then G contains a prohibitive graph as its subgraph. Sketch of Proof. By the known conditions given in this lemma, we construct a prohibitive graph as its subgraph.

By Lemma 4.5, there is a path π_{uv} between an internal vertex u on $\alpha[x_i, x_{i+1}]$ and an internal vertex v on $\beta[y_j, y_{j+1}]$ consisting of edges and vertices only in the nucleus of bridge B, i.e., π_{uv} is vertex-disjoint path with π except u, v. See Fig.5. Thus, we can also find a prohibitive graph as subgraph of G independently of the way how the path π_{uv} is traced.

By Theorem 4.3 and Lemmas 4.5, 4.6, 4.7, the following Theorem 4.4 holds.

Theorem 4.4. In a probabilistic graph (G,p), $\underline{\Gamma}_{(G,f,p)} = \Gamma_{(G,p)}$ holds iff G contains no prohibitive graph as its subgraph.

5 A Method of Computing the Lower Bound

Given a probabilistic graph (G,p) and an s-t path number f of G, we show a method of computing the lower bound $\underline{\Gamma}_{(G,f,p)}$. We first wish to recall the procedure **FEDP** and the definition of $\underline{\Gamma}_{(G,f,p)}$ in section 3.

For a probabilistic graph (G = (V, E, s, t), p) and an s-t path number function f of G, let \mathcal{U}_{f,π_i} denote the set of all $U \subseteq E$ for which s-t path π_i is selected as a member of edge-disjoint s-t paths FEDP(G - U, f). Let $p(\mathcal{E}_U)$ be the probability of the event \mathcal{E}_U that all edges of U are failed and all edges of E - U are operative, and $p(\mathcal{E}_{f,\pi_i})$ is the probability of the event that at least one event \mathcal{E}_U , for all $U \in \mathcal{U}_{f,\pi_i}$, arises in (G,p). Thus, we have

$$\underline{\Gamma}_{(G,f,p)} = \sum_{U \subseteq E} |FEDP(G - U, f)| \rho(G - U)$$

$$= \sum_{i=1}^{|P_{st}(G)|} \sum_{U \in \mathcal{U}_{f,\pi_{i}}} \rho(G - U)$$

$$= \sum_{i=1}^{|P_{st}(G)|} \sum_{U \in \mathcal{U}_{f,\pi_{i}}} p(\mathcal{E}_{U})$$

$$= \sum_{i=1}^{|P_{st}(G)|} p(\mathcal{E}_{f,\pi_{i}}). \tag{5}$$

We can compute the lower bound $\underline{\Gamma}_{(G,f,p)}$ by formula (5) instead of formula (3).

6 Concluding Remarks

For a probabilistic graph, we proposed a lower bound for estimating the expected maximum number of edge-disjoint s-t paths. The necessary and sufficient conditions with respect to both s-t path number function and graph construction, where this lower bound coincides with the expected maximum number of edge-disjoint s-t paths, are clarified. A method of computing this lower bound is also given, although by this computing method the lower bound does not seem to be efficiently computed for a general probabilistic graph.

However, for a probabilistic one-layered s-t graph, (a two-terminal graph where the subgraph obtained by deleting its s,t is exactly a simple path. Fig.6 illustrates an example of one-layered s-t graph.) as it satisfies the necessary and sufficient conditions and the number of all its s-t paths is a polynomial function in the number of its vertices, the lower bound based on its exact s-t path number function can efficiently be computed by the computing method shown in section 5, i.e., the expected maximum number of edge-disjoint s-t paths in a probabilistic one-layered s-t graph can efficiently be computed. Detailed description of these proofs is lengthy and to be reported elsewhere.

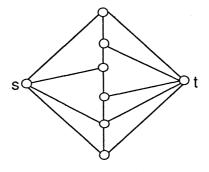


Fig.6 A one-layered s-t graph.

References

- [1] M. O. Ball: "Computational complexity of network reliability analysis: An overview", *IEEE Trans. Reliability*, Vol.R-35, pp230-239 (1986).
- [2] P. Cheng and S. Masuyama: "Problem of computing the expected maximum number of vertex-disjoint s-t paths on probabilistic graphs", Research Report COMP92-1, Inst. Electron. Infor. Comm. Eng. Japan, pp1-8, (1992) (in Japanese).
- [3] C. J. Colbourn: The Combinatorics of Network Reliability, Oxford University Press (1987).
- [4] K. Menger: Zer allgemeinen kurventheorie, Fund. Math. Vol 10, pp.96-115(1927).
- [5] B. Mishra and R. E. Tarjan: "A linear-time algorithm for finding a ambitus", Algorithmica, 7, pp.521-554(1992).
- [6] W. T. Tutte: Bridges and hamiltonian circuits in planar graph, Aequationes mathematicae, 15, pp.1-13(1977).