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A Lower Bound of the Expected Maximum Number of
Edge-disjoint s-t Paths on Probabilistic Graphs
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Department of Knowledge-Based Information Engineering,
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Abstract

For a probabilistic graph (G = (V, E, s,t),p), where G is an undirected graph with specified
source vertex s and sink vertex t (s # t) in which each edge has independent failure probability and
each vertex is assumed to be failure-free, and p = (p(e1), ..., p(ejz))) is a vector consisting of failure
probabilities p(ei)’s of all edges ei’s in E, we consider the problem of computing the expected
maximum number T, of edge-disjoint s-t paths. It has been known that this computing
problem is NP-hard even if G is restricted to several classes like planar graphs, s-t out-in bitrees
and s-t complete multi-stage graphs. In this paper, for a probabilistic graph (G = (V, E, s,1), p),
we propose a lower bound of I'(g p) and show the necessary and sufficient conditions by which the
lower bound ceincides with I'(g,p). Furthermore, we also give a method of computing the lower
bound of ['(s p) for a probabilistic graph (G = (V, E, s,t), p).

1 Introduction

We consider a probabilistic graph (G = (V, E, s,t),p), where G is an undirected graph with specified
source vertex s and sink vertex t (s # t) in which each edge has independent failure probability and
each vertex is assumed to be failure-free, and p = (p(e1),..., p(eje|)) is a vector consisting of failure
probabilities p(e;)’s of all edges ¢;’s in E. The expected maximum number ['(gp) of edge-disjoint
s-t paths (namely, s-t paths having no edge in common) in a probabilistic graph (G,p) is useful
for network reliability analysis. Note that the problem of computing s,t-connectedness [1,3], namely,
probability that there exists at least one operative s-t path, is a special case of computing [(gp) in
a probabilistic graph (G, p).

However, it is known that the problem of computing I'(Gp) in a probabilistic graph (G,p) is
NP-hard, even if G is restricted to several classes, e.g., planar graphs, s-t out-in bitrees and s-t
complete multi-stage graphs [2]. Thus, for estimating I'(g p), it is interesting for us to find its lower
bound in a probabilistic graph (G, p).

In this paper, we define a lower bound of T'(g,) using an s-t path number function of G for a
probabilistic graph (G, p), and give the necessary and sufficient conditions by which this lower bound
coincides with I'(g ;) and a method of computing this lower bound. This paper is organized as follows:

Graph theoretic terminologies used throughout this paper are described in section 2. A lower bound
of I'g,p) in a probabilistic graph (G, p) is defined in section 3. Section 4 shows the necessary and
sufficient conditions by which this lower bound coincides with [ ). Furthermore, we suggest a
method of computing the lower bound in section 5.



2 Preliminaries

2.1 Graph Theoretic Terminologies

A two-terminal undirected graph G = (V, E, 5,1) consists of a finite vertex set V and a set E of pairs
of vertices, called edges, where s and t, called source and sink, respectively, are two specified distinct
vertices of V. For an edge (u,v), the two vertices v and v are said to be end vertices of (u,v), and
(u,v) is said to be incident to u and v.

In G = (V, E, s,t), an z-y path m of length k from vertex z to vertex y is an alternating sequence
of vertices v; € V (0 < i < k) and edges (v;_y,v%) € E (1 <i<k),

w: (z :)vO) (UO)vl)) [ PR vk—l’(vk—lka)y Uk(: y))

where vertices v;’s ( 0 < ¢ < k) are distinct. i.e., a path denotes a simple path throughout this paper.
For short, we also denote an x-y path = by

T : (T =)vo, V1, ey V=1, Vi(= ¥)-

The vertices vy, , vk—1 are called its internal vertices and the vertices vo(= s),vi(=t) are called its
end vertices. Let V(7), E(7) denote the set of all vertices and the set of all edges on an x-y path =,
respectively. The set of all x-y paths in G is denoted by Py (G). Paths =y,...,m, are called internal
vertez-disjoint paths if they have no vertex in common except their end vertices. s-t paths =y,..., 7,
are called edge-disjoint s-t paths if any two of them have no edge in common, and the maximum
number of edge-disjoint s-t paths in G is denoted by A,:(G). :

A graph Gy = (V4, E1) is a subgraph of G = (V, E,s,t), if V; C V and E; C F hold. If G, is
a subgraph of G, other than G itself, then G, is a proper subgraph of G. For a subset E' C E, the
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subgraph derived from G by deleting all edges of E’ is denoted by G — E'(= (V,E — E',s,t)). A

subset E/(C E) is called an s-1 edge-cutset if G — E’ has no s-t path. An s-t path = is an s-t
edge-cut-path if E(m) is an s-t edge-cutset. An s-t edge-cutset with the minimum cardinality among
s-t edge-cutsets of G is said to be minimum. By well-known Menger’s theorem [4], A,:(G) is equal to
the cardinality of a minimum s-t edge-cutset of G for any G.

2.2 Probabilistic Graph

A probabilistic graph, denoted by (G = (V, E, s,t),p), or (G, p), for short, is defined as follows:

(i) G =(V,E,s,t) is a two-terminal graph, where each edge e of E is in either of the following two
states: failed or operative (not failed), having known independent failure probability p(e), 0 < p(e) <1
(or operative probability g(e) = 1 — p(e)), and each vertex is assumed to be failure-free.

(ii) p is a vector consisting of all edge failure probabilities p(e)’s in E.

For a probabilistic graph (G =(V, E, s,t),p), let a subgraph G —U(C E) correspond to an event
&y that all edges of U are failed and all edges of E — U are operative. Clearly, the probability
p(G —U) of arising a subgraph G — U(C E) is computed by the following formula.

p(G-U)=T]r) T] ale)(=1-p(e)).
eeU c€E-U

Furthermore, > ycgp(G—U) =1 holds.

Now, we define the ezpected marimum number T'g,y of edge-disjoint s-t paths in a probabilistic
graph (G = (V, E,s,t),p) as follows:

Tep = Y Aa(G=U)p(G-V). (1)
UCE
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It is known that the problem of computing ['(g ) for a probabilistic graph (G,p) is NP-hard,
even if G is restricted to several special classes like planar graphs, s-t out-in bitrees and s-t multi-
stage complete graphs, etc. [2]. Thus, it is interesting for us to consider a lower bound of I'(g ) for
estimating it.

3 A Lower Bound of I'g))

We define a lower bound of the expected maximum number of edge-disjoint s-t paths in a probabilistic
graph.

An s-t path number function f of G = (V, E,s,t) is a one-to-one integral function f : Pyu(G) —
{1,...,1}. The s-t path # with f(7w) = k is said to be the s-t path of number k, and denoted by ;.
The s-t path with the minimum number in G — E'(C E) with respect to f is denoted by 7 g-g s)-

First, we give the following procedure FEDP to find edge-disjoint s-t paths in G = (V, E, s,1).

Procedure FEDP _
Input A graph G = (V,E,s,t) and an s-t path number function f of G.
Output The set of edge-disjoint s-t paths FEDP(G, f).
BEGIN
G':=G; FEDP(G,f) = ¢;
WHILE P, (G') #¢ DO
BEGIN
Find mpg sy from Py (G');
FEDP(G, f) = FEDP(G, f) U {Wm(G',f)};
G =G - E(n'm(G',f))
END;
Output FEDP(G, f)
END. a

It is clear that FEDP(G, f) obtained by FEDP is a set of edge-disjoint s-t paths in G. Namely,
the following formula holds.

|FEDP(G, f)| < ks:(G), for any G, f. (2)

For a probabilistic graph (G = (V, E, s,t),p) and an s-t path number function f of G, we now
define the value [ ; .y as follows: ‘

Lorm = % |FEDP(G - U, f)lp(G = V). (3)

By formulas (1),(2),(3), L(g,p) is @ lower bound of I'(g ), namely, the following formula holds.

Lo STy, foranyG, f, p.

4 Necessary and Sufficient Conditions

In this section, we give the necessary and sufficient conditions by which Lg ;) coincides with I'(g p)
in a probabilistic graph (G, p).
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4.1 A Necessary and Sufficient Condition of an s-t Path Number Function

By formulas (1),(2),(3), the following Theorem 4.1 immediately holds.
Theorem 4.1. Given (G = (V, E, 5,1),p), then Lty =TGm holds iff G has an s-t path number
function f satisfying the following formula.

|FEDP(G-U,f)| = A4(G=U), foranyU C E. ©))

=]
Definition 4.1. An s-t path number function f of G is called ezact if f satisfies formula (4). O

A graph G = (V, E,s,t) is said to be s-1 k-edge-connected if A ;(G) = k holds. A graph G is
said to be m-edge-cut if 7 is an s-t edge-cut-path in G. A graph G is said to be w-edge-cut s-t
2-edge-connected if m is an s-t edge-cut-path of G and G is s-t 2-edge-connected. A w-edge-cut
s-t 2-edge-connected graph G = (V, E,s,t) is minimal, if G — {¢} for any e € E - E(x) is
not mw-edge-cut s-t 2-edge-connected. For example, the graph G shown in Fig.1 is a m-edge-cut s-t
2-edge-connected graph, where 7 : vo(= s), v1,v2,v3, v4, Vs, Vs, V7, Vs, Vo(= t). But it is not minimal
as G — {e} is m-edge-cut s-t 2-edge-connected. Furthermore, the set of all m-edge-cut s-t 2-edge-
connected subgraphs of an s-t path = of G is denoted by W(G,w). For example, in the graph
G given in Fig.l, W(G,n) = {G — {e = (w,u2)}, G — {(u1,v4), (uz,vs),(vs,vs)} }. Clearly, the
following Lemma 4.1 holds.

Fig.1 A m-edge-cut s-t 2-edge-connected graph.

Lemma 4.1. If A,(G) > 2 holds and an s-t path 7 of G is an s-t edge-cut-path, then W(G, 7) # ¢
holds. u}

Lemma 4.2. In a graph G = (V, E, s,1), if there exists an s-t path 7 satisfying W(G,n) = ¢, then
the following formula holds.

A,t(G— E(ﬂ')) = A,t(G) - 1.

Proof. Clearly, A, (G - E(7)) < A(G) — 1 holds. Assume that A, (G — E(7)) < Aq(G) -1
holds. By this assumption, there exists a minimum s-t edge-cutset E* in G — E(x) that satisfies
|E*] < Xt(G) — 2 by Menger’s Theorem [4]. Consider graph G — E*, and it is clear that all s-t
paths in G — E* share at least one edge of E(w), i.e., wis an s-t edge-cut-path of G — E*. Fur-
thermore, let E' be a minimum s-t edge-cutset of G — E*. As E' U E* is an s-t edge-cutset of G,
|E'UE*| = |E'| + |E*| > A\t(G) holds. By |E*| < Ay(G) — 2, weobtain |E'| = A, (G — E*) > 2,
contradicting the fact that W(G, r) # ¢ holds by Lemma 4.1. a

We now prove the following Theorem 4.2.
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Theorem 4.2. In a graph G = (V, E, 5,t), an s-t path number function f of G is exact iff for any
U C E with Pu(G-U) # ¢, W(G = U,mpng-vy) = ¢ holds.
Proof. Necessity: Assume that an s-t path number function f of G is exact and that for some U C F
with Po(G=U) # ¢, W(G-U,Tpg-v.)) # ¢ holds. By W(G=U,mmG-v.p)) # 6, G-U hasa
subgraph G’ € W(G — U, Tp(g-v,s))- Ast(G') =2 holds by the definition of W(G — U, mm(g-u,s))-
As Tp(g-vu,s) is the s-t path with the minimum number of G’ and an s-t edge-cut-path of G’, we
have FEDP(G',f) = {nm@-v,s)} by FEDP. Hence, |[FEDP(G’, f)I(=1) < A,+(G')(= 2) holds,
contradicting the fact that f is exact.

Sufficiency: Assume that for any U C E with Py (G-U) # ¢, W(G-U,mng-v,y)) = ¢ holds.
Then it is easy to prove that for any U C E, |FEDP(G - U, f)| = A;+(G — U) holds by iteratively
applying Lemma 4.2. m]

4.2 A Necessary and Sufficient Condition of s-t Paths

Definition 4.2.( Prohibitive s-t Path Set)

- Let P(C Py (G)) be a subset of the set of all s-t paths of G. If, for each s-t path = of P, there is a

m-edge-cut s-t 2-edge-connected subgraph G € W(G, 7) in G that satisfies Ps;(G5) C P, then P is
called a prohibitive s-1 path set. 0O

Procedure TEST
Input: A graph G = (V, E, s,1).
Output: Either an s-t path number function f of G or a subset P of Py (G).
BEGIN
P:= Pu(G); i:=1; Q:={ 7€ Pu(G) | W(G,x) = ¢};
WHILE Q # ¢ DO
BEGIN
P:=P-Q;
REPEAT
Select an s-t path = from Q;
fx)i=i; i=itl; Qi=Q—{n)}
UNTIL Q = ¢;
Q:={r € P| Pu(Gx) L P, for all Gx € W(G, )}
END;
IF P=¢ THEN output f ELSE output P
END. (m]

Clearly, the following Lemma 4.3 holds by Definitions 4.1 and 4.2.

Lemma 4.3. If TEST outputs an s-t path number function f of G, then f is exact, when a graph
G = (V, E,s,t) is input. If TEST outputs a subset P of Py(G), then P is a prohibitive s-t path set,
when a graph G = (V, E, 5,1) is input. a

If there is a prohibitive s-t path set P(C P,:(G)) where G = (V, E, 5,t), then there does not exist
any exact s-t path number function f. Otherwise, if G has an exact s-t path number function f, and
suppose 7, be the s-t path of the minimum number with respect to f among P. By Definition 4.2,
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there is G, € W(G, ) in G that satisfies Pyy(Gr,,) C P. Thus, my is also the s-t path of the min-
imum number with respect to f in Gy, . Therefore, by FEDP, FEDP(Gyx,,f) = 1< A(Gy,) =2
holds. This leads to a contradiction that f is an exact s-t path number function of G. Hence, by
Theorem 4.2 and Lemma 4.3, the following Theorem 4.3 holds.

Theorem 4.3. In a graph G = (V, E,s,t), G has an exact s-t path number function iff it contains
no prohibitive s-t path set as its s-t path subset. a

4.3 Characterization of Graph Having a Prohibitive s-t Path Set

A graph is connected if there is a path connecting each pair of vertices and otherwise disconnected.
A connected component of G is a maximal connected subgraph, which is simply called a component.
If there exist vertices z and y, £ # v and y # v such that all the paths connecting = and y have v as
an internal vertex, then v is an articulation vertez. A two-terminal connected graph is said to be s,t .
non-separable if its subgraph obtained by removing s,? is connected. In the following discussion, we
assume that G is an s,t non-separable two-terminal connected graph, unless otherwise specified.

Definition 4.3. (s-t 2-edge-connected Articulation Verlex)
A vertex v is said to be an s-t 2-edge-connected articulation vertex of G, if v is an s-t articulation

vertex of G and there exist both two edge-disjoint s-v paths and two edge-disjoint v-t paths in G. O

For example, in the graph illustrated in Fig.2(a), vertices u, v, w are s-t 2-edge-connected articula-
tion vertices of G.

S1

S u v=t

(d)

Fig.2 An illustration of separation of G at
an s-t 2-edge-connected articulation vertex.

Definition 4.4. (Separation of G at an s-t 2-edge-connected Articulation Vertez)
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Assume that G has an s-t 2-edge-connected articulation vertex v. The following sequence of operations
is said to be separation of G at an s-t 2-edge-connected articulation vertez v.

(i) The two components C; and C; are obtained by removing v from G.

(i1) v is connected to C; (or C2) with all edges (u,v)’s of G having one end vertex u in C; (or C3).
(ii1) Note that C; contains either of s,t. If C} contains s (or t) then let s (or t) be s; (or t;) and let
v be t; (or s1). s and t; are similarly defined for C,. o

For example, the two graphs illustrated in Fig.2(b),(c) are obtained by separation of the graph
given in Fig.2(a) at an s-t 2-edge-connected articulation vertex v.

Definition 4.5. (Prohibitive Graph)
A graph G is said to be a prohibitive graph, if G, or one of the graphs derived from G by separations of
G at all s-t 2-edge-connected articulation vertices in G is homeomorphic to the graph shown in Fig.3. O

The two graphs illustrated in Fig.2(a),(b) are both prohibitive graphs. But the graph given
in Fig.2(d), although it contains a subgraph homeomorphic to the graph shown in Fig.3, is not a
prohibitive graph as the vertex u is not its s-t 2-edge-connected articulation vertex and it is not home-
omorphic to the graph shown in Fig.3. It is easy to verify that for a prohibitive graph G, Py (G) is a
prohibitive s-t path set. Thus, we immediately obtain the following Lemma 4.4.

Fig.3 A prohibitive graph.

Lemma 4.4. If G contains a prohibitive graph as its subgraph, then it also has a prohibitive s-t path
set as its s-t path subset. ]

Now, we show that if G has a prohibitive s-t path set as its s-t path subset, then it contains a
prohibitive graph as its subgraph. For our aim, we need more definitions.

Definition 4.6.(Atiachment Vertez [5][6])

An attachment vertezr of a subgraph G; in G is a vertex of G, incident in G with some edge not
belonging to G;. a
Definition 4.7.(Bridges [5],[6])

Let J be a fixed subgraph of G. A subgraph G, of G is said to be J-detached in G if all its attachment
vertices are in J. We define a bridge of J in G as any subgraph B that satisfies the following three
conditions:

(i) B is not a subgraph of J.

(ii) B is J-detached in G.

(iil) No proper subgraph of B satisfies both (i) and (ii). : o
Definition 4.8.(Degenerate and Proper Bridges. Nucleus of a Bridge [5],[6])

An edge ¢ = (u,v) of G not belonging to J but having both end vertices in J is referred to as a
degenerate bridge.

Let G~ be the graph derived from G by deleting the vertices of J and all edges incident to them.
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Let C be any component of G~. Let B be the subgraph of G obtained from C by adjoining to it
each edge of G having one end vertex in C and the other end vertex in J and adjoining also the
end vertices in J of all such edges. The subgraph B satisfies the conditions (i),(ii),(iil) in Definition
4.7 and is a bridge. Such a bridge is called to be proper. The component C of G~ is the nucleus of B. O

For the graph G shown in Fig.4, let J be an s-t path 7 : vo(= s), vy, v2, v3, v4, V5, v6(= t), then
all vertices on m other than v, are all attachment vertices of = in G. B;, B,, B3 are proper bridges
of min G and B, is a degenerate bridge of 7 in G. By Definitions 4.6,4.7, the following Lemma 4.5
obviously holds.

bridge B bridge B2

Vo =s V6=t

bridge B4

bridge By
Fig.4 An illustration of attachment vertices, bridges and nuclei.

Lemma 4.5. Let 7 be an s-t path of G. If there is a proper bridge B of 7 in G, then any two vertices
u,v in B are connected by a path consisting of edges and vertices only in the nucleus of B. o

Let v : vy, vy, ...,¥5_1,v; be a path from vy to v, of G. If 0 < i < j < k, then the sequence
Vi, Vit1,--, Vj—1, V; is a subpath of v, and denoted by 7[v;, v;].

Definition 4.9.(Path Avoiding s-t Path w)
Let m be an s-t path of G. For two vertices v;,v; in V(r), a path between v; and v; consisting of .
edges not in E(7) and vertices not in V() except v;, v; is said to be avoiding . o

For example, the path vy, u;, uz, vs is avoiding the s-t path = in the graph G illustrated in Fig.1.

Definition 4.10. (Order Relation with Respect to an s-t Path )

Let 7 : vo(= s),v1, ..., Vk—1, Uk (= t) be an s-t path of G. We define an order relation <5 on V(x) with
respect to 7 as follows: For any v;,v; (0 <4, j < k), vi <y v;j holds iff i < j holds. If v; <x v;, ©v;
(vj) is said to be to the left (right) of v; (v;). a
Definition 4.11.(Intersection Vertez of Two Paths 7, )

Let 7, a be two paths of G. A vertex v is called an intersection vertez of m, a if = and a have at
least three distinct edges incident to v. The set of all intersection vertices of 7, o is denoted by V4,. O

In the graph G given in Fig.1, for two s-t paths 7 and « : vo{= 5), vy, U1, Us, vg, v7,ve(= 1), we
have Via = {vl)vG: v7, vg}‘

Definition 4.12.(Interlacing Subpaths)
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Suppose that G has an s-t path m : vo(= s),v1,..., vk—1,vk(= 1) satisfying W(G,7) # ¢. Let
Gr € W(G,n) be a minimal m-edge-cut s-t 2-edge-connected subgraph of G. Let «,8 be two
edge-disjoint s-t paths of Gx. Let Vio = {21,232,...,2,}(C V(7)) be the set of all intersection
vertices of 7, o, where 1 <x 23 <y --- <x p. Let Vig = {y1,v2,.., 4 }(C V(7)) be the set of all
intersection vertices of 7, 3, where y; <x Y2 <x -+ <x Yg. Let Vyap = {21,..., 2. }(C V(7)) be the set
of all vertices which 7, a, 8 have in common, where z; <, 22 <y --- <4 z,. Subpaths a[z;,z;41] of &
avoiding 7 and B[y;, yj+1] of B avoiding m, where either 2; <, y; or y; <y z;, are said to be interlacing
subpaths, if the subpath 7 [z, y; +1] (7[y;, £i4+1]) contains no vertex of Vyap when z; <, y; (y; <x 2;). O

In the graph G given in Fig.1, for two edge-disjoint s-t paths;
o 1 vo(= 8),v1,u1,v4, Vs, Uz, Vs, V7, V9(= t), B:vo(=Ss),wr1,vs,v3,vs, Vs, vs, ve(=t),
we have Vyo = {v1,v4, V5, v6, 07,09}, Vap = {vo,v2,v3, V5,06, 08}, Vrag = {v0, s, v, v9}. Andsubpaths
afvy,vq] and Blvg, v2] are interlacing subpaths, and afvs, ve] and Blvs, vs] are also interlacing paths.
But «fvy, v4] and Bve, vg] are not interlacing subpaths as vs,vs € Vyzapg are on wfvp, vg).

In order to show that if graph G has a prohibitive s-t path set P(C Py(G)), then G must contain

‘a prohibitive graph as its subgraph, we can prove the following Lemma 4.6 and Lemma 4.7.

Lemma 4.6. Suppose that G has a prohibitive s-t path set P. Then there is an s-t path = of P
whose proper bridge B in G contains two interlacing subpaths afz;,zi+1] of a and Bly;, yj+1] of 3
with respect to m in Gy, where G, is a minimal 7-edge-cut s-t 2-edge-connected subgraph of G, and
a, (3 are two edge-disjoint s-t paths in Gy.
Sketch of Proof. Let P be a prohibitive s-t path set of G. We can find the s-t path = of P satisfying
the following condition I by using the following procedure I.
Condition I: There is a proper bridge B of 7 in G suth that B contains interlacing subpaths afz;, z;41]
of o and Bly;j, yj+1] of B with respect to m in G, where Gy is a minimal m-edge-cut s-t 2-edge-
connected subgraph of G, and «, 3 are two edge-disjoint s-t paths in G.
Procedure I: Let m be an s-t path of P. Let B be a proper bridge of = in G. We do the following Loop
iteratively.
Loop: If 7 satisfies Condition I then end. Otherwise, we can find an s-t path @' of P such that there
is a bridge B’ of n’ in G whose nucleus contains the nuleus of B and there are more vertices in the
nucleus of B’ than in the nucleus of B. Let B, = be B’, @/, respectively.

Note that, in each loop, the nucleus of B increases at least by one vertex. Thus the loop will end
in at most |V| times, where V is the set of vertices in G. a

Fig.5 An illustration of the proof of Lemma 4.7.

Lemma 4.7. Suppose that G has an s-t path 7 satisfying W(G, 7) # ¢. Let «, § be two edge-disjoint
s-t paths of G € W(G, 7). Let Vyq = {zy,22,...,2p}, Vap = {¥1,¥2, - ¥g} and Viop = {21,..., 2, }
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be defined as in Definition 4.12. If a bridge B of 7 in G contains interlacing subpaths ofz;, zi+1] of
and Blyj,yj+1] of B in G, with respect to m, then G contains a prohibitive graph as its subgraph.
Sketch of Proof. By the known conditions given in this lemma, we construct a prohibitive graph as
its subgraph.

By Lemma 4.5, there is a path m,, between an internal vertex u on afz;, ;4] and an internal
vertex v on Bly;,y;+1] consisting of edges and vertices only in the nucleus of bridge B, i.e., 7, is
vertex-disjoint path with = except u,v. See Fig.5. Thus, we can also find a prohibitive graph as
subgraph of G independently of the way how the path =, is traced. ]

By Theorem 4.3 and Lemmas 4.5, 4.6, 4.7, the following Theorem 4.4 holds.

Theorem 4.4. In a probabilistic graph (G,p), L(¢ ;) = (G, holds iff G contains no prohibitive
graph as its subgraph. |

5 A Method of Computing the Lower Bound

Given a probabilistic graph (G,p) and an s-t path number f of G, we show a method of computing
the lower bound L ). We first wish to recall the procedure FEDP and the definition of L ;
in section 3.

For a probabilistic graph (G = (V, E,s,t),p) and an s-t path number function f of G, let U
denote the set of all U C E for which s-t path m; is selected as a member of edge-disjoint s-t paths
FEDP(G-1U,f). Let p(fy) be the probability of the event &y that all edges of U are failed and
all edges of E—U are operative, and p(&; x;) is the probability of the event that at least one event
&y, for all U €Uy, arisesin (G,p). Thus, we have

Lty = 3 IFEDP(G-U,f)p(G-U)

UCE
|Pse(G)]

= > Y pe-v)
i=1 Ul x,
|P,‘(G')|

= > 3 )
t=1 Uellf,,x.
1Py (G)]

= P(Es,xi)- (5)

1=1

We can compute the lower bound L' ;) by formula (5) instead of formula (3).

6 Concluding Remarks

For a probabilistic graph, we proposed a lower bound for estimating the expected maximum number of
edge-disjoint s-t paths. The necessary and sufficient conditions with respect to both s-t path number
function and graph construction, where this lower bound coincides with the expected maximum number
of edge-disjoint s-t paths, are clarified. A method of computing this lower bound is also given, although
by this computing method the lower bound does not seem to be efficiently computed for a general

probabilistic graph.
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However, for a probabilistic one-layered s-t graph, (a two-terminal graph where the subgraph ob-
tained by deleting its s,t is exactly a simple path. Fig.6 illustrates an example of one-layered s-t
graph.) as it satisfies the necessary and sufficient conditions and the number of all its s-t paths is a
polynomial function in the number of its vertices, the lower bound based on its exact s-t path number
function can efficiently be computed by the computing method shown in section 5, i.e., the expected
maximum number of edge-disjoint s-t paths in a probabilistic one-layered s-t graph can efficiently be
computed. Detailed description of these proofs is lengthy and to be reported elsewhere.

Fig.6 A one-layered s-t graph.
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