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$NP$-completeness of Minimum Binary Decision
Diagram Identification Problems

Yasuhiko TAKENAGA and Shuzo YAJIMA
武永康彦 矢島脩三

Faculty of Engineering, Kyoto University

1 Introduction

An Ordered Binary Decision Diagram (or simply BDD) $[1, 2]$ is a graph representation of
a Boolean function. The BDD representation of Boolean functions has the following good
properties : there exists a unique canonical form for any Boolean function, many of practical
Boolean functions are represented in feasible size, various basic operations such as reduction
(minimization) and Boolean operations are executed efficiently.

Owing to the excellent properties, BDD’s have come to be indispensable in application
programs of logic design verification fault diagnosis of logic circuits, logic synthesis and so on.
In the applications, the use of BDD’s enabled us to deal with large scale circuits efficiently.

On the other hand, researches on the properties of BDD’s from theoretical aspects have
come to be made at last recently. [3] and [4] deal with the number of nodes necessary to
represent varioous Boolean functions. [3] proves that the function to represent the output of a
multiplier cannot be represented within polynomial size. [5] and [6] define a class of languages
expressed by polynomial size BDD’s and discuss the relation to various complexity classes. [7]
and [8] take up the efficiency of basic operations on BDD’s. They show that there are NC
algorithms for the operations.

In this paper, we consider the problems to identify the minimum BDD that satisfies given
positive examples and negative examples. Although the size of BDD’s may largely vary ac-
cording to the variable ordering, we assume in this paper that the variable ordering is fixed.
The width and the number of nodes are used as the measure of minimality. We prove that, in
both cases, the minimum BDD identification problem is NP-complete. If we regard that the
values for the assignments which are not in the examples to be undefined, this problem is to
find a simple completely specified Boolean function that is consistent with a given incompletely
specified function.

This problem is also closely related to computational learning theory. In the PAC(Probably
Approximately $Correct$ ) $- learning$ model $[9, 10]$ , the learner generates a hypothesis based on
the examples given by the teacher. It is known that k-term DNF, k-clause CNF, $\mu$ -formulas
are not learnable under the PAC-learning model unless NP $=$ RP [11]. In the same manner,
we can observe from the above result that k-width BDD and k-size BDD are not learnable in
polynomial time under PAC-learning model unless NP $=RP$.
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2 Binary Decision Diagrams

An Ordered Binary Decision Diagram (BDD) $[1, 2]$ is a directed acyclic graph that represents
a Boolean function. The nodes of a BDD consist of variable nodes and two value nodes. The
outdegree of a variable node is 2. The edges are called O-edge and l-edge. One of the variable
node is called a root node whose indegree is $0$ . Two value nodes are called O-node and l-node.

A BDD is represented by a root node and a set of 4-ples $(i, index(i),$ $low(i),$ $high(i))$ that
correspond to variable nodes, where

$i$ is a node number,
index(i) $\in\{1,2, \cdots N\}$ ( $N$ is the number of variables) is an index of the variable that is

assigned to the node, and
low(i), high (i) are the numbers of the nodes pointed by the O-edge and the l-edge respec-

tively. The node number of O-node is $0$ and that of l-node is 1.
The Boolean function that is represented by node $i$ , denoted by $f_{i}$ , is defined as follows by

Shannon’s expansion.
$f_{0}=0,$ $f_{1}=1$ ,
$f_{i}=x_{index(i)}\cdot f_{high(i)}+\overline{x_{index(i)}}\cdot f_{low(i)}$

When the root node of a BDD $A$ is $a$ , the function represented by $A$ is $f_{A}=f_{a}$ .
For a permutation $\pi$ on $\{1, 2, \cdots N\}$ , every node of a BDD satisfies
$\pi(index(i))<\pi(index(low(i)))$ ,
$\pi(index(i))<\pi(index(high(i)))$ ,

except when low(i) or high(i) is a value node. $\pi$ is called a variable ordering. $\pi(index(i))$ is
denoted by level(i) and is called the level of node $i$ or the level of $x_{index(i)}$ .

When two nodes $i$ and $j$ represent the same function, they are called to be equivalent and
denoted by $i\equiv j$ . $i\equiv j$ iff

level(i) $=level(j)$ ,
high $(i)\equiv high(j)$ ,
low$(i)\equiv low(j)$ .
Node $i$ is called to be redundant when
high(i) $=low(i)$ .
A BDD is called a dense BDD when all the variable nodes satisfy
level$(i)+1=level(low(i))=level(high(i))$ .

Any BDD can be transformed to a dense BDD by adding redundant nodes.
A dense BDD which has no equivalent nodes is called a quasi-reduced BDD [12]. A BDD

which has no equivalent nodes and no redundant nodes is called a reduced BDD.
Let width $(k)$ be the sum of the number of nodes in level $k$ and the number of edges that

passes through level $k$ . The width of a BDD is defined by $\max_{1\leq k\leq n}width(k)$ .
BDD’s defined above have following good properties.

$\bullet$ A Boolean function is uniquely represented by a reduced BDD or a quasi-reduced BDD,
provided that the variable ordering is fixed. Therefore, the equivalence of Boolean func-
tions is easily checked.
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$\bullet$ For n-variable Boolean functions, the number of nodes is $O(2^{n}/n)$ , however, many prac-
tical Boolean functions are compactly represented.

3 Minimum Binary Decision Diagram Identification

3.1 NP-completeness of Minimum Binary Decision Diagram Iden-
tffication Problems

In this section, we consider the complexity of identifying minimum BDD’s from positive ex-
amples and negative examples. We assume in this paper that the variable ordering of a BDD
is fixed. As the measures of the size of BDD’s, we consider both the width and the number of
nodes.
Definition : MINIMUM WIDTH BDD IDENTIFICATION
Input : A set $EX$ of examples and a positive integer $k$ .
Output : Is there a BDD of width less than or equal to $k$ that satisfies all the examples?
Definition : MINIMUM BDD IDENTIFICATION
Input : A set $EX$ of examples and a positive integer $k$ .
Output : Is there a BDD which has less than or equal to $k$ nodes that satisfies all the examples?

Note that an example is a pair \langle $x,$ $f(x)$ }, where $x\in\{0,1\}^{n}$ is an assignment for variables
$x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ , and $f(x)\in\{0,1\}$ is the value of $f$ for the assignment. The variable ordering of
the BDD is fixed as $\pi(x_{i})=i,$ $1\leq i\leq n$ .

When we assign values to $x_{1},$ $x_{2},$ $\cdots,$ $x_{n}$ , a function that satisfies $EX$ is considered as
$(n-k)$-variable incompletely specified Boolean function. Let $f,g,$ $h$ be incompletely specified
Boolean functions. We denote $f\subseteq g$ when $g(x)=1$ if $f(x)=1$ and $g(x)=0if.f(x)=0$ for
all $x$ . $f$ and $g$ can be unified iff there exists $h$ s.t. $f\subseteq h,$ $g\subseteq h$ . Let $H=\{h|f\subseteq h, g\subseteq h\}$ ,
then $h’=u\{f,g\}$ is defined as $h’\in H,$ $\forall h\in Hh\subseteq h’$ .
Theorem 1 MINIMUM WIDTH BDD IDENTIFICATION is NP-complete.
Proof First, we show a nondeterministic polynomial time algorithm for MINIMUM WIDTH
BDD IDENTIFICATION.

Let $prefix_{i}(x)$ denote the $i(0\leq i\leq n)$ highest bits of $x$ .
[Algorithm MinIdent]

1 : $P=\{prefix_{i}(x)|\{x, f(x)\rangle\in EX, 1\leq i\leq n\}$ . For all $y\in P,$ $1\leq|y|<n$ , guess
$g(y) \in\{1,2, --, \min(k, 2^{|y|})\}$ . For $y\in P$ s.t. $|y|=n$ , let $g(y)=f(y)$ .

2 : For $1\leq i\leq n,$ $1\leq j\leq k$ , let $P_{i,j}=\{pre.fix_{i}(x)|g(prefix_{i}(x))=j\}$ .

3: For $1\leq i\leq n,$ $1\leq j\leq k$ , check whether the following conditions are satisfied. 1)
$g(r\cdot 0)=g(s\cdot 0)$ for all $r,$ $s$ s.t. $r,$ $s\in P_{i,j},$ $r\cdot 0\in P$ and $s\cdot 0\in P,$ $2$ ) $g(r\cdot 1)=g(s\cdot 1)$

for all $r,$ $s$ s.t. $r,$ $s\in P_{i,j},$ $r\cdot 1\in P$ and $s\cdot 1\in P$ .

If the conditions are satisfied for all $i,j,$ $r,$ $s$ , then there exists a BDD of width less than
or equal to $k$ .
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We can see that $|P|\leq|EX|\cross n$ and $|P_{i,j}|\leq|EX|$ . Therefore the time requirement of
Algorithm MinIdent is bounded by a polynomial of $n$ and $|EX|$ .

We shall claim the correctness of Algorithm MinIdent. We can construct a BDD as follows.
The path corresponding to an assignment $x$ is on the $g(prefix_{i-1}(x))$ -th node in level $i$ . For
each $1\leq i\leq n,$ $r\in P(|r|=i-1)$ , the O-edge from the $f(r)$-th node of level $i$ points $f(r\cdot 0)$-th
node of level $i+1$ if $r\cdot 0\in P$ , and the l-edge points $f(r\cdot 1)$-th node if $r\cdot 1\in P$ .

If the conditions of 3: are not satisfied, there exists a node that has more than one O-edges
or l-edges. Otherwise, each node has at most one O-edge and l-edge, and the generated graph
is a subgraph of a k-width BDD. Moreover, we can easily see that there are paths from the
root node to constant nodes for all the assignments given as examples. The edges which are
not generated by the above method may point any node.

Next, we show the NP-hardness of MINIMUM WIDTH BDD IDENTIFICATION by the
reduction from GRAPH K-COLORABILITY.
Definition : GRAPH K-COLORABILITY
Input : An undirected graph $G(V, E)$ and a positive integer $k$ .
Output : Is there a function $f$ : $Varrow\{1,2, -- , k\}$ s.t. $f(i)\neq f(j)$ for all the edges $(i,j)\in E$ ?

Let $N$ denote the number of nodes in $G$ . We can assume without loss of generality that $N$

is a power of 2.
The Boolean function of the reduced problem has $6logN+2$ variables. The set of examples

are as follows :
$\{B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot 00\cdot B_{r}\cdot B_{s}, f_{i}(r, s)\}(r<s)$ ,
$\{B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot 01\cdot B_{r}\cdot B_{s},$ $f_{j}(r, s)\rangle$ $(r<s)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot 10\cdot B_{r}\cdot B_{s},$ $f_{p}(r, s)$ } $(r<s)$ ,
{ $B_{N-1}\cdot B_{N-1}\cdot B_{N-1}\cdot B_{q}\cdot 11\cdot B_{r}\cdot B_{s},$ $g_{q}(r, s)\rangle$ $(r<s, (r, s)\in E)$ and
{ $B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot 11\cdot B_{r}\cdot B_{s},$ $f_{q}(r, s)\rangle$ ( $r<s$ , excepting $i=j=p=N-1$ ),

where $0\leq i,j,p,$ $q,$ $r,$ $s\leq N-1$ and $B_{i}$ is a binary representation of an integer $i$ . $f_{0},$ $f_{1},$
$\cdots,$ $f_{N-1}$

and $g_{0},g_{1},$ $\cdots,g_{N-1}$ are defined as follows :
$f_{t}(B_{t}, B_{s})=0$ iff $t<s$ ,
$f_{t}(B_{r}, B_{t})=1$ iff $r<t$ ,
$g_{t}(B_{t}, B_{s})=0$ iff $t<s$ and $(t, s)\in E$ and
$g_{t}(B_{r}, B_{t})=1$ iff $r<t$ and $(r, t)\in E$ .

The positive integer to bound the width of the BDD is $N^{4}-N+k$ .
The number of examples is
$(N-1)(4N^{4}-N)+2|E|=O(N^{5})$ .

The examples can be generated using $O(logn)$ space.
We shall prove that there exists a $(N^{4}-N+k)$ -width BDD that satisfy all the examples

iff graph $G$ is k-colorable. In order to count the width of each level. we use the following
propositions.
Propositions 1. For any $i.j(i\neq j, 0\leq i\leq N-1)$ . $f_{i}$ and $f_{j}$ cannot be unified.

2. $g_{i}$ and $g_{j}(i\neq j)$ can be unified iff $(i.j)\not\in E$ .
3. $g_{i}\subseteq f_{i}(0\leq i\leq N-1)$ .
4. If $g_{i_{1}},g_{i_{2}},$ $\cdots g_{i_{m}}$ can be unified, $g’=u\{g;_{1},g_{i_{2}}. \cdots g_{i_{m}}\}$ can be unified with any of

$f_{i_{J}}(0\leq j\leq m)$ .
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Proof 1. When $i<j,$ $f_{i}(i,j)=0,$ $f_{j}(i.j)=1$ .
4. We have only to prove the case where $m=2$ . $f_{i}$ and $f_{j}(i<j)$ differ only when the

parameters are $i$ and $j$ . However, $g_{i}$ and $gj$ can be unified, because $(i,j)\not\in E$ , that is, $g_{i}(i,j)$

and $g_{j}(i,j)$ are undefined. Therefore, $f_{i}$ and $gj$ ( $f_{j}$ and $g_{i}$ ) can be unified. $\square$

The next lemma follows from Proposition 2.
Lemma 1 $g_{i}(0\leq i\leq N-1)$ can be devided into $k$ subsets all of whose elements can be
unified iff $G$ is k-colorable.

The width of each level is as follows.

1. $1\leq$ level $\leq 4logN$

width(level) $\leq 2^{level-}$ . Especially, width(level) $\leq N^{4}/2$ when level $=4logN$ .

2. level $=4logN+1$

There are $N^{4}$ nodes in this level, some of which can be unified. In case $i=j=p=N-1$ ,
there are $N$ functions of the form $x_{4logN+1}\cdot x_{4logN+2}\cdot g_{a}+\overline{x_{5logN+1}\cdot x_{5logN+2}}\cdot f_{N-1},0\leq$

$a\leq N-1$ . Therefore, the functions differ only when $x_{4logN+1}=x_{4logN+2}=1$ . From
Lemma 1, these $N$ nodes can be reduced to $k$ nodes.

Otherwise, for at least one assignment to $x_{4logN+1}$ and $x_{41ogN+2}$ , different functions are
selected among $f_{a},$ $0<a<N-1$ . From proposition 1, the functions cannot be unified.

Hence, width$(4logN+1)=N^{4}-N+k$ . The following discussions show that we may
minimize the width in this level.

3. level $=4logN+2$

In this level, there are $N^{2}$ functions of the form $\overline{x_{4logN+2}}\cdot f_{a}+x_{4logN+2}\cdot f_{b},$ $0\leq a,$ $b\leq$

$N-1$ and $k$ functions of the form $\overline{x_{4logN+2}}\cdot f_{N-1}+x_{4logN+2}\cdot h_{c},$ $0\leq c\leq k$ , where
$h_{c}=u\{g_{i_{1}}, g_{i_{2}}, \cdots g_{i_{m}}\}$ . The former ones cannot be unified each other. The latter
ones can be unified with one of the former functions from Proposition 4. Therefore,
width $(4logN+2)=N^{2}$ .

Even though the width is not minimized in level $4logN+1$ , the width of this level is $N^{2}$

by the same argument.

4. Ievel $=4logN+3$

As is the case of 3, width $(4logN+3)=N$ .

5. $4logN+4<$ level $\leq 6logN+2$

In general, the width of a level is at most twice the width of the preceding level. Therefore
width(level) $\leq N\cross 2^{level-4logN-3}\leq N^{3}$ .

As $N^{4}-N+k>N^{4}/2\geq 3/2N^{3}$ for $N\geq 2$ , the width of this BDD is $N^{4}-N+k$ . $\square$

The proof shows that it is still NP-complete to minimize the width of a specified level.
Theorem 2 MINIMUM BDD IDENTIFICATION is NP-complete.
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Proof We can easily see that MINIMUM BDD IDENTIFICATION is in NP by extending
Algorithm MinIdent. For the proof of NP-hardness, we use a reduction from GRAPH K-
COLORABILITY. The basic idea of this proof is similar to that of Theorem 1.

The Boolean function of the reduced problem has $7logN+4$ variables. The set of examples
are as follows :

$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot*000\cdot B_{r}\cdot B_{s},$ $f_{i}(r, s)$ } $(r<s)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot*001\cdot B_{r}\cdot B_{s},$ $f_{j}(r, s)$ } $(r<s)$ ,
$\{B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot*010\cdot B_{r}\cdot B_{s}, f_{p}(r, s)\}(r<s)$ ,
$\{B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot*011\cdot B_{r}\cdot B_{s},$ $f_{q}(r, s)\rangle$ $(r<s)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot 0100\cdot B_{r}\cdot B_{s},$ $f_{m}(r, s)$ } $(r<s)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot 1100\cdot B_{r}\cdot B_{s},$ $g_{m}(r, s)$ } $(r<s, (r, s)\in E)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot 0101\cdot B_{r}\cdot B_{s},$ $f_{0}(r, s)$ } $(r<s)$ ,
$\langle B_{i}\cdot B_{j}\cdot B_{p}\cdot B_{q}\cdot B_{m}\cdot 1101\cdot B_{r}\cdot B_{s} , f_{1}(r, s)\rangle(r<s)$ ,

where $0\leq i,j,p.q.m,$ $7^{\cdot},$ $S\leq N-1and*means$ both $0$ and 1. $f_{0},$ $f_{1},$
$\cdots,$ $.f_{N-1}$ and $g_{0},$ $g_{1}$ , –, $g_{N-1}$

are the same as those defined in the proof of Theorem 1. The positive integer to bound the
number of nodes is $3N^{5}+(k+2)N^{4}-2$ .

The number of examples is
11 $N^{5}(N-1)+2|E|N^{4}=O(N^{6})$ .
To count the number of nodes, we must remove redundant nodes from the width of each

level.
The minimum number of nodes in each level, denoted by node(level), is as follows.
Let $G$ be k’-colorable, that is, $g_{i},$ $0\leq i\leq N$ be devided into $k’$ subsets $G_{l}=\{g_{l_{1}},g\iota_{2}, \cdots g_{l_{m}}\}$ ,

$1\leq l\leq k’$ s.t. all the elements of $G_{l}$ can be unified. Then $g_{l_{1}},g_{l_{2}}\cdots g_{l_{m}}$ of the examples can
be substituted by $h_{l}=u\{g_{l_{1}}, g_{l_{2}}, \cdots g_{l_{m}}\}$ . We claim that, in this case, the minimum number
of nodes can be realized at the same time for level $\leq 5logN+5$ .

1. $1\leq$ level $\leq 5logN+1$

There are $N^{5}$ nodes and any two nodes cannot be unified. Therefore, node(level) $=$

2 level-1. The total number of nodes is $\sum_{1\leq level\leq 5logN+1}$ node(level) $=2N^{5}-1$ .

2. level $=5logN+2$

When $i,j,p,$ $q$ are fixed and $x_{5logN+1}=1$ , there are $N$ functions which differ only when
$x_{5logN+2}=1.x_{5logN+3}=x_{5iogN+4}=0$ . They can be reduced to $k$ functions iff $G$

is k-colorable. In any other cases, the nodes in this level cannot be unified. Hence
node $(5logN+2)=N^{5}+kN^{4}$ iff $G$ is k-colorable.

3. level $=5logN+3$

In this level, there are $N^{4}$ different functions of the form $\overline{x_{5logN+3}}\cdot\overline{x_{5logN+4}}\cdot.f_{a}+\overline{x_{5logN+3}}$ .
$x_{5logN+4}\cdot f_{b}+x_{5logN+3}\cdot\overline{x_{5logN+4}}\cdot f_{c}+x_{5logN+3}\cdot x_{5logN+4}\cdot.f_{d}$ . $0\leq a,$ $b,$ $c,$ $d\leq N-1$ and
$k$ functions of the form $\overline{x_{5logN+3}}\cdot\overline{x_{5logN+4}}\cdot h_{a}+\overline{x_{5logN+3}}\cdot x_{5logN+4}\cdot.f_{1},0\leq a\leq k$. The
former ones cannot be unified each other. Among them, $N^{2}$ nodes can be removed as
redundant nodes. The latter ones can be unified with the former ones from Proposition
4. Therefore. for any G. node$(5logN+3)=N^{4}-N^{2}$ .
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4. level $=5logN+4$

As is the case of 3, node$(51ogN+4)=N^{2}-N$ .

5. $5logn+5\leq$ level $\leq 7logN+4$

node$(5logN+5)=N$ . Then the total number of nodes is less than $\Sigma_{1\leq i\leq 2logN}N\cdot 2^{i-1}=$

$N^{3}-N$ .

From the above discussion, when $G$ is exactly k-colorable, the total number of nodes is at
least

$num_{\min}(N, k)$

$=(2N^{5}-1)+(N^{5}+kN^{4})+(N^{4}-N^{2})+(N^{2}-N)+N$

$=3N^{5}+(k+1)N^{4}-1$

and is not more than
$num_{\max}(N, k)$

$=(2N^{5}-1)+(N^{5}+kN^{4})+(N^{4}-N^{2})+(N^{2}-N)+(N^{3}-N)$

$=3N^{5}+(k+1)N^{4}+N^{3}-2N-1$ .
As $num_{\min}(N, k+1)>3N^{5}+(k+2)N^{4}-2>num_{\max}(N, k)$ , the number of nodes is less
than $3N^{5}+(k+2)N^{4}-2$ . $\square$

3.2 Hardness of Learning Binary Decision Diagrams
The identification of the minimum BDD from examples is closely related to computational
learning theory. On the PAC-learning model $[9, 10]$ , the goal is to find a good approximation of
an unknown Boolean function from random examples. When the learner requests an example,
it is drawn according to an arbitrary distribution $P$ on $\{0,1\}^{n}$ . The error of a hypothesis $g$

for unknown $f$ is defined to be the probability that $f(x)\neq g(x)$ for an assignment $x\in\{0,1\}^{n}$

drawn randomly according to $P$ .
We call that a Boolean function is learnable by a class $X$ of concepts iff there is a learning

algorithm that runs in polynomial time and outputs, with probability at least $1-\delta$ . a hypothesis
that approximates the unknown Boolean function with error at most $\epsilon$ .

From Theorem 1 and 2, we can make the same discussion as [11] on the learnability of
k-width BDD and k-node BDD. If there is a polynomial time learning algorithm, we can solve
GRAPH K-COLORABILITY using the learning algorithm and the examples shown in the
reduction, which implies NP $=RP$.
Corollary 1 k-width BDD and k-node BDD are not learnable under PAC-learning model
unless NP $=RP$.

We note that k-decision tree, a tree representation of a Boolean function. is learnable in
polynomial time.

4 Conclusion

In this paper, we proved the NP-completeness of identifying the minimum BDD. The results
also imply the hardness of learning k-width BDD and k-node BDD. It is our future work to
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consider the case when we allow to change the variable ordering because the size of a BDD
greatly varies according to the variable ordering.
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