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The role of stress effector systems in the initiation and progression of multiple sclerosis

(MS) and experimental autoimmune encephalomyelitis (EAE), the most commonly

used experimental model of MS, has strongly been suggested. To corroborate this

notion, alterations in activity of the sympathoadrenal and sympathoneural axes of

sympathoadrenal system (a major communication pathway between the central nervous

system and the immune system), mirrored in altered release of their end-point

mediators (adrenaline and noradrenaline, respectively), are shown to precede (in

MS) and/or occur during development of MS and EAE in response to immune cell

activation (in early phase of disease) and disease-related damage of sympathoadrenal

system neurons and their projections (in late phase of disease). To add to the

complexity, innate immunity cells and T-lymphocytes synthesize noradrenaline that

may be implicated in a local autocrine/paracrine self-amplifying feed-forward loop to

enhance myeloid-cell synthesis of proinflammatory cytokines and inflammatory injury.

Furthermore, experimental manipulations targeting noradrenaline/adrenaline action are

shown to influence clinical outcome of EAE, in a disease phase-specific manner. This

is partly related to the fact that virtually all types of cells involved in the instigation and

progression of autoimmune inflammation and target tissue damage in EAE/MS express

functional adrenoceptors. Although catecholamines exert majority of immunomodulatory

effects through β2-adrenoceptor, a role for α-adrenoceptors in EAE pathogenesis

has also been indicated. In this review, we summarize all aforementioned aspects

of immunopathogenetic action of catecholamines in EAE/MS as possibly important

for designing new strategies targeting their action to prevent/mitigate autoimmune

neuroinflammation and tissue damage.
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INTRODUCTION

Multiple sclerosis (MS) is one of the most common neurological
disorders and cause of disability of young adults (1–3).
Patogenetically, MS is the prototype of the autoimmune
inflammatory diseases of the central nervous system (CNS), and
is characterized by breakdown of the blood-brain barrier
(BBB), neuroinflammation, and axonal damage (4, 5).
Its pathogenesis is largely deciphered using experimental
autoimmune encephalomyelitis (EAE), a group of neuroantigen-
induced animal diseases (4). These models are mainly based
on neuroinflammation induced by auto-reactive T helper
(Th) cells (4, 6). Upon activation in draining lymph nodes
(dLNs), neuroantigen-specific Th cells synthesize IL-17, IFN-γ
and/or GM-CSF, and express chemokine receptors (CCR2,
CCR6) to gain access in the CNS (4, 6, 7). In the CNS, upon
reactivation by resident antigen-presenting cells (APCs), Th
cells activate neighboring microglia and attract peripheral
cells (T-cells, B-cells, inflammatory monocytes) to perpetuate
neuroinflammation and cause demyelination (4, 7). With EAE
development, apart from CD4+Foxp3+ regulatory T-cells
(Tregs) (8), activated microglia may assume regulatory functions
(through phagocytosis, anti-inflammatory mediator and growth
factor release) to limit the CNS damage and promote recovery
(9). Noteworthy, so far, no single experimental model covers the
entire spectrum ofMS immunopathological features (particularly
role of CD8+ T-cells and B-cells in propagating inflammation
and tissue damage in established MS), so the relevance of results
from EAE models has to be critically validated (5).

MS is multifactorial disease involving genetic traits and non-
genetic triggers (1, 2). Generally, physical and psychological
stressors are important triggers of MS (10–12). To corroborate
this notion, war veterans with stress-related disorders (associated
with low levels of morning cortisol and elevated levels of
noradrenaline), were found to exhibit the higher risk of being
diagnosed with MS compared to those without any psychiatric
disorders (13). However, not only does stress contribute to
MS development, but the disease itself causes stress, creating
a vicious cycle (10, 12, 14). Additionally, stress contributes
to exacerbations of MS (12, 15). The pathogenetic role of
stress has been ascribed not only to action of glucocorticoids,
end-point mediators of hypothalamo-pituitary-adrenal system
(16, 17), but also to catecholamines, end-point mediators of
sympathoadrenal system consisting of sympathoneural (the key
end-point mediator noradrenaline) and sympathoadrenal (the
key end-point mediator adrenaline) axes (15, 16, 18). This review
focuses the role of catecholamines in development of EAE/MS.

In MS, aside from sensory, motor and cognitive impairments,
autonomic dysfunction (mirrored in fatigue, bladder, bowel,
cardiovascular, and sexual disorders) considerably contributes
to disability (19–21). It has been speculated that (i) altered
sympathoadrenal system activity induced by various stressors,
including the disease itself (in early phase and at the onset of
exacerbations), and (ii) damage of central sympathoadrenal
system neurons and their projections with the disease
progression (12, 22–24) is not only consequence, but also
mechanism involved in MS pathogenesis.

The sympathoadrenal system, a major communication
pathway between the CNS and the immune system (25),
originates from locus coeruleus (LC) (18, 26). Activation
of LC leads to (i) central effects reflecting noradrenaline
release (primarily via non-junctional varicosities to enable
its action on non-neural cells) throughout the brain and
spinal cord (SC), and (ii) peripheral effects due to release of
catecholamines from adrenal medulla and sympathetic nerve
fibers (18, 27–30). On the other hand, activation of peripheral
immune cells activates sympathoadrenal system to secure
control of the ongoing response (18, 31). Namely, cytokines
released upon their activation signal to the sympathoadrenal
system by stimulating proinflammatory mediator release from
the CNS resident cells or by activation of afferent signaling
pathways (32–36). In inflammatory autoimmune diseases,
this activational effect is suggested to be superimposed on
elevated sympathoadrenal system activity due to chronic stress
and/or stressful adverse life events leading to its hyperactivity
and proinflammatory action (31). In MS, the release of
proinflammatory cytokines from activated immune cells in
the CNS also contributes to sympathoadrenal hyperactivity
(32, 33, 36). Stress-induced sympathoadrenal activation
prior to these diseases is suggested to induce low grade self-
perpetuating lymphoid tissue and systemic inflammation
that further increases sympathoadrenal activity and alters
immune system reactivity to enable autoreactive lymphocyte
activation (31). This, in return, contributes to sympathoadrenal
activation and the promotion of inflammation (31, 37). Adding
to the complexity, innate and adaptive “catecholaminergic”
immune cells also synthesize catecholamines (29, 30, 38) to
regulate inflammatory/immune responses (39). However,
in inflammatory autoimmune diseases, they may form an
alternative catecholamine source with role in promotion of
inflammation (40–43). Namely, activated immune cell-derived
catecholamines are suggested to drive an autocrine/paracrine
self-amplifying feed-forward loop to increase synthesis of
proinflammatory cytokines in myeloid cells (41, 44). Thus,
in early phases of the diseases neurocrine/endocrine- and
autocrine/paracrine-derived catecholamines may synergistically
act to promote inflammation.

Catecholamines exert immunomodulatory effects through
β- and α-adrenoceptors expressed on almost all types of
immune cells, but majority of their effects are β2-adrenoceptor-
mediated (18, 25, 43, 45–60). Monocytes/macrophages,
together with dendritic cells, constitute the mononuclear
phagocyte system, which plays a key role in maintaining
tissue integrity, its restoration after injury, and the initiation,
direction and resolution of innate and adaptive immunity.
Catecholamines modulate their activity in a context-dependent
manner, so they exert both proinflammatory (61–63) and
anti-inflammatory (64, 65) effects depending on a number
of factors (25), including adrenoceptor subtype (66, 67),
adrenoceptor agonist concentrations (68), and the timing of
adrenoceptor engagement in relation to antigen stimulation
(69). Thus, it seems obvious that their action in EAE/MS has
to be disease phase-dependent. In this review, considering
EAE/MS pathogenesis, catecholamine influence on microglia
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and Th17/Treg axis is focused. Several stress paradigms induce
β-adrenoceptor antagonist (propranolol) preventable microglial
activation and synthesis of inflammatory mediators exaggerating
proinflammatory responses to subsequent immunological
stimuli (70). β2-adrenoceptor activation in lipopolysaccharide-
stimulated dendritic cells diminishes IL-12 secretion, leading
to a shift in the IL-12/IL-23 ratio and thereby promotes the
generation of CD4+ T cells that produce lower amounts of
IFN-γ (Th1 signature cytokine) and higher levels of IL-17 (Th17
signature cytokine) (71).

CENTRAL NORADRENALINE IN
PATHOGENESIS OF EAE/MS

Human Data
It has been shown that in MS noradrenaline levels decrease in
the tissue surrounding LC (72) reflecting the disease-induced
neuronal damage in LC (72). At present, there is no data on
effects of the disease on the other “descending catecholaminergic
system neurons” projecting to the spinal cord. On the other
hand, several studies showed that cerebrospinal fluid levels of
noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol, a
marker of central noradrenergic activity, do not change in
MS (73, 74). Given that peripheral and central administration
of cytokines to rodents increased noradrenaline synthesis
and 3-methoxy-4-hydroxyphenylglycol levels in brain (75),
it may be assumed that elevated noradrenaline synthesis
and turnover in non-damaged brain structures overcame
diminished noradrenaline synthesis in those affected by the
disease. On the other hand, combination of lofepramine or
maprotiline (noradrenaline reuptake inhibitors) with levodopa
(after conversion to dopamine metabolizes to noradrenaline)
exhibited therapeutic effects in MS (76). However, given that
dopamine itself exerts beneficial effects on the disease (77),
these effects cannot be ascribed to the rise in the central
noradrenaline level. On the other hand, although combined
treatment with lofepramine and phenylalanine (upstream
noradrenaline precursor) was initially shown to moderate
clinical symptoms of MS (78), follow-up rigorously controlled
study put the benefits of this therapy into question (79).
Additionally, there are limited and inconsistent data on
the therapeutic effects of β2-adrenoceptor agonists, such as
salbutamol (albuterol), in MS. Namely, depending on type and
phase of MS both adverse and benefitial effects have been
described (80–82). To potentiate need for further studies on
role of central noradrenaline in MS, several studies provided
evidence that anti-stress therapies, including exercise (83–85),
mindfulness meditation (86–88), and yoga (89), moderate MS
symptoms (depression, anxiety, fatigue, cognitive dysfunction).
In the same line are data from a population-based study
indicating that the incidence of MS was negatively associated
with use of fenoterol, a β2-adrenoceptor agonist, but not
salbutamol belonging to the same drug class (90). This was
ascribed to differences in their functionality, as fenoterol
differently from salbutamol significantly stimulates cyclic-
adenosine monophosphate (90).

Animal Data
The study encompassing dogs suffering from EAE showed that
cerebrospinal fluid and white matter noradrenaline levels rise
early after the immunization, but decrease in the clinical phase
of the disease (91). Consistently, decline in SC and/or brainstem
noradrenaline concentration was found at the peak of EAE in
Lewis and Dark Agouti (DA) rats (45, 92–94). Noradrenaline
concentration in SC also decreased with EAE progression in
C57BL/6 mice (72, 95). This was attributed to disease-related
damage of LC noradrenergic neurons (72) and/or axonal damage
in SC (92). Additionally, it was reported that electrolytic
destruction of LC noradrenergic neurons attenuates the disease
inWistar rats (96). Furthermore, central noradrenaline depletion
(decrease in noradrenaline level by ∼85% without changes
in dopamine) by intracisternal-ventricular 6-hydroxydopamine
injections reduced motor deficit in Lewis EAE rats (97, 98).
Conversely, in C57BL/6 mice developing chronic EAE, treatment
with N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine, selective
neurotoxin for rodent LC neurons, exacerbated the disease
(99). This discrepancy could be related to N-(2-chloroethyl)-
N-ethyl-2 bromobenzylamine–induced increase in the central
extraneuronal noradrenaline level due to its inflow from non-
lesioned regions, so that noradrenaline levels were reduced by
only 10–30% (100). Additionally, treatment with propranolol,
a non-selective β-adrenoceptor antagonist, depending on its
onset relative to immunization, produced different effects on
clinical outcome of EAE in rats (101, 102). Propranolol treatment
starting 3 days before immunization moderated clinical and
histological picture of EAE in DA rats (102), whereas the
treatment beginning at immunization prolonged the disease
duration in Lewis rats (101). When administered over effector
phase of EAE to Lewis rats, propranolol exacerbated the
disease (103), or produced no effect (101), while propranolol
treatment in DA rats starting before the onset of clinical EAE
decreased the disease severity (45). Given that propranolol
crosses the BBB (104), the latter findings were consistent with
data indicating that chemical depletion of central noradrenaline
starting before the effector phase of EAE may remove an
effector amplification mechanism leading to suppression of
the paralysis (97). The inconsistencies in data from different
propranolol studies may be associated with differences in
drug dose regimen and/or treatment onset/duration, as well
as animal genetic makeup, immunization protocols (possibly
affecting the kinetics in development of sympathoadrenal
neuron damage).

The ameliorating effect of propranolol on the clinical outcome
of EAE in DA rats was linked with upregulated expression
of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme
oxygenase-1, a Nrf2-regulated gene with a crucial role in the
prevention of neuroinflammation (105, 106). This partly reflected
propranolol-induced upregulation of CX3CR1, the receptor for
fractalkine (CX3CL1), which activates the Nrf2 signaling in
microglial cells to limit their activation (107). Nrf2 recognizes an
enhancer sequence termed antioxidant response element that is
present in the regulatory regions of over 250 genes (108), and is
implicated in the modulation of inflammation through crosstalk
with the transcription factor NF-κB, the principal regulator of
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inflammation (109). Consistently, compared with saline-injected
controls, in propranolol-treated rats the frequencies of IL-
1β- and IL-23-expressing cells among microglia, and microglia
expression level of IL-6 and CCL-2, the chemokine recruiting
inflammatory monocytes and T-cells to the sites of inflammation
(110), was decreased (45). Additionally, in accordance with role
of CX3CR1 in regulation of the expression of TAM receptors
(111), which are essential in apoptotic cell phagocytosis (112),
so that their deficiency is linked with autoimmune disease
progression (110), the frequency of phagocytic cells among
microglia was significantly increased in propranolol-treated rats
(45). As expected (9, 113, 114), this correlated with the increased
proportion of anti-inflammatory CD163- and IL-10-expressing
microglia (45). In keeping with alterations in phenotypic and
functional profile of microglia, in propranolol-treated EAE rats
the infiltration of SC with blood-borne inflammatory monocytes
and Th cells, their reactivation/proliferation and differentiation
toward highly pathogenic IL-17/IFN-γ/GM-CSF co-producing
Th17 cells was impaired (45).

On the other hand, administration of prazosin, an α1-
adrenoceptor antagonist, throughout the disease or effector
phase alone suppressed active and passively transferred EAE in
rats (103, 115, 116). This was related to blockade of disease-
promoting α1-adrenoceptor–mediated vascular action (115).

Putative Research Directions
Considering all the aforementioned, it is clear that many
important issues still remain to be addressed to fully enlighten the
role of sympathoadrenal system in EAE/MS pathogenesis, but to
mention a few. To confirm changes in sympathoadrenal system
reactivity during EAE development, noradrenaline concentration
in SC along with development of sympathoadrenal neuron
lesions, should be examined in distinct EAE models and
distinct phases and types of MS. Additionally, considering that
rodent microglia synthesize catecholamines (45), it should be
investigated whether these cells, as macrophages (41), may
enhance local inflammation by an autocrine/paracrine feedback
mechanism. Furthermore, given that functional β1- and β2-
adrenoceptors were revealed on microglia (46), further research
to delineate β1-adrenoceptor-mediated from β2-adrenoceptor-
mediated effects on microglia in this model is necessary.
Moreover, given that microglia express α1-adrenoceptor (47),
putative α1-adrenoceptor-mediated effects of catecholamines on
microglia from EAE rats are also worth examining.

PERIPHERAL CATECHOLAMINES IN
PATHOGENESIS OF EAE/MS

Human Data
In favor of peripheral sympathoadrenal dysregulation in
MS, in chronic progressive (CP) MS increase in circulating
noradrenaline level was found (117). Differently, in relapsing-
remitting (RR) MS its level is decreased (118). Additionally, in
active RR MS, circulating levels of adrenaline and noradrenaline
are lower than in stable disease (23). Alterations in lymphocyte
catecholamine levels also occur in MS (119), so higher adrenaline
in the first-attack MS patients and lower noradrenaline in RR

MS were found (119). Higher noradrenaline level was also
measured in peripheral blood mononuclear cells (PBMC) from
MS patients (120). Additionally, upregulated β-adrenoceptor on
T-lymphocytes from CP MS patients (121, 122), and on PBMC
from RR and secondary progressive MS patients was reported
(123–125). There is no data on the expression of α-adrenoceptors
on peripheral immune cells fromMS patients.

Animal Data
In Lewis EAE rats, splenic noradrenaline concentration
decreased during the inductive phase of the disease (126).
Our recent study demonstrated reduced noradrenaline
concentration in dLNs from DA rats on the 7th day post-
immunization (59). However, noradrenaline content was
increased in dLN cells constituting, most likely, a compensatory
mechanism (42, 127, 128). Early studies in active (129) and
adoptively transferred (130) Lewis rat EAE showed more severe
disease in adult rats subjected to 6-hydroxydopamine–induced
sympathectomy at birth. These findings should be interpreted
with caution, as neonatally administered 6-hydroxydopamine
crosses the BBB (129), so aside from peripheral sympathectomy,
it permanently increases noradrenergic innervation in hind
brain (131). Administration of isoproterenol, a non-selective
β-adrenergic agonist, during preclinical phase of EAE in Lewis
rats suppressed the disease severity, while propranolol did
not produce any effects (101). Conversely, we showed that
propranolol administration throughout preclinical phase of EAE
in DA rats moderated the disease severity (132). This discrepancy
could be related to recent findings indicating that isoproterenol
represents a novel type of α1A-adrenoceptor partial agonist
(133), and differences in propranolol dose, particularly as in the
rat there are strain differences in its metabolism. Furthermore, it
has recently been reported that increased systemic noradrenaline
levels due to sympathoneural system hyperactivity (134) in
mice constitutively lacking α2a/c-adrenoceptor (constituting
an important negative-feedback mechanism required for the
presynaptic control of neurotransmitter release from sympathetic
fibers) is associated with diminished pathogenic T-cell responses
and CNS inflammation in EAE (135). These findings might be
explained by data suggesting that prolonged sympathoneural
activation (as it is in late phases of inflammatory autoimmune
diseases) leads to anti-inflammatory sympathoneural action
(31). The moderating effect of propranolol on clinical outcome
of EAE in DA rat model was ascribed to diminished CD4+
T-cell activation/proliferation and Th17 cell generation in dLNs
(132), due to impaired migration of neuroantigen-carrying APCs
from the site of immunization to dLNs, reflecting decreased
expression of CCL19/21, chemokines driving their migration
in dLNs (132). On the other hand, study on propranolol
effects on dLN cells recovered in the inductive phase of EAE
in the presence of arterenol (synthetic noradrenaline) or its
absence showed that it enhanced CD4+ cell IL-2 synthesis
and proliferation (43). Additionally, propranolol augmented
differentiation of Th17 cells in dLN cell cultures by increasing
RORγt expression in CD4+ cells, and production of cytokines
driving/maintaining Th17 cell differentiation (IL-1β and IL-23)
by APCs (43). The discrepancy between the effects of propranolol
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FIGURE 1 | EAE-related alterations in sympathoadrenal system (SA) and

putative central and peripheral effects of its key end-point mediators

(noradrenaline and adrenaline) contributing to EAE pathogenesis. (A) Biphasic

changes in SA over the course of EAE encompass SA overactivation in

preclinical EAE stage (premorbid/disease-related stress), followed by its

diminished and possibly qualitatively altered activity in clinical stage of the

disease partly due to locus coeruleus (LC) neuron damage. (B) (Spinal cord)

Central noradrenaline (NA)/adrenaline (A) acting through β-adrenoceptor in

early phases of the disease downregulate microglial expression of nuclear

factor (erythroid-derived 2)-like 2 (Nrf2), and its key anti-inflammatory

downstream target genes, including those encoding heme oxygenase-1

(HO-1), and possibly TAM (Tyro3, Axl, and Mertk) receptors involved in

phagocytosis via C-X3-C motif chemokine receptor 1 (CX3CR1)-dependent

and CX3CR1-independent mechanisms. This leads to shift toward more

proinflammatory microglial phenotype mirrored in increased expression of

proinflammatory cytokines/chemokines (e.g., IL-1β, IL-23, IL-6, CCL2),

followed by diminished expression of anti-inflammatory microglial markers

(e.g., CD163, IL-10), and consequently, increased infiltration of spinal cord with

Th cells, their reactivation/proliferation and differentiation toward pathogenic

Th17 cells. (dLN, draining lymph node) NA/A acting through β-adrenoceptor

enhance antigen-carrying antigen presenting cell (APC)

(Continued)

FIGURE 1 | migration to dLN, whereas impair their synthesis of Th17

polarizing cytokines (IL-1β, IL-23), and CD4+ cell expression of RORγt and

their proliferation. On the other hand, α1-adrenoceptor–dependent stimulation

leads to APC activation/maturation and augmented Th17-polarizing cytokine

expression, followed by decrease in Foxp3+ Th cell (Treg) number and

expression of Foxp3 and TGF-β leading to increased proliferation of Th cells

and their IL-17/GM-CSF synthesis. Proinflammatory NA effects in myeloid

cells, including microglia and macrophages (MØ) and peripheral APCs, may be

self-amplified through a NA-α1-adrenoceptor loop.

in vivo and in vitro could be reconciled by data indicating that
the number of autoantigen-carrying APCs in dLNs critically
determines the magnitude of the primary (auto)reactive
CD4+ T-cell response and clinical outcome of autoimmune
responses (136, 137).

Until recently, role of α-adrenoceptor in EAE was exclusively
related to the effector phase of the disease (103, 115, 138). Our
recent study showed the expression of α1-adrenoceptor on Tregs
(but not on effector CD4+ T-cells) and APCs from dLNs of
DA rats in the inductive phase of EAE (59). More important, it
showed that prazosin suppressed proliferation of neuroantigen-
stimulated CD4+ T-cells in dLN cell cultures, by increasing the
frequency of Tregs and their Foxp3 and TGF-β expression, and
decreasing co-stimulatory molecule expression on APCs (59).
Moreover, prazosin also decreased IL-1β and IL-23 production
in EAE rat dLN cell cultures, and consequently the generation of
Th17 cells, including the most pathogenic GM-CSF–producing
ones (59).

Putative Research Directions
To fulfill composite picture of sympathoadrenal system
modulation of EAE/MS development, several issues need to be
resolved. In light of findings suggesting that sympathoneural
changes in inflammatory autoimmune diseases may be organ-
specific (31), it should be answered if sympathoadrenal
influence on (auto)immune response in dLNs changes with
progression of EAE, and at which time-point this change
occurs, as well as to elucidate adrenoceptor types involved in
immunoregulation. Furthermore, as human studies directly
linking stress and (auto)immune response are lacking, owing
to practical and ethical concerns (139), EAE models, despite
limitations (5), should be considered for investigating role
of stress in triggering MS, and particularly pharmacological
treatments affecting catecholamine action trough distinct
types of adrenoceptors. Considering that individual’s elevated
noradrenergic tone (e.g., due to genetics) may favor MS onset
(140), such investigation should encompass animals of different
genetic makeup.

CONCLUSIONS

Collectively, available data suggest that alterations in
sympathoadrenal system activity due to premorbid/disease-
induced stress and disease-associated sympathoneural damage
contribute to EAE and possibly MS onset and development
(affecting distinct types of immune cells, and particularly
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important microglia, as depicted in Figure 1), respectively.
However, further research to elucidate noradrenaline/adrenaline
immunomodulatory action in the target organ and lymphoid
organs/blood, in distinct phases of EAE (and in distinct EAE
models) and MS alike, is necessary to envisage significance
of alterations in sympathoadrenal immunomodulatory action
for susceptibility to/progression of EAE/MS, and consequently
consider possibilities to manipulate catecholamine action
to prevent/mitigate them. To emphasize significance of this
research it should be pointed that adrenergic drugs are safe
and cost-effective.
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