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BOUNDS ON THE EFFICIENCY OF THE RESIDUAL DESIGN
OF EXTENDED BIB DESIGNS

Sanpei Kageyama and Hiroshi Setoya

Department of Mathematics
Hiroshima University
Hiroshima 734
JAPAN

Abstract. This gives a complete proof for bounds of the ef-
ficiency, conjectured by Das and Kageyama (1992), on robustness
of extended balanced incomplete block designs against the un-
availability of any number of observations in a block.

1. Introduction

The robustness problem of block designs against the unavai-
lability of data has been considered in various ways. Das and‘
Kageyama (1992) showed the robustness of extended balanced in-
complete block (BIB) designs when all the observations or any one
observation in a block are 1lost. Furthermore, by a computer
search they also observed the robustness of extended BIB designs
against the unavailability of any number of observations in a
block, within some rdnge of design parameters.

In this note, we shall prove bounds of the efficiency to
show generally the robustness of extended BIB designs against
the unavailability of any number of observations in a block. This
gives a complete answer to the problem presented in Section 3.3
of Das and Kageyama (1992).

2. The bounds

An extended BIB design d with v treatments and b+1 blocks
of size k each 1is a design obtained by juxtaposing one binary
block of size k to a BIB design with parameters v, b, r, k and A
denoted by a BIBD(v,b,r,k,1).

In the extended BIB design d, suppose that s (1 = s =< k)
observations in any one block of d are lost. Let p be the number
of treatments common to the missing treatments and k treatmehts
in the added block, and let g be the number of treatments common
to the remaining treatments (in a block containing the missing
treatments) and k treatments in the added block. The parameters

should satisfy
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(2.1) 0 <p =<3s, max{0,2k-v-p} = q =< k-s.

Let d* be the design obtained by deleting s observations for 1 <
s <= k in any one block in d. Assume d* to be connected. As shown
in Das and Kageyama (1992), the efficiency of residual design a*

is given by

es(p,q) ey (= B, say)

where
o = k{Av(v-1)+k(v-Kk)}/{Av(Av+k)},

$,(s) = k{v-k-8+2(p-1)}/(Av) + k(k-p-2)/(Av+k)

+ k(s-p-1)/(Av-k) + 4Avk(k-s)(1/D+1/E)
for 1 =< s =< k-1,

D = 222v2(k-s)-a+/a2-8 ,

E = 2A2v2(k-s)-a-J/a2-8 ,

a = (k-s){k(k+2p)-p(p+2q)}-sa(k-q),
B = 4pk?(k-s)(k-s-q) (2k-p-q); or

$,(s) = 2Avk(k-p-1)/(A%2vZ-k2) + k{v-2(k-p)-1}/(4v)
+ 2AVK/(2%2v2-2kp+p?)
for s = k.

Remark 2.1. The above expressions of ¢;(s) for 1 =< s =< k-1
and s = k are derived through Lemmas 3.1 and 3.3 of Das and Kage-
yvama (1992), respectively. In fact, Lemma 3.1 is given under p =
1, k-p-gq =21, g =1, k-s-q = 1, s-p =2 1 and v-2k+p+q = 1, while
Lemma 3.3 is given under p = 1, k-p = 1 and v-2k+p = 1. These
restrictions occur from some patterns of the C-matrix of the
residual design d*. These parametric restrictions form a subset
of ranges (2.1). To cover all the ranges as in (2.1), we have to
consider special cases of such restrictions. Simplified expres-
sions of ¢,;(s) for these special cases can be given by Lemmas
3.2.1, 3.2.2, 3.2.3 and 3.2.4 of Das and Kageyama (1992). {Inci-
dentally, expressions derived in such a way may coincide with
those given by formally omitting eigenvalues with negative values
of multiplicity, as in the results of Lemma 3.1 of Das and Kage-
yvama (1992), used to derive $;(s).} For such special cases Das
and Kageyama (1992) implicitly have shown that our theorem des-

cribed later holds. Thus our theorem is expressed under (2.1).
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The following bound is now conjectured by Das and Kageyama
(1992;Section 3.3). The result is described in terms of BIB de-
signs, because an extended BIB design is obtained from a BIB de-
sign. Recall that B is the efficiency of residual designs.

THEOREM: In a BIB design with parameters v, b, r, k and A,

A = B = C
holds for all s such that 1 = s =< k, where

Av{v-1)+k(v-k) ,

A Av(v-1)+k(v-k+1)
_ (Av-kK){Av(v-1)+k(v-Kk)}

C = TvI(v-1)-kZ(v-2k+1) (when v = 2k)
or
(AVv-K) {Av(v-1)+k(v-Kk) } (A12v2-2vk+v2) /[ 2A2v2{(v-k-1)X
(A2v2-2vk+v2)+A2v2-k2}+(2k-v-1) (A2v2-k2) (A2v2-2vk+Vv2)]

(when k+1 < v < 2k-1)
with

0 =p=s, max{0,2k-v-p} = q =< k-s.

In fact, A = e;(1,k-1) and C = ek(p*,O) with p° = max{0,2k-v}.

The theorem shall be proved by separating the range of s
into two cases as 1 <= s < k-1 and s = k, k-1.

3. Proof of the theorem for s = k, k-1

Proposition 3.1. In a BIBD(v,b,r,k,1), an inequality A = B
= C holds for s = k and k-1.

Case: s = k. Note that q = 0 in this case.

(I) A proof of B = C. Since max{0,2k-v} < p, 0 < p and 2k-v <
p. Hence Theorem 3.4 of Das and Kageyama (1992) shows B = C.
(II) A proof of A = B.

(i) Case p = k: Here we get ¢,(k) = k(v-1)/(Av). Hence B
{Av(v-1)+k(v-K)}/{(Av+k)(v-1)}. Thus, A - B = k(k-2){Av(v-1)+k(v
-K)}/ [ (Av+k) (v-1){Av(v-1)+k(v-k+1)}] = O.

(ii) Case max{0,2k-v} < p =< k-1: Now
A - B = [{Av(v-1)+k(v-K)}{2(A%2v2-k2)p(2k-p)+(A2v2Z-2kp+p?)
x{Avk(k-2)-k2(2p-k)}}1/[{Av(v-1)+k(v-k+1)}N]

where

N = (A2v2-2kp+p?2) (A2v3-312v2+2k3-vk2-2k2p+k?2)+222v2(22v2-k2).
It follows that the denominator of A-B is positive. Because (1)
Av(v-1)+k(v-k+1) > 0, (2) A2v2-2kp+p?2 > 0, and (3) A2v3-312v2+2k3
-vk2-2k?2p+k? > 0. Furthermore, the fact that the numerator of A-B
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is positive can be shown by the following relations:

(4) 2(A2v2-k?)p(2k-p) = 0, Av(v-1)+k(v-k) > 0;

(5) A2v2-2kp+p? = A2v2-p(2k-p) > p(v-2k+p) = 0;

(6) Avk(k-2)-k2(2p-k) > k2(k-2)-k2(2p-k) = 2k2(k-p-1) = O.
Thus, we get A = B when max{0,2k-v} < p =< k-1. Therefore, by
cases (i) and (ii), A = B holds for max{0,2k-v} =< p = k.

Case: s = k-1. As noted in Remark 3.2 of Das and Kageyama
(1992), the case of s = k-1 is actually equivalent to the case
of s = k. In fact, we only have q = 0 (for s = k) and q = 0 or 1
(for s = k-1). Then, in B, ek_l(p,O) = ¢,(p,0) and ep_1(p,1) =
ek(p+l,0) for p = 0,1,...,k-1. This implies that A = B = C holds
for s = k-1. The proof is thus completed. o

4. Proof of the theorem for 1 < s =< k-2

Lemma 4.1. In the following BIB designs, A = B = C holds
for all s such that 1 < s < k-2: BIBD(v,b,r,k,2) (4,4,3,3,2),
(5,5,4,4,3),(6,6,5,5,4),(7,7,3,3,1),(7,7,4,4,2),(11,11,6,6,3).

This can be checked by calculation of factors A, maximum

and minimum of B, and C. Note that the existence of these BIB

designs is well-known.
Lemma 4.2. In a BIBD(v,b,r,k,A), F > 0 and G > 0 hold for
all s such that 1 = s < k-2, where

F = A4v4(k-s)-12v2k(k-s) (k+2p)+A2v2p(k-s) (p+2q)
+ A2v2sq(k-q) + pk2(k-s-q)(2k-p-q),
G = 2(A2v2-k2){a4v4(k-s)-pk?(k-s-q) (2k-p-q)}

with 0 <= p < s and max{0,2k-v-p} = q = k-s.
Proof. It is clear that
(4.1)  A%v?p(k-s)(p+2a)+12v2sq(k-q)+pk%(k-s-q) (2k-p-q) = 0.
Some calculation shows that A4v4(k-s)-12v2k(k-s)(k+2p) > A2vZ(k-
s)[k2{k(k-2)-2}+2k] > 0, since k = 3. This with (4.1) implies F
> 0. Next,
A4v4 (k-s)-pk?(k-s-q) (2k-p-q)

vér4(k-1)4
(v-1)4

> (k-s)k3(k-1){(k-1)3-2} > 0,
since r = k, p = k-1, 2k-p-q =2 0 and v = 3. This with A2v2-k2>0

- 2pk3}+pk?(p+q)+pak?(2k-p-q)

= (k-s){

implies G > 0. o
Lemma 4.3. In a BIBD(v,b,r,k,A) with v = 2k-1, an inequality
k < r < 21 holds.
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Proof. By A(v-1) = r(k-1), Av = rk+i-r =< A(2k-1), i.e. (r-
22)(k-1) =< 0. Hence r < 21. The other r = k is well-known. u]
Lemma 4.4. In a BIBD(v,b,r,k,A), H > 0 holds for all s such
that 1 < s < k-2, where
H = 4(k-s){(A2v3-312v2-vkZ+k3+k2s-2k2p-AvkZ+Avks+Avk)F + G}.
Proof. This is given by separating into two cases.
Case ([): v = 2k. Note that in this case v = 6. At first, by k-s
>0 and Lemma 4.2, F > 0 and G > 0. Next, it holds that
A2v3-322v2-vk2+k3+k?2s-2k2p-AvkZ+Avks+Avk
= k2 (k-p)+k2(s-p)+v[ (Av-K) {A(v-3)+k}-2k(k+1)] (by s = 1)
> k2(k-p)+k2(s-p)+(Av-k)v{A(v-3)-1} (by v = 2k and A = 1)
which is positive. These relations show that H > 0.
Case ([[): k+1 = v = 2k-1. Note that v = 4. Since k = 3, at first
we have k-s > 0 and, by Lemma 4.2, F > 0 and G > 0. Next,
A2v3-322v2-vk2+k3+k2s5-2k2p-AvkZ+Avks+Avk
k2(k-p)+k2(s-p)+v{A%v(v-8)-AkZ2+(1s+A-Kk)k}
(4.2) > A2v(v-3)-Ak2+(22-k)k (by Kk >p, s =p, s = 1)
(4.3) = 222[{k(k-3)-2}/2]. (by Lemma 4.3 with k < 21 and k+1 =< v)
When k = 4, (4.3) is positive. When k = 3 and v = 4, (4.2) =
A(42-3)-9 > 0. When k = 3 and v = 5, (4.2) = 2(10A-3)-9 > O.
Thus, H > 0 when k+1 < v < 2k-1. Hence the proof is completed. O
Lemma 4.5. In a BIBD(v,b,r,k,i) with k+1 < v < 2k-1, K > 0

holds, where K = 212vZ{(v-k-1)(A2v2-2vk+v2)+12v2-k2}+(2k-v-1)
X(A2v2-k2)(A2v2-2vk+v2).

Proof. Since A2 = 1 and v > k, A2v2-2vk+v? = (A2+1)v?-2vk >
0 and 12v2-k2 > 0. Hence K > 0. a]

Thus, since in the six BIB designs as in Lemma 4.1 our
bounds hold, such six BIB designs are, in particular, excluded
to prove the following Propositions 4.1, 4.2 and 4.3.

Proposition 4.1. In a BIBD(v,b,r,k,1), an inequality A = B
holds for all s such that 1 = s =< k-2.

Proof. Since with H as in Lemma 4.4

(A-B)/{Av(v-1)+k(v-k)}

- B L L A LHDE (o, say),

if «a =2 0, then A = B. It is clear from Lemma 4.4 that the denomi-

nator of a is positive. Now denote the numerator of a by a«'. So
a'/{4(k-s8)} = (-2A22vZ+k2s-2k?2p+k2+Avks-AVvk)F + G.



21

(a) Case s = ] (and hence p = 0 or 1 and q < k-1):

(1) When p = 0, a'/{4(k-s)} = 222vZ2(12v2%2-k?)(k3-k2-kq+q?2)
= 2A2v2(A2v2-k?2){k2(k-2)+k+q?} > 0. :

(2) When p = 1, a'/{4(k-s)} = (2k-q-1)(k-q-1)[242v2{v2r2(k-

1)2/(v-1)2-2k2}+2k*4] > (2k-q-1) (k-q-1)[222v2k2{k(k-2)-1}+2k*]

which is non-negative, since k = 3 and v = 4. Thus «a' = 0.
(b) Case 2 = s <= k-2 (and hence k = 4): Let
a'/{4(k-s)} = 2(A2v2-Kk2)L + MF

where
L = 22v2[{(k-s) (k+p)-sq}(k-q)+(k-s) (k-p) (p+q)]
- 2pk?(k-s-q) (2k-p-q),
M = k2s-2k?p-k2+Avks-Avk.

(3) Since A2v2-k? > 0, it follows from Lemma 4.2 that F > 0.
(4) L = 2%2v2[{(k-s) (k+p)-sq} (k-q)+(k-s) (k-p) (p+q)
- (k-s-a) (2k-p-q)]
A2vZ{(k-s) (k+p)-sq+(k-p) (p+q)-(2k-p-q) } (k-s-q)
A2vZ{(k+p) (k-s-1)-k+(k+1) (p+q)-sq+p(1l-p-q)} (k-s-q)
= 0.
(5) M = 0 can be shown by considering four cases, s = p+l,

v

s =p, s =23 and s = 2, separately, after some algebra.
Thus, a' = 0. Hence the proof is completed. o
Proposition 4.2. In a BIBD(v,b,r,k,A) with v = 2k, an in-
equality B = C holds for all s such that 1 < s =< k-2.

Proof. Since
(B-C) /[ (Av-k){Av(v-1)+k(v-k) }]

say)

{A2v2(v-1)-k?(v-2k+1)}DE - H  _ 8
{A%2v2(v-1)-k?(v-2k+1)}H ’
if B = 0, then B = C. It follows from Lemma 4.4 that the denomi-
nator of B is positive. For, A1%2v2(v-1)-k2(v-2k+1) > 2A2v2?(k-1) >
0. Now denote the numerator of B by B'. Then, since k = 3 and
hence v = 6,
B'/{4(k-s)}
= A4v4 (k3+k2-k2s+2k2p+Avk2-Avks-Avk) (k-s) + {(A%2vZ2-k?2)+
k2(k-s)+2k2p+Avk(k-s)+Av(Av-k) }{12v2Zp(k-s) (p+2q)
-A2v2k(k-s) (k+2p)+A2v2sq(k-q)} + pk?{3(12v2-k?)
+k2(k-s)+2k?2p+Avk(k-s)+Av(Av-Kk)} (k-s-q) (2k-p-q)
> A4v4(k3+k2-k2s+2k2p+AvkZ-Avks-Avk) (k-s) - A2vZk{(42v2-
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k2)+k2(k-s)+2k2p+Avk(k-s)+Av(Av-k) } (k-s) (k+2p)
> 12v2k{22v2-k(k+2p)} (Av+k) (k-s-1)+222v2kp{A12vZ(k-2)-
k?(k+2p)}
which is non-negative, since A2v2-k(k+2p) = v2r2(k-1)2/(v-1)2 -
k(k+2p) > k2{k(k-2)-2}+2k > 0, and A2vZ(k-2)-kZ(k+2p) = v2r2(k-
1)2(k-2)/(v-1)2 - k2(k+2p) > k3{(k-2)%2-2} which can be shown to
be positive, because six BIB designs as in Lemma 4.1 are exclud-
ed from consideration. Thus, B' = 0. Hence the result. o
Proposition 4.3. In a BIBD(v,b,r,k,A) with k+1 =< v =< 2k-1,
an inequality B = C holds for all s such that 1 = s =< k-2.
Proof. Since with K as in Lemma 4.5
(B-C)/[(Av-k) {Av(v-1)+k(v-k)}]

- 22 _ 2
_ KDE (éKv 2vk+v<)H (= B, say),

if B =z 0, then B = C. It follows from Lemmas 4.4 and 4.5 that
the denominator of S is positive. Now denote the numerator of §
by B'. Then, since k = 3,
B'/{4(k-s)}
= A4v4[{k(Av-Kk) (k-5-1)+2k2(v-k+p-s)}(A2v2-2vk+v2)
+2v(A2v2-k?2) (2k-v)1(k-s) + [{k(Av-k)(k-s-1)
+2k2 (v-k+p-5)} (A2v2-2vk+v2)+212v2(12v2-k2)]1{A2v2Zp
x(k-s) (p+2q)-12v2k(k-s) (k+2p)+12v2Zsq(k-q)}
+pk2[{k(Av-K) (k-s-1)+2kZ(v-k+p-s)} (12v2-2vk+v?2)
+2(A2v2-k?2)(2A2v2-2vk+v?)](k-s-q) (2k-p-q)
= 222v2(22v2-k?2){v(2k-v)-Kk(k+2p)+p(p+2q)}
+k(Av-k) (A2v2-2vk+v2) {12vZ-k(k+2p)}
= A2v2(Av-k) {Av(Avk-2k?2-4kp)-2kZ(k+2p)}
+22v2Z (Av-k){2p(2Avqg-k?)+2Avp2+2kp2+4kpq
+VK(2k-v)} + A2vZ2(Av-k){2AvZ(2k-v)-k3}
+vk2 (Av-k) (k+2p) (2k-V)
which can be shown to be positive, by noting the following re-
lations through Lemma 4.3: (i) A2v?2 > 0, Av-k > 0, 2k-v = 1, (ii)
Av(Avk-2kZ-4kp)-2k2(k+2p) > 0, (iii) 2p(2ivq-k?)+2ivpZ+2kp2+4Kkpq
+vk(2k-v) > 0. Because the six BIB designs in Lemma 4.1 are ex-
cluded from our consideration. Thus, B' = 0. Hence the result. O
Therefore, Propositions 3.1, 4.1, 4.2 and 4.3 can show the
validity of the theorem in Section 2. oo

5. Conclusion
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In Sections 3 and 4, the conjecture of Das and Kageyama
(1992) has been proved mathematically. This means, through Sec-
tion 3.3 of Das and Kageyama (1992), that extended BIB designs
are fairly robust against the unavailability of any number of
observations in any one block.
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