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HEIGHT OF $p$-ADIC HOLOMORPHIC FUNCTIONS
AND APPLICATIONS(*)

by Ha Huy Khoai (Hanoi)

Dedicated to Professor S. Kobayashi on his 60-th birthday

\S 1. Introduction

Let me start the talk by explaining why study p-adic Nevanlinna Theory. In
the famous paper “De la metaphysique aux math\’ematiques’’ ([W]) A. Weil discussed
about the role of analogies in mathematics. For illustrating he analysed a “metaphysics”
of Diophantine Geometry: the resemblance between Algebraic Numbers and Algebraic
Functions. However, the striking similarily between Weil’s theory of heights and Car-
$tan’ s$ Second Main Theorem for the case of hyperplanes is pointed out by P. Vojta
only after 50 years! P. Vojta observed the resemblance between Algebraic Numbers and
Holomorphic Functions, and gave a“dictionary” for translating the results of Nevan-
linna Theory in the one-dimensional case to Diophantine Approximations. Due to this
dictionary one can regard Roth’s Theorem as an analog of Nevanlinna Second Main
$Theoreln$ . P. Vojta has also made quantitative conjectures which generalize $Ro$th’s the-
orem to higher dimensions. One can say that P. Vojta proposed a“new metaphysics”
of Diophantine Geometry: Arithmetic Nevanlinna Theory in higher dimensions. On
the other hand, in the philosophy of Hasse-Minkowski principle one hopes to have an
“arithmetic result” if one have had it in p-adic cases for all prime numbers $p$ , and in
the real and complex cases. Hence, one would naturally have interest to determine
how Nevanlinna Theory would look in the p-adic case.

\S 2. Heights of p-adic holomorphic functions

One of most essential differences between complex holoInorphic functions and
p-adic ones is that the modulus of a p-adic holomorphic function depends only on the
modulus of arguments, except on a“critical set”. This fact led us to introduce the

$(*)_{The}$ author stayed at Max-Planck Institut f\"ur Mathematik, Bonn during the preparation of this
paper. He expresses his sincere gratitude to the MPI and Professor J. Noguchi, the organizer of the
Symposium “ Holomorphic Mappings, Diophantine Geometry and Related Topics” for hospitality and
financial support.
$(**)_{The}$ results of F. Fujimoto can be regarded as a real Nevanlinna Theory (see the talk of F. Fujimoto
in this volume)
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notion of heights of a p-adic holomorphic function. Using the height one can reduce
in many cases the study of the zero set of a holomorphic function to the study a real
convex parallelopiped. This makes it easier to prove p-adic analogues of statements of
Nevanlinna Theorey.

2.1. Let $p$ be a prime number, $Q_{p}$ the field of p-adic numbers, and $C_{p}$ the p-adic
completion of the algebraic closure of $Q_{p}$ . The absolute value in $Q_{p}$ is normalized so
that $|p|=p^{-}$ . We further use the notion $v(z)$ for the additive valuation on $C_{p}$ which
extends $ord_{p}$ .

Let $f(z_{1}, \ldots, z_{k})$ be a holomorphic function in $C_{p}^{k}$ represented by the convergent
series

(1) $f(z_{1}, \ldots, z_{k})=\sum^{\infty}a_{m_{1}\ldots m_{k}}z_{1}^{m_{1}}\ldots z_{k}^{m_{k}}$ .
$|m|=0$

We set:

$a_{m}=a_{m_{1}\ldots m_{k}}$ ,

$z^{m}=z_{m}^{m_{1}}\ldots z_{k}^{m_{k}}$ ,

$|m|=m+1+\ldots+m_{k}$ ,

$mt=m_{1}t_{1}+\ldots+m_{k}t_{k}$ .

Then for every $(t_{1}, \ldots,t_{k})\in R^{k}$ we have:

$\lim\{v(a_{m})+mt\}=\infty$ .
$|m|arrow\infty$

Hence, there exists an $(m_{1}, .., m_{k})\in N^{k}$ such that $v(a_{m})+mt$ is minimal.

2.2. Definition. The height of the function $f(z_{1}, \ldots, z_{k})$ is defined by

$H_{f}(t_{1}, \ldots,t_{k})=\min_{0\leq|m|<\infty}\{v(a_{m})+mt\}$ .

We use also the notation $H_{f}(z_{1}, \ldots, z_{k})=H_{f}(v(z_{1}), \ldots, v(z_{k}))$ .

2.3. Let us now give a geometric interpretation of heights. For every $(m_{1}, \ldots, m_{k})$

we construct the graph $\Gamma_{m_{1}\ldots m_{k}}$ representing $v(a_{m}z^{m})$ as function of $(t_{1}\ldots.,t_{k})$ where
$t_{i}=v(z_{i})$ . Then we obtain a hyperplane in $R^{k+1}$ :

$\Gamma_{m_{1}\ldots m_{k}}$ : $t_{k+1}=v(a_{m})+mt$ .
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Since $\lim\{v(a_{m})+mt\}=\infty$ for every $(t_{1}, \ldots,t_{k})\in R^{k}$ there exists a hyperplane
$|m|arrow\infty$

realizing
$t_{k+1}(\Gamma_{m_{1}\ldots m_{k}})\leq t_{k+1}(\Gamma_{m_{1}’..m_{k}’})$

for all $\Gamma_{m_{1}’\ldots m_{k}’}$ . We denote by $H$ the boundary of the intersection in $R^{k}\cross R$ of half-spaces
of $R^{k+1}$ lying under the hyperplane $\Gamma_{m_{1}\ldots m_{k}}$ . It is easy to show that if $(t_{1}, \ldots, t_{k},t_{k+1})$

is a point of $H$ , then $t_{k+1}=H_{f}(t_{1}, \ldots, t_{k})$ .

2.4. To study of the zero set of a holomorphic function we need the following
definition of local heights.

We set:

$I_{f}(t_{1}, \ldots,t_{k})=\{(m_{1}, \ldots, m_{k})\in N^{k}, v(a_{m})+\sum_{j=1}^{k}m_{i}t_{i}=H_{f}(t_{1}, \ldots,t_{k})\}$

$n_{i}^{+}(t_{1}, \ldots,t_{k})=\min\{m_{i}|\exists(m_{1}, \ldots, m_{i}, \ldots,m_{k})\in I_{f}(t_{1}, \ldots,t_{k})\}$

$n_{i}^{-}(t_{1}, \ldots,t_{k})=\max\{m_{i}|\exists(m_{1}, \ldots,m_{i}, \ldots,m_{k})\in I_{f}(t_{1}, \ldots,t_{k})\}$

It is easy to see that there exists a nuinber $T$ such that for $(t_{1}, \ldots, t_{k})\geq(T, \ldots, T)$ (this

means $t_{i}\geq T$ for all $i$ ), the numbers $n_{i}^{+}(t_{1}, \ldots, t_{k})$ and $n_{i}^{-}(t_{1}, \ldots,t_{k})$ are constants. Then
we set:

$h_{i}^{+}(t_{1}, \ldots, t_{k})=n_{i}^{+}(t_{1}, \ldots, t_{k})(T-t_{i})$

$h_{i}^{-}(t_{1}, \ldots,t_{k})=n_{i}^{-}(t_{1}, \ldots,t_{k})(T-t_{i})$

$h_{i}(t_{1}, \ldots,t_{k})=h_{i}^{-}(t_{1}, \ldots,t_{k})-h_{i}^{+}(t_{1}, \ldots,t_{k})$

$h_{f}(t_{1}, \ldots,t_{k})=\sum_{i=1}^{k}h_{i}(t_{1}, \ldots,t_{k})$ .

2.5. Definition. $h_{f}(t_{1}, \ldots,t_{k})$ is said to be the local height of the function
$f(z_{1}, \ldots, z_{k})$ at $(t_{1}, \ldots,t_{k})=(v(z_{1}), \ldots, v(z_{k}))$ .

2.6. One can prove basic properties of the height and local height by using
the geometric interpretation 2.3. For our puIpose we need some of them, namely, the
following.

2.7. $H$ is the boundary of a convex polyhedron in $R^{k+1}$ .

2.8. If we denote by $\triangle(H)$ the set of the edges of the polyhedron $H$ then the set
of the critical points is exactly the image of $\triangle(H)$ by the projection:

$\pi_{k}$ : $R^{k}\cross Rarrow R^{k}$ .
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2.9. We can show that for every finite parallelopiped in $R^{k+1},$ $P=\{-\infty<r_{i}<$

$t_{i}<+\infty,$ $i=1,$ $\ldots,$
$k+1$ } $,$

$H\cap P\cross R$ consists of parts of a finite number of hyperplanes
$\Gamma_{m_{1}\ldots m_{k}}$ . Indeed, these are the hyperplanes such that at least for an index $i$ we have
$m_{i}=n_{i}^{+}(t_{1}, \ldots,t_{k})$ or $m_{i}=n_{i}^{-}(t_{1}, \ldots,t_{k})$ for a point $(t_{1}, \ldots,t_{k})\in P$ .

2.10. For every finite parallelopiped and every hyperplane $L$ in general position
with respect to $H,$ $L\cap H\cap P$ is a part of a hyperplane of dimension $k-1$ .

2.11. If for $i\leq k$ the hyperplane $t_{i}=s_{i}=const$ is not in general position, then
the hyperplane $t_{i}=s_{i}\pm\epsilon$ are in general position for small enough $\epsilon$ . Moreover we have:

$\lim_{\epsilonarrow 0}H_{f}(\ldots, s_{i}\pm\epsilon, \ldots)=H_{f}(\ldots, s_{i}, \ldots)$ .

2.12. The set of critical points $\pi_{k}\triangle(H)$ is an union of hyperplanes of dimensions
less or equal $k-1$ .

2.13. Suppose that $S=S_{1}\cap\ldots\cap S_{k-1}$ , where $S_{i}$ is the hyperplane $t_{i}=s_{i},$ $i=$

$1,$
$\ldots,$

$k-1$ . Replacing $S_{i}$ by $S_{i}^{\pm\epsilon}$ : $t_{i}=s_{i}\pm\epsilon$ if necessary, one can suppose that the
hyperplanes $S_{i}$ are in general position. Then the intersection $S\cap\pi_{k}\triangle(H)\cap P$ is a finite
set of points.

Note that we are using ‘’general position” in an evident sense.

2.14. By using the above remarks we can formulate and prove an analogue of
the Poisson-Jensen formula. For any $(t_{1}, \ldots,t_{k})\in R^{k}$ we set:

$h_{f}(t_{1}, \ldots,t_{i}^{\pm}, ..., t_{k})=\lim_{\epsilonarrow 0}h_{f}(t_{1}, \ldots,t_{i}\pm\epsilon, \ldots,t_{k})$

and for two points $(t_{1}, \ldots,t_{k})$ and $(T_{1}, \ldots, T_{k})$ :

$\delta_{i}=h_{i}^{-\epsilon}:(t_{1}^{\epsilon_{1}}, \ldots,t_{i-1}^{\epsilon:-1}, T_{i}^{\epsilon_{i}}, \ldots, T_{k}^{\epsilon_{k}})$

$-h_{i}^{\epsilon;}(t_{1}^{\epsilon_{1}}, \ldots,t_{i-1}^{\epsilon_{j-1}},t_{i}, T_{i+1^{1+1}}^{-\epsilon}, \ldots, T_{k}^{-\epsilon_{k}})$

$+ \sum_{S|}h_{i}^{\epsilon_{i}}(t_{1}^{\epsilon_{1}}, \ldots, t_{i-1}^{\epsilon_{i-1}}, s_{i}, T_{i+1}^{-\epsilon_{j+1}}, \ldots,T_{k}^{-\epsilon_{k}})$

where $\epsilon_{i}=sign(T_{i}-t_{i})$ and the sum takes all $s_{i}\in(T_{i}, t_{i})$ . Note that by 2.4 the $h_{i}$ are
vanishing, except possibly on a finite set of values $s_{i}$ , and $\delta_{i}$ does not depends on the
choice of $T$ .

2.15. Theorem. (The Posson-Jensen formula).

$H_{f}(T_{1}, \ldots, T_{k})-H_{f}(t_{1}, \ldots,t_{k})=\sum_{i=1}^{k}\epsilon_{i}\delta_{i}$ .
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2.16. Remark. Formula 2.15 is analogous to the classical Poisson-Jensen for-
mula. In fact, suppose that $k=1,$ $t_{0}=\infty,$ $f(O)\neq 0$ and $t$ is not a critical point of the
function $f(z)$ . Then we have $H_{f}(t_{0})=-\log_{p}|f(0)|,$ $H_{f}(t)=\log_{p}|f(z)|$ , where the sum
extends over all the zeros $z_{i}$ of the function $f(z)$ in the disc $|z|\leq p^{-t}$ . Then the formula
2.15 takes the following form:

$\log_{v(z)=t}|f(z)|-\log_{p}|f(0)|=\sum-\log_{p}|z_{i}|$ .

Recall that the classical Poisson-Jensen formula is the following:

$\frac{1}{2\pi}\int_{0}^{2\pi}\log|f(e^{i\theta})|d\theta-\log|f(0)|=\sum_{a\in D,a\neq 0}-(ord_{a}f)\log|a|$ ,

where $D$ is the unit disc in $C$ and $ord_{a}f$ is the order of $f(z)$ at $a$ .

2.17. Remark. The formula 2.15 is not symmetric in variables $t_{1},$ $\ldots,t_{k}$ , and then
one obtains a number of formulas of the height via local heights. Then it follows many
equalities relating local heights. This fact has an analogue in the case of holomorphic
functions of two complex variables (see [Ca]).

2.18. Remark. In [Ro] Robba gave an “approximation formula”, from which
follows the Schwarz lemma for p-adic holomorphic functions of severed variables. One
can also obtain the Schwarz lemma by using 2.15.

Let us finish this section with the following important theorem, the proof of
which is easy by using the geometric interputation of height.

2.19. Theorem. Every non-constant holomorphic function on $C_{p}^{k}$ is a surjective
map onto $C_{p}$ .

By using the notion of height we obtain in the one-dimensional case the analogue
of two Main Theorems of Nevanlinma Theory (see [H-M], [Ha3]). However in higher
dimensions the problem is still open.

\S 3. Lelong number

It is well-known that the Lelong number plays an important role in the theory
of complex entire functions. In this paper I define the Lelong number of a p-adic entire
function of several variables. In the p-adic case I do not know how to define an analogue
of the “volume element”, and I use here the notion of local heights.

3.1. Definition. The Lelong number of a holomorphic function $f(z_{1}, \ldots, z_{k})$ at
the point $(z_{1}, \ldots, z_{k})$ is defined by:
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$\nu_{f}(z_{1}, \ldots, z_{k})=\sum_{i=1}^{k}\{n_{i}^{-}(t_{1}, \ldots,t_{k})-n_{i}^{+}(t_{1}, \ldots,t_{k})\}$ ,

where $t_{i}=v(z_{i})$ .

3.2. Example. In the case of $n=1,$ $v_{f}(z)$ is the number of zeros of $f$ at $v(z)=t$

with counting multiplicity (see [Ma]).

3.3. Remark. The Lelong number of a holomorphic function $f(z)$ depends only
on the modulus of the arguments.

3.4. Lemma. $v_{f}(z_{1}, \ldots, z_{k})\neq 0$ if and only if $v(z_{1}, \ldots, z_{k})\in\pi_{k}\triangle_{H(f)}$ is the
projection of $\triangle_{H}(f)\subset R^{k}\cross R$ on $R^{k}$ .

Proof. In fact, suppose $v_{f}(z_{1}, \ldots, z_{k})\neq 0$ and denote $t_{i}=v(z_{i})$ . Then for
every $i,$ $n_{i}^{+}(t_{1}, \ldots, t_{k})=n_{i}^{-}(t_{1}, \ldots, t_{k})$ and there exists an unique $n_{i}$ such that the set
$\{(m_{1}, \ldots, m_{k})\in I_{f}, m_{i}=n_{i}\}$ is not empty. From this it follows that $I_{f}$ contains an
unique element $(n_{1}, \ldots, n_{k})$ , and we have $H_{f}(t_{1}, \ldots, t_{k})=v(a_{n})+nt,$ $|f(z_{1}, \ldots, z_{k})|=$

$p^{-H_{f}(t_{1,)}t_{k})}$ . Hence, $(t_{1}, \ldots, t_{k})\not\in\pi_{k}\triangle_{H(f)}$ .

Conversely, suppose $\nu_{f}(z_{1}, \ldots, z_{k})\neq 0$ . Then there exist at least one indexe $i$

such that $n_{i}^{-}(t_{1}, \ldots, t_{k})\neq n_{i}^{+}(t_{1}, \ldots, t_{k})$ . Therefore by using Remark 2.9 one can see that
there exist at least two faces of $H(f)$ containing the point $(t_{1}, \ldots,t_{k})$ . This means that
$v(z_{1}, \ldots, z_{k})\in\pi_{k}\triangle_{H(f)}$ . Lemma 3.4 is proved.

3.5. Theorem. A holomorphic function $f(z_{1}, \ldots, z_{k})$ is a polynomial if and only

if the Lelong number $\nu_{f}(z_{1}, \ldots, z_{k})$ is constant for large enough $||z||$ .

Proof. From the properties 2.7-2.13 of height one can show that $yf(z_{1}, \ldots, z_{k})=$

const for large enough $||z||$ if and only if there exist finitely many hyperplane $\Gamma_{m_{1}\ldots m_{k}}$

appear in the construction of $H_{f}$ . This is equivalent to that $f$ is a polynomial.

3.6. Remark. In the case of functions of one variable $yf(z)=const$ is equivalent
to that $\nu_{f}(z)=0$ for large enough $|z|$ .

\S 4. Hyperbolicity

There are interesting relations between the value distribution theory, Diophantine
problems and hyperbolic geometry. Some of them are deep results of Faltings, Vojta,
Noguchi and others, while many statements are still conjectural (see [Lal], [La2], Nol],
[No2], [Vo]). In the p-adic case, because of the total discontinuity it is difficult to define
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an analogue of the Kobayashi distance. In this paper we propose a definition of p-
adic hyperbolicity in the sense of Brody. Namely, a domain $X$ in the projective space
$P^{n}(C_{p})$ is called hyperbolic if every holomorphic map from $C_{p}$ to $X$ is constant. We
shall prove some theorems of Borel type on maps with the image lying in the complement
of hyperplanes and algebraic hypersurfaces. Our purpose is only to examine in p-adic
case some properties of hyperbolic spaces described in Lang’s book [La3].

4.1. Deflnition. A subset $X$ of the projective space $P^{n}(C_{p})$ is called hyperbolic
if every holomorphic map from $C_{p}$ into $P^{n}(C_{p})$ with the image in $X$ is constant.

Note that by a holomorphic map from $C_{p}$ into $p^{n}(C_{p})$ we mean a collection
$f=(f_{0}, f_{1}, \ldots, f_{n})$ where $f_{i}(z)$ are holomorphic functions having no zeros in common.

4.2. Examples. 4.2.1. The unit disc $D\in C_{p}$ is hyperbolic. Indeed, every
holomorphic function on $C_{p}$ with values in $D$ is a bounded entire function, and therefore,
is constant (Theorem 2.19).

4.2.2. If $X,$ $Y$ are hyperbolic, the $X\cross Y$ is hyperbolic. Hence, a polydisc $D\cross\ldots\cross D$

in $P^{n}(C_{p})$ is hyperbolic.

4.2.3. From Theorem 2.19 it follows that the set $C_{p}\backslash$ { $one$ point} and $P^{1}\backslash \{$

two points} are hyperbolic.

4.3. Remark. For any hyperbolic set $X\in C_{p^{n}},$ $C_{p}^{n}\backslash X$ is not bounded. Indeed,
if $C_{p}^{n}\backslash X$ is bounded, then $C_{p}^{n}\backslash X\subset B_{r}$ for a ball of radius $r$ . For a constant $a$ with
$|a|>r$ the following map

$f$ : $C_{p}arrow C_{p}^{n}$ , $z\mapsto(z, z+a, \ldots, z+a)$

has the image lying in $C_{p}^{n}\backslash B_{r}$ , and hence $X$ is not hyperbolic.

4.4. $H_{k},$ $(k=0,1, \ldots, m)$ be hyperplanes of $P^{n}(C_{p})$ , then they said to be $in$

general position if any $l(l\leq n+1)$ these hyperplanes are linearly independent.

4.5. Theorem. The complement in $P^{n}(C_{p})$ of $n+1$ hyperplanes in general
position is a hyperbolic space.

Indeed, let $f$ : $C_{p}arrow P^{n}$ be a holomorphic map with image lies in the complement
of $n+1$ hyperplanes in general position. Let $(x_{0}, \ldots, x_{n})$ be the coordinates of $P^{n}(C_{p})$ .

$(*)_{I}$ suppose that the “p-adic hyperbolic distance” and the “ arithmetic hyperbolic distance” proposed
by L. Weng and J. Noguchi would work in this case (see their talks in this volume)
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Then there is a projective change of coordinates such that these hyperplanes are defined
by the equations $x_{0}=0,$

$\ldots,$
$x_{n}=0$ . Now we can write $f$ in homogeneous coordinate

$f=(fo, \ldots, f_{n})$ .

By the hypothesis the functions $f_{0},$
$\ldots,$

$f_{n}$ are non-zero entire functions in $C_{p}$ , and then
they are constant.

4.6. Theorem. Let $X_{1},$
$\ldots,$

$X_{n+1}$ be $n+1$ hyperplanes in $P^{n}(C_{p})$ in general
position. Let

$X=X_{1}\cup X_{2}\cup\ldots\cup X_{n+1}$

be their union. Then

1) $P^{n}(C_{p})\backslash X$ is hyperbolic.

2) for every $\{i_{1}, \ldots, i_{k},j_{1}, \ldots,j_{k}\}=\{1, \ldots, n+1\}$ the space

$X_{i_{1}}\cap\ldots\cap X_{i_{k}}\backslash (X_{j_{1}}\cup\ldots\cup X_{j_{f}})$

is hyperbolic.

Proof. 1) Theorem 4.5.

2) Let
$f$ : $C_{p}arrow X_{i_{1}}\cap\ldots\cap X_{i_{k}}\backslash X_{j_{1}}\cup\ldots\cup X_{j_{r}}$

be a holomorphic map. Since the hyperplanes are in general position, $X=X_{i_{1}}\cap\ldots\cap X_{i_{k}}$

can be identified with $P^{n-k}$ . Then $\{X_{j_{m}}\cap X\}$ are in general position in $X$ . We have
$r=(n-k)+1$ , and 2) is a corollary of Theorem 4.5.

4.7. Theorem. Let $Xarrow Y$ be a holomorphic map of p-adic analytic spaces.
Suppose that $Y$ is hyperbolic, and for every $y\in Y$ there exists a neighbourhood $U$ of $y$

such that $\pi^{-1}(U)$ is hyperbolic. Then $X$ is a hyperbolic space.

Proof. Let $f$ : $C_{p}arrow X$ be a holomorphic map. Then $\pi.f$ is holomorphic, and
is constant, since $Y$ is hyperbolic. We set $y_{0}=\pi.f(C_{p})$ . Let $U_{0}$ is a neighbourhood of
$y_{0}$ such that $\pi^{-1}(U_{0})$ is hyperbolic. Since the image of $f$ lies in $\pi^{-1}(U_{0}),$ $f$ is constant.

4.8. Theorem. Let $f$ be a holomorphic map from $C_{p}$ into $P^{n}(C_{p})$ with image lies
in the complement of $k\geq 2$ different hypersurfaces. Then there exist proper algebraic

subspaces $X_{1},$ $\ldots,X_{m},$ $m= \frac{k(k-1}{2}f$ such that the image of $f$ lies in the intersection of
$X_{1},$ $\ldots,X_{m}$ .
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Proof Let $P_{1},$
$\ldots,$

$P_{k}$ be the homogeneous polynomials defining the hypersurfaces
$Y_{1},$

$\ldots,$
$Y_{k}$ . For every $i,$ $1\leq i\leq k,$ $P_{i}.f$ is constant. We can find numbers $\alpha_{i}$ such that

$\alpha_{i}(P_{i}.f)-\alpha_{j}(P_{j}.f)\equiv 0$ on $C_{p}$ . We set

$Q_{ij}=\alpha_{j}P_{i}-\alpha_{j}P_{j}$ .

Then $Q_{ij}$ are homogeneous polynomials, which define the algebraic subspaces

$X_{1},$ $\ldots,X_{m},$ $m= \frac{k(k-1)}{2}$ Note that $X_{i}’ s$ are proper algebraic subspaces, and the
image of $f$ lies in their intersection.

4.9. Remark. The theorem can be regarded as an analogue of the Green theorem
in the complex case (see [La3]).
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