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Let Y be a complex space and X a complex subspace with compact
closure X. Let dx and dy denote the intrinsic pseudo-distances of X and
Y, respectively, (see [3]). We say that X is hyperbolically imbedded in Y
if, for every pair of distinct points p,q in the closure X C Y, there exist
neighborhoods U, and U, of p and ¢ in Y such that dx (U, N X,U,NX) > 0.
(In applications, X is usually a relatively compact open domain in Y.) It is
clear that a hyperbolically imbedded complex space X is hyperbolic. The
condition of hyperbolic imbedding says that the distance dx(p,, ¢, ) remains
positive when two sequences {p,} and {g,} in X approach two distinct
points p and ¢ of the boundary 8X = X — X. The concept of hyperbolic
imbedding was first introduced in Kobayashi [3] to obtain a generalization
of the big Picard theorem. The term "hyperbolic imbedding” was first used
by Kiernan [2].

We shall now introduce a pseudo-distance dx y on X so that X is hy-
perbolically imbedded in Y if and only if dx y is a distance.

Let Fx y be the family of holomorphic maps f: D — Y such that f~!(X)
is either empty or a singleton. Thus, f € Fxy maps all of D, with the
exception of possibly one point, into X. The exceptional point is of course
mapped into X. '

We define a pseudo-distance dx .y on X in the same way as dy, but using
only chains of holomorphic disks belonging to Fx y:

(1) dxy(p,q) =infi(a), pg€X,

*During the pre‘paration of this paper the author was at Technische Universitiat Berlin,
supported by the Alexander von Humboldt-Stiftung.
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where the infimum is taken over all chains a of holomorphic disks from p to
g which belong to Fx,y. If p or ¢ is in the boundary of X, such a chain may
not exist. In such a case, dx y(p, ) is defined to be oco. For example, if X
is a convex bounded domain in C”, any holomorphic disk passing through
a boundary point of X goes outside the closure X, so that dx c~(p,q) =
if p is a boundary point of X. On the other hand, if X is Zariski-open in Y,
any pair of points p,q in X = Y can be joined by a chain of holomorphic
disks beloning to Fx y, so that dx y(p,q) < co.
Since
HOl(D,X) CFxy C HOl(D,Y),

we have
(2) dy <dxy < dx,

where the second inequality holds on X while the first is valid on X.
For the punctured disk D* = D — {0}, we have

(3) dD',D :dD.

The inequality dp- p > dp is a special case of (2). Using the identity
map idp € Fp. p as a holomorphic disk joining two points of D yellds the
opposite inequality.

Let X’ C Y’ be another pair of complex spaces with X compact. If
f:Y — Y’ is a holomorphic map such that f(X) C X', then

(4) dxy/(f(p), f(q)) < dxv(p,q9) p,g€X.

We can also define the infinitesimal form Fx y of dxy in the same way
as the infinitesimal form Fy of dy, again using Fx y instead of Hol(D,Y).
Theorem. A complez space X is hyperbolically imbedded in Y if and only
if dx y(p,q) > 0 for all pairs p,q € X, p # q.

Proof. From dxy < dx it follows that if dx y is a distance, then X is
hyperbolically imbedded in Y.

Let E be any length function on Y. In order to prove the converse, it
suffices to show that there is a positive constant ¢ such that cE < Fx y on
X. Suppose that there is no such constant. Then there exist a sequence of
tangent vectors v, of X, a sequence of holomorphic maps f, € Fxy and
a sequence of tangent vectors e, of D with Poincaré length |le,|| ~\, 0 such
that f.(e,) = v,. Since D is homogeneous, we may assume that e, is a
vector at the origin of D.



241

In constructing {f,}, instead of using the fixed disk D and varying vec-
tors e,, we can use varying disks Dg,_ and a fixed tangent vector e at the
origin with R,, / oo. (We take e to be the vector d/dz at the origin of D,
which has the Euclidean length 1. Let |e,| be the Euclidean length of e,,
and R, = 1/|e,|. Instead of f,(2) we use fu(len|2).) Let F% be the family
of holomorphic maps f: Dg, — Y such that f~!(X) is either empty or a
singleton. Having replaced D, e, by Dg_, e, we may assume that f, € F f,"y
and f,(e) = v,. We want to show that a suitable subsequence of {f,}
converges to a nonconstant holomorphic map f:C — X.

By applying Brody’s lemma [1] to each f, and a constant 0 < ¢ < % we
obtain holomorphic maps g, € Hol(Dg,,Y) such that

~ (a) g5 E? < cRlds} on D, and the equality holds at the origin 0;

(b) Image(g,) C Image(fn).

Since g, is of the form g = f, o y., o h,, where h,, is an automorphism
of Dg, and g,,, (0 < g, <1, is the multiplication by r,, each g, is also in
Fxy.

Now, as in the proof of Brody’s theorem (1] we shall construct a noncon-
stant holomorphic map h:C — Y to which a suitable subsequence of {g,}
converges. In fact, since

gnE? < cRXds} < cR%ds;  for n>m,

the family F,, = {gn|Dr.,n > m} is equicontinuous for each fixed m.
Since the family F; = {g.|Dr, } is equicontinuous, the Arzela- Ascoli theorem
implies that we can extract a subsequence which converges to a map h; €
Hol(Dg,,Y). (We note that this is where we use the compactness of X.)
Applying the same theorem to the corresponding sequence in F,, we extract
a subsequence which converges to a map h, € Hol(Dg,,Y ). In this way we
obtain maps h; € Hol(Dg,,Y ),k = 1,2, .- such that each h; is an extension
of hj_;. Hence, we have a map h € Hol(C,Y) which extends all hy.

Since g; E? at the origin 0 is equal to (cR%ds% ),=0 = 4cdzdz, it follows
that '

(h*E?),—o = ,}LI&(g;Ez)zzo = 4cdzdz # 0,

which shows that h is nonconstant.
Since g; E? < cR2ds%, , in the limit we have

h*E? < 4cdzdz.
By suitably normalizing h we obtain
h*E? < dzdz with the equality holding at 2 = 0.
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We may assume that {g,} itself converges to h. Since h is the limit of
of {g,}, clearly h(C) C X. Let p, ¢ be two points of h(C), say p = h(a)
and ¢ = h(b). Taking a subsequence and suitable points a, b we may assume
that gn(a),gn(b) € X. Then lim g,(0) = p and lim g,(a) = ¢ and

dx (gn(a), ga (b)) < dpp, (a,6) = 0 as n — oo,

contradicting the assumption that X is hyperbolically imbeddedinY. Q.E.D.

This relative distance dx y simplifies the proof of the big Picard theorem
as formulated in (3].

Bibliography

1. R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math.
Soc. 235 (1978), 213-219.

2. P.J. Kiernan, Hyperbolically imbedded spaces and the big Picar the-
orem, Math. Ann. 204 (1973), 203-209.

3. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappzngs Mar-
cel Dekker, New York, 1970.

Department of Mathematics
University of California

Berkeley, CA 94720, USA

e-mail: kobayash@math.berkeley.edu



