京都大学
KYOTO UNIVERSITY

Title	Relative Intrinsic Distance and Hyperbolic Imbedding（HOLOM ORPHIC MAPPINGS，DIOPHA NTINE GEOMETRY and RELATED TOPICS：in Honor of Professor Shoshichi Kobay ashi on his 60th Birthday）
Author（s）	Kobayashi，Shoshichi
Citation	数理解析研究所講究録（1993），819：239－242
Issue Date	1993－01
URL	http：／hdl．handle．net／2433／83144
Right	Departmental Bulletin Paper
Type	publisher Textversion

Relative Intrinsic Distance and Hyperbolic Imbedding

Shoshichi Kobayashi＊

December 1， 1992

Let Y be a complex space and X a complex subspace with compact closure \bar{X} ．Let d_{X} and d_{Y} denote the intrinsic pseudo－distances of X and Y ，respectively，（see［3］）．We say that X is hyperbolically imbedded in Y if，for every pair of distinct points p, q in the closure $\bar{X} \subset Y$ ，there exist neighborhoods U_{p} and U_{q} of p and q in Y such that $d_{X}\left(U_{p} \cap X, U_{q} \cap X\right)>0$ ． （In applications，X is usually a relatively compact open domain in Y ．）It is clear that a hyperbolically imbedded complex space X is hyperbolic．The condition of hyperbolic imbedding says that the distance $d_{X}\left(p_{n}, q_{n}\right)$ remains positive when two sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ in X approach two distinct points p and q of the boundary $\partial X=\bar{X}-X$ ．The concept of hyperbolic imbedding was first introduced in Kobayashi［3］to obtain a generalization of the big Picard theorem．The term＂hyperbolic imbedding＂was first used by Kiernan［2］．

We shall now introduce a pseudo－distance $d_{X, Y}$ on \bar{X} so that X is hy－ perbolically imbedded in Y if and only if $d_{X, Y}$ is a distance．

Let $\mathcal{F}_{X, Y}$ be the family of holomorphic maps $f: D \rightarrow Y$ such that $f^{-1}(X)$ is either empty or a singleton．Thus，$f \in \mathcal{F}_{X, Y}$ maps all of D ，with the exception of possibly one point，into X ．The exceptional point is of course mapped into \bar{X} ．

We define a pseudo－distance $d_{X, Y}$ on \bar{X} in the same way as d_{Y} ，but using only chains of holomorphic disks belonging to $\mathcal{F}_{X, Y}$ ：

$$
\begin{equation*}
d_{X, Y}(p, q)=\inf _{\alpha} l(\alpha), \quad p, q \in \bar{X}, \tag{1}
\end{equation*}
$$

[^0]where the infimum is taken over all chains α of holomorphic disks from p to q which belong to $\mathcal{F}_{X, Y}$. If p or q is in the boundary of X, such a chain may not exist. In such a case, $d_{X, Y}(p, q)$ is defined to be ∞. For example, if X is a convex bounded domain in \mathbf{C}^{n}, any holomorphic disk passing through a boundary point of X goes outside the closure \bar{X}, so that $d_{X, \mathrm{C}^{n}}(p, q)=\infty$ if p is a boundary point of X. On the other hand, if X is Zariski-open in Y, any pair of points p, q in $\bar{X}=Y$ can be joined by a chain of holomorphic disks beloning to $\mathcal{F}_{X, Y}$, so that $d_{X, Y}(p, q)<\infty$.

Since

$$
\operatorname{Hol}(D, X) \subset \mathcal{F}_{X, Y} \subset \operatorname{Hol}(D, Y)
$$

we have

$$
\begin{equation*}
d_{Y} \leq d_{X, Y} \leq d_{X} \tag{2}
\end{equation*}
$$

where the second inequality holds on X while the first is valid on \bar{X}.
For the punctured disk $D^{*}=D-\{0\}$, we have

$$
\begin{equation*}
d_{D \cdot, D}=d_{D} \tag{3}
\end{equation*}
$$

The inequality $d_{D \cdot, D} \geq d_{D}$ is a special case of (2). Using the identity map $\operatorname{id}_{D} \in \mathcal{F}_{D \cdot, D}$ as a holomorphic disk joining two points of D yeilds the opposite inequality.

Let $X^{\prime} \subset Y^{\prime}$ be another pair of complex spaces with \bar{X}^{\prime} compact. If $f: Y \rightarrow Y^{\prime}$ is a holomorphic map such that $f(X) \subset X^{\prime}$, then

$$
\begin{equation*}
d_{X^{\prime}, Y^{\prime}}(f(p), f(q)) \leq d_{X, Y}(p, q) \quad p, q \in \bar{X} \tag{4}
\end{equation*}
$$

We can also define the infinitesimal form $F_{X, Y}$ of $d_{X, Y}$ in the same way as the infinitesimal form F_{Y} of d_{Y}, again using $\mathcal{F}_{X, Y}$ instead of $\operatorname{Hol}(D, Y)$. Theorem. A complex space X is hyperbolically imbedded in Y if and only if $d_{X, Y}(p, q)>0$ for all pairs $p, q \in \bar{X}, p \neq q$.

Proof. From $d_{X, Y} \leq d_{X}$ it follows that if $d_{X, Y}$ is a distance, then X is hyperbolically imbedded in Y.

Let E be any length function on Y. In order to prove the converse, it suffices to show that there is a positive constant c such that $c E \leq F_{X, Y}$ on \bar{X}. Suppose that there is no such constant. Then there exist a sequence of tangent vectors v_{n} of \bar{X}, a sequence of holomorphic maps $f_{n} \in \mathcal{F}_{X, Y}$ and a sequence of tangent vectors e_{n} of D with Poincaré length $\left\|e_{n}\right\| \searrow 0$ such that $f_{n}\left(e_{n}\right)=v_{n}$. Since D is homogeneous, we may assume that e_{n} is a vector at the origin of D.

In constructing $\left\{f_{n}\right\}$, instead of using the fixed disk D and varying vectors e_{n}, we can use varying disks $D_{R_{n}}$ and a fixed tangent vector e at the origin with $R_{n} \nearrow \infty$. (We take e to be the vector $d / d z$ at the origin of D, which has the Euclidean length 1 . Let $\left|e_{n}\right|$ be the Euclidean length of e_{n}, and $R_{n}=1 /\left|e_{n}\right|$. Instead of $f_{n}(z)$ we use $f_{n}\left(\left|e_{n}\right| z\right)$.) Let $\mathcal{F}_{X, Y}^{R_{n}}$ be the family of holomorphic maps $f: D_{R_{n}} \rightarrow Y$ such that $f^{-1}(X)$ is either empty or a singleton. Having replaced D, e_{n} by $D_{R_{n}}, e$, we may assume that $f_{n} \in \mathcal{F}_{X, Y}^{R_{n}}$ and $f_{n}(e)=v_{n}$. We want to show that a suitable subsequence of $\left\{f_{n}\right\}$ converges to a nonconstant holomorphic map $f: \mathbf{C} \rightarrow \bar{X}$.

By applying Brody's lemma [1] to each f_{n} and a constant $0<c<\frac{1}{4}$ we obtain holomorphic maps $g_{n} \in \operatorname{Hol}\left(D_{R_{n}}, Y\right)$ such that
(a) $g_{n}^{*} E^{2} \leq c R_{n}^{2} d s_{R_{n}}^{2}$ on $D_{r_{n}}$ and the equality holds at the origin 0 ;
(b) Image $\left(g_{n}\right) \subset \operatorname{Image}\left(f_{n}\right)$.

Since g_{n} is of the form $g=f_{n} \circ \mu_{r_{n}} \circ h_{n}$, where h_{n} is an automorphism of $D_{R_{n}}$ and $\mu_{r_{n}},\left(0<\mu_{r_{n}}<1\right.$, is the multiplication by r_{n}, each g_{n} is also in $\mathcal{F}_{X, Y}$.

Now, as in the proof of Brody's theorem [1] we shall construct a nonconstant holomorphic map $h: \mathrm{C} \rightarrow Y$ to which a suitable subsequence of $\left\{g_{n}\right\}$ converges. In fact, since

$$
g_{n}^{*} E^{2} \leq c R_{n}^{2} d s_{R_{n}}^{2} \leq c R_{m}^{2} d s_{R_{m}}^{2} \quad \text { for } \quad n \geq m,
$$

the family $\mathcal{F}_{m}=\left\{g_{n} \mid D_{R_{m}}, n \geq m\right\}$ is equicontinuous for each fixed m. Since the family $\mathcal{F}_{1}=\left\{g_{n} \mid D_{R_{1}}\right\}$ is equicontinuous, the Arzela-Ascoli theorem implies that we can extract a subsequence which converges to a map $h_{1} \in$ $\operatorname{Hol}\left(D_{R_{1}}, Y\right)$. (We note that this is where we use the compactness of \bar{X}.) Applying the same theorem to the corresponding sequence in \mathcal{F}_{2}, we extract a subsequence which converges to a map $h_{2} \in \operatorname{Hol}\left(D_{R_{2}}, Y\right)$. In this way we obtain maps $h_{k} \in \operatorname{Hol}\left(D_{R_{k}}, Y\right), k=1,2, \cdots$ such that each h_{k} is an extension of h_{k-1}. Hence, we have a map $h \in \operatorname{Hol}(\mathbf{C}, Y)$ which extends all h_{k}.

Since $g_{n}^{*} E^{2}$ at the origin 0 is equal to $\left(c R_{n}^{2} d s_{R_{n}}^{2}\right)_{z=0}=4 c d z d \bar{z}$, it follows that

$$
\left(h^{*} E^{2}\right)_{z=0}=\lim _{n \rightarrow \infty}\left(g_{n}^{*} E^{2}\right)_{z=0}=4 c d z d \bar{z} \neq 0,
$$

which shows that h is nonconstant.
Since $g_{n}^{*} E^{2} \leq c R_{n}^{2} d s_{R_{n}}^{2}$, in the limit we have

$$
h^{*} E^{2} \leq 4 c d z d \bar{z} .
$$

By suitably normalizing h we obtain

$$
h^{*} E^{2} \leq d z d \bar{z} \quad \text { with the equality holding at } \quad z=0 .
$$

We may assume that $\left\{g_{n}\right\}$ itself converges to h. Since h is the limit of of $\left\{g_{n}\right\}$, clearly $h(\mathbf{C}) \subset \bar{X}$. Let p, q be two points of $h(\mathbf{C})$, say $p=h(a)$ and $q=h(b)$. Taking a subsequence and suitable points a, b we may assume that $g_{n}(a), g_{n}(b) \in X$. Then $\lim g_{n}(0)=p$ and $\lim g_{n}(a)=q$ and

$$
d_{X}\left(g_{n}(a), g_{n}(b)\right) \leq d_{D_{R_{n}}}(a, b) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

contradicting the assumption that X is hyperbolically imbedded in Y. Q.E.D.
This relative distance $d_{X, Y}$ simplifies the proof of the big Picard theorem as formulated in [3].

Bibliography

1. R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219.
2. P.J. Kiernan, Hyperbolically imbedded spaces and the big Picar theorem, Math. Ann. 204 (1973), 203-209.
3. S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970.

Department of Mathematics University of California Berkeley, CA 94720, USA e-mail: kobayash@math.berkeley.edu

[^0]: ＊During the preparation of this paper the author was at Technische Universität Berlin， supported by the Alexander von Humboldt－Stiftung．

