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Let $Y$ be a complex space and $X$ a complex subspace with compact
closure $\overline{X}$ . Let $d_{X}$ and $d_{Y}$ denote the intrinsic pseudo-distances of $X$ and
$Y$ , respectively, (see [3]). We say that $X$ is hyperbolically imbedded in $Y$

if, for every pair of distinct points $p,$ $q$ in the closure $\overline{X}\subset Y$, there exist
neighborhoods $U_{p}$ and $U_{q}$ of $p$ and $q$ in $Y$ such that $d_{X}(U_{\rho}\cap X, U_{q}\cap X)>0$ .
(In applications, $X$ is usually a relatively compact open domain in $Y.$ ) It is
clear that a hyperbolically imbedded complex space $X$ is hyperbolic. The
condition of hyperbolic imbedding says that the distance $d_{X}(p_{n}, q_{n})$ remains
positive when two sequences $\{p_{n}\}$ and $\{q_{n}\}$ in $X$ approach two distinct
points $p$ and $q$ of the boundary $\partial X=\overline{X}-X$. The concept of hyperbolic
imbedding was first introduced in Kobayashi [3] to obtain a generalization
of the big Picard theorem. The term “hyperbolic imbedding” was first used
by Kiernan [2].

We $shaU$ now introduce a pseudo-distance $d_{X,Y}$ on $\overline{X}$ so that $X$ is hy-
perbolically imbedded in $Y$ if and only if $d_{X,Y}$ is a distance.

Let $\mathcal{F}_{X,Y}$ be the family of holomorphic maps $f:Darrow Y$ such that $f^{-1}(X)$

is either empty or a singleton. Thus, $f\in \mathcal{F}_{X,Y}$ maps all of $D$ , with the
exception of possibly one point, into $X$ . The exceptional point is of course
mapped into $\overline{X}$ .

We define a pseudo-distance $d_{X,Y}$ on $\overline{X}$ in the same way as $d_{Y}$ , but using
only chains of holomorphic disks belonging to $\mathcal{F}_{X,Y}$ :

(1) $d_{X,Y}(p, q)= \inf_{\alpha}l(\alpha)$ , $p,$ $q\in\overline{X}$ ,
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where the infimum is taken over $aU$ chains $\alpha$ of holomorphic disks from $p$ to
$q$ which belong to $\mathcal{F}_{X,Y}$ . If $p$ or $q$ is in the boundary of $X$ , such a chain may
not exist. In such a case, $d_{X,Y}(p, q)$ is defined to be $\infty$ . For example, if $X$

is a convex bounded domain in $C^{n}$ , any holomorphic disk passing through
a boundary point of $X$ goes outside the closure $\overline{X}$ , so that $d_{X,C^{n}}(p, q)=\infty$

if $p$ is a boundary point of $X$ . On the other hand, if $X$ is Zariski-open in $Y$ ,
any pair of points $p,$ $q$ in $\overline{X}=Y$ can be joined by a chain of holomorphic
disks beloning to $\mathcal{F}_{X,Y}$ , so that $d_{X,Y}(p,q)<\infty$ .

Since
$Ho1(D,X)\subset \mathcal{F}_{X,Y}\subset Ho1(D, Y)$ ,

we have

(2) $d_{Y}\leq d_{X,Y}\leq d_{X}$ ,

where the second inequality holds on $X$ while the first is valid on $\overline{X}$ .
For the punctured disk $D^{*}=D-\{0\}$ , we have

(3) $d_{DD\prime}=d_{D}$ .

The inequality $d_{D,D}\geq d_{D}$ is a special case of (2). Using the identity
map $id_{D}\in \mathcal{F}_{D,D}$ as a holomorphic disk joining two points of $D$ yeilds the
opposite inequality.

Let $X’\subset Y’$ be another pair of complex spaces with rr compact. If
$f:Yarrow Y’$ is a holomorphic map such that $f(X)\subset X’$ , then

(4) $d_{X’,Y’}(f(p), f(q))\leq d_{X,Y}(p, q)$ $p,$ $q\in\overline{X}$ .

We can also define the infinitesimal form $F_{X,Y}$ of $d_{X,Y}$ in the same way
as the infinitesimal form $F_{Y}$ of $d_{Y}$ , again using $\mathcal{F}_{X,Y}$ instead of $Ho1(D, Y)$ .
Theorem. A complex space $X$ is hyperbolically imbedded in $Y$ if and only
if $d_{X,Y}(p, q)>0$ for all pairs $p,$ $q\in\overline{X},$ $p\neq q$ .

Proof. From $d_{X,Y}\leq d_{X}$ it follows that if $d_{X,Y}$ is a distance, then $X$ is
hyperbolically imbedded in Y.

Let $E$ be any length function on Y. In order to prove the converse, it
suffices to show that there is a positive constant $c$ such that $cE\leq F_{X,Y}$ on
X. Suppose that there is no such constant. Then there exist a sequence of
tangent vectors $v_{n}$ of $\overline{X}$ , a sequence of holomorphic maps $f_{n}\in \mathcal{F}_{X,Y}$ and
a sequence of tangent vectors $e_{n}$ of $D$ with Poincar\’e length $||e_{n}||\lambda 0$ such
that $f_{n}(e_{n})=v_{n}$ . Since $D$ is homogeneous, we may assume that $e_{n}$ is a
vector at the origin of $D$ .
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In constructing $\{f_{n}\}$ , instead of using the fixed disk $D$ and varying vec-
tors $e_{n}$ , we can use varying disks $D_{R_{*}}$ and a fixed tangent vector $e$ at the
origin with $R_{n}\nearrow\infty$ . (We take $e$ to be the vector $d/dz$ at the origin of $D$ ,
which has the Euclidean length 1. Let $|e_{n}|$ be the Euclidean length of $e_{n}$ ,
and $R_{m}=1/|e_{n}|$ . Instead of $f_{n}(z)$ we use $f_{n}(|e_{n}|z).)$ Let $\mathcal{F}_{X,Y}^{R_{n}}$ be the family
of holomorphic maps $f:D_{R_{*}}arrow Y$ such that $f^{-1}(X)$ is either empty or a
singleton. Having replaced $D,$ $e_{n}$ by $D_{R_{n}},$ $e$ , we may assume that $f_{n}\in \mathcal{F}_{X,Y}^{R_{n}}$

and $f_{n}(e)=v_{n}$ . We want to show that a suitable subsequence of $\{f_{n}\}$

converges to a nonconstant holomorphic map $f:Carrow\overline{X}$ .
By applying Brody’s lemma [1] to each $f_{n}$ and a constant $0<c< \frac{1}{4}$ we

obtain holomorphic maps $g_{n}\in Ho1(D_{R_{\mathfrak{n}}},Y)$ such that
(a) $g_{n}^{*}E^{2}\leq cR_{n}^{2}ds_{R_{\hslash}}^{2}$ on $D_{r_{\mathfrak{n}}}$ and the equality holds at the origin $0$ ;
(b) Image $(g_{n})\subset Image(f_{n})$ .
Since $g_{n}$ is of the form $g=f_{n}o\mu_{r_{n}}oh_{n}$ , where $h_{n}$ is an automorphism

of $D_{R_{\pi}}$ and $\mu_{r},,$ ( $0<\mu_{r_{n}}<1$ , is the multiplication by $r_{n}$ , each $g_{n}$ is also in
$\mathcal{F}_{X,Y,Now}$

as in the proof of Brody’s theorem [1] we shall construct a noncon-
stant holomorphic map $h:Carrow Y$ to which a suitable subsequence of $\{g_{n}\}$

converges. In fact, since

$g_{n}^{*}E^{2}\leq cR_{n}^{2}ds_{R_{\mathfrak{n}}}^{2}\leq cR_{m}^{2}ds_{R_{m}}^{2}$ for $n\geq m$ ,

the family $\mathcal{F}_{m}=\{g_{n}|D_{R_{m}}, n\geq m\}$ is equicontinuous for each fixed $m$ .
Since the family $\mathcal{F}_{1}=\{g_{n}|D_{R_{1}}\}$ is equicontinuous, the Arzela-Ascoli theorem
implies that we can extract a subsequence which converges to a map $h_{1}\in$

$Ho1(D_{R_{1}}, Y)$ . (We note that this is where we use the compactness of $\overline{X}.$ )
Applying the same theorem to the corresponding sequence in $\mathcal{F}_{2}$ , we extract
a subsequence which converges to a map $h_{2}\in Ho1(D_{R_{2}}, Y)$ . In this way we
obtain maps $h_{k}\in Ho1(D_{R_{k}}, Y),$ $k=1,2,$ $\cdots$ such that each $h_{k}$ is an extension
of $h_{k-1}$ . Hence, we have a map $h\in Ho1(C, Y)$ which extends all $h_{k}$ .

Since $g_{n}^{*}E^{2}$ at the origin $0$ is equal to $(cR_{n}^{2}ds_{R_{\mathfrak{n}}}^{2})_{z=0}=4cdzd\overline{z}$ , it follows
that

$(h^{*}E^{2})_{z=0}=n arrow\lim_{\infty}(g_{n}^{*}E^{2})_{z=0}=4cdzd\overline{z}\neq 0$,

which shows that $h$ is nonconstant.
Since $g_{n}^{*}E^{2}\leq cR_{n}^{2}ds_{R_{n}}^{2}$ , in the limit we have

$h^{*}E^{2}\leq 4cdzd\overline{z}$ .

By suitably normalzing $h$ we obtain
$h^{r}E^{2}\leq dzd\overline{z}$ with the equality holding at $z=0$ .
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We may assume that $\{g_{n}\}$ itself converges to $h$ . Since $h$ is the limit of
of $\{g_{n}\}$ , clearly $h(C)\subset\overline{X}$ . Let $p,$ $q$ be two points of $h(C)$ , say $p=h(a)$
and $q=h(b)$ . Taking a subsequence and suitable points $a,$ $b$ we may assume
that $g_{n}(a),g_{n}(b)\in X$ . Then $\lim g_{n}(0)=p$ and $hmg_{n}(a)=q$ and

$d_{X}(g_{n}(a), g_{n}(b))\leq d_{D_{R_{n}}}(a, b)arrow 0$ as $narrow\infty$ ,

contradicting the assumption that $X$ is hyperbolically imbedded in $Y$ . Q.E.D.
This relative distance $d_{X,Y}$ simplifies the proof of the big Picard theorem

as formulated in [3].
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