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Local monodromy on the fundamental groups of algebraic curves
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Introduction.

The purpose of this paper is to prove some result on the local monodromy repre-
sentation on the fundamental groups for a universal degenerating family of punctured
algebraic curves.

Let us explain a typical case in a more precise way, i.e. the case of no puncture. We
start with a most degenerate stable curve Cy of genus ¢ > 2. For such a curve, we can
associate the dual graph Y whose vertices correspond to the irreducible components
of Cy and edges to double points. Consider a local universal deformation f:C — D
of Cy in the category of stable curves. Let D° be the open subset of D, on which the
fibers of f are smooth. Let t be a point on D°. Then we obtain the monodromy map
on the fundamental group m1(Cy, *)

pc, = m1(D°,t) — Out 71(C4, b).

Here b is a base point in Ck.

We can consider the weight filtration on the fundamental group of curves, which
is preserved by the monodromy homomorphism. The main target of this paper is
to describe the relation between the monodromy homomorphism and the weight fil-
tration for the local universal deformation of a most degenerate stable curve. The
weight filtration coincides with the lower central series for the fundamental group of
a complete curve.

Here is a description of the main result: Let Iy be the image of the injective homo-
morphism pg, which is a free abelian group of rank 3¢ — 3, and let {I‘E,m)}mzo,l,g,m
be the induced filtration on Iy derived from the lower central filtration on m(Ct, b).
Put

rm(Y) = rankz Ig,m)/Ig,mH) forallm (m=0,1,2,...).

Then the main result tells

rm(Y) =0, if m >3, r(Y) =32(Y), r(Y) =s1(Y),
and ro(Y) =39 — 3 — 51(Y) — 52(Y).

Here s2(Y) is the number of bridges in the graph Y, and s1(Y") is also another geo-
metric invariant of Y related with the connectivity (cf. Subsection 1.4 for a precise
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definition). We also note here the equality ro(Y) = 39 — 3 —s1(Y) — 52(Y") is due to
Brylinski [Br].

The first motivation was to generalize the transcendental part of the previous paper
[O] by one of the authors, in which we discussed a similar problem when the base D
is one-dimensional, and the graph of Cy is a tree. Similarly to that paper, we expect
that these results have some applications to [-adic setting.

Now let us explain the outline of the contents of this paper. In Section 1, we recall
some basic notions on stable curves and stable n-pointed curves, and their associated
graphs. Defining some combinatorial invariants for graphs, we formulate the main
result of this paper. In Section 2, we recall basic facts on the graph of group by Bass
and Serre [S]. We define the notion of edge twists, which is used to describe Dehn
twists in an algebraic language. Section 3 is the corner stone of this paper. In this
section, we translate the problem of the local monodromy on the fundamental group
into a completely algebraic and combinatorial language of the graph of groups. We
start with a special case of the Seifert-van Kampen theorem. The key proposition
here is the non-abelian Picard-Lefschetz formula (Theorem (3.2)).

In Section 4, we discuss the algorithm to compute Dehn twists for the monodromy
explicitly. Some examples are discussed for the low genus cases. These examples also
serve as the initial step of the inductive proof of the main result in Sections 5 and 6.

In Sections 5 and 6, we give an inductive proof of the main result. In the first place,
we discuss the case of no puncture which is simpler compared with the general case.
After that the general case is reduced to this former special case by a simple idea.

Though we do not discuss, our results have purely topological interpretation in
terms of Dehn twists associated to pants decomposition of punctured Riemann sur-
faces.

By the results of J. Morgan and R. Hain, we can equip the Malcev Lie algebras of
the fundamental groups of algebraic varieties with mixed Hodge structures. It seems
an interesting problem to push forward our result toward this direction. ‘

We thank H. Nakamura for pointing out a clue for proving our main results. We
also thank Y. Thara for valuable and stimulating discussion on the theme of this paper,
and S. Morita for informing us of the literature on low dimensional topology.



1. Formulation of the main result.

1.1 Stable n-pointed curves and their graph.
Let us recall the definition of stable n-pointed curves [Kn, §1].

Definition 1.1 A stable n-pointed curve (C, S) of genus g¢ is a pair (C, S) of a proper
connected curve C over the complex number field C and a subset of n-distinct smooth
points on C satisfying the following conditions:

(i) C has only ordinary double points as singularities. Cs;,y denotes the locus of
singularities. Let p : C* — C be the normalization of C. Then we set CJ;, =
p 1 (Csing) and identify p~1(S) with S via p.

(ii) (stability) On the normalization D* of each irreducible component D of C' which
is isomorphic to P!, the sum of numbers of D* N Cy;,, and D* N S is at least 3.

When n = 0, the above definition gives the notion of stable curves [DM].

A graph of a stable n-pointed curve
For each stable n-pointed curve (C, S), we can associate the (dual) graph Y in the
following manner [DM], [N].

Definition 1.2

(1) Each vertex P of the graph Y corresponds uniquely to an irreducible com-
ponent Cp of C. Or equivalently, each vertex P corresponds uniquely to a
connected component of the normalization C* of C.

(2) A pair {y,7} of mutually inverse (oriented) edges of Y corresponds uniquely

' to a singular point ¢y, 33 of C. If necessary, we refer to the pair {y, 7} = |y| as
a geometric edge associated with y or with . We also denote gy 3} by g4, g5,
or gjy|- The set of geometric edges is denoted by Edge(Y ) eom-

(3) For each edge y, its two extremities are given by the vertices Py, P, so that

gy =Cp, NCp,  (if P # P,),

9y = CPl_ N Csing (if P, = Py).

(4) There is a function

v:Vert(Y)—1Zx1

from the set of vertices Vert(Y) of Y to the product of the set of non-negative
integers defined by v(P) = (gp,np). Here gp is the genus of the normalization
Cp of Cp, and np is the cardinality of the set SN Cp.

For each edge y, we denote by o(y) the origin and by t(y) the terminus of y,
respectively. Choose one edge from each geometric edge |y| = {y, 7}, and form a
subset Edge(Y);. Then #(Edge(Y)1) = #(Edge(Y )geom) = s#(Edge(Y)). We

have the following condition for the above connected graph Y with function v.
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Proposition (1.1).

g= Y. gp+h(Y)

PeVert Y

where h(Y) = #(Edge(Y )geom) — #(Vert(Y)) + 1. Moreover

n = E np.

PeVeri(Y)

If gp =0, then
np +#{y € Edge(Y) | P =o(y) } 2 3.

Remark 1.1 The graph (Y,v) determines the homotopy type of C' — S.
The following is easy to prove.

Lemma (1.2). Let (Y,v) be the graph of a stable n-pointed curve of genus g. Then
1,
#(Vert(Y)) <209 —1)+n;  #(Edge(Y)geom) = 5#(Edge(Y)) <3(g —1) +n.

The most degenerate case

Definition 1.3 A stable n-pointed curve (C, S) is called most degenerate, if it has
no deformation with the same homotopy type.

In this case, any irreducible component of C is of genus 0. Moreover the graph

(Y,v) of (C, S) satisfies the following conditions.

Lemma (1.3). If (Y,v) is the graph of a most degenefate stable n-pointed curve
(C,S) of genus g. Then

J(Veri(¥) = 2(g 1) +n5 #(Bdge(¥ )geom) = 5#HEdge(¥)) =3(g = 1) +7.
In particular,
W(Y) = #(Bdge(Y ) geom) — #(Vert(Y) +1=g.
Foreach P € Vert Y,
np=3—#{y€Edge(Y) [t(y) =P }.
Since Y is connected, np =0, 1, or 2. Whennp =2, Pisa terminal point of Y.

This is very easy to prove and more or less well-known. We omit a proof.

Example. For ¢ = 2 and n = 1, there are three types of the graphs of most
degenerate stable n-pointed curves. The pictures are the following :

(a) () (¢)

Here the assigned number denotes np for each P if np > 0.



1.2 Weight filtration on the fundamental groups and induced filtration on the auto-
morphism groups.

A group isomorphic to the fundamental group of a compact Riemann surface of
genus ¢ is called a surface group of genus g. The fundamental group of an n-punctured
Riemann surface is a free group, if n > 0. On these groups, we can define the weight
filtration in the following way.

1.2.1 The weight filtration.
- Let 71 be the surface group of genus g. Then we can introduce the weight filtration
{W_m(71)}m>1 on it, by the lower central series

W_m(m1) =Ty for each m > 1.
Here the higher commutators I', 71 are defined inductively by

[ym =m, and Ty = [Ty, 1] for each m > 1.

The case of the fundamental group of a punctured Riemann surface is slightly more
complicated (¢f. Kaneko [K]).

Let C be a compact Riemann surface of genus g, and S be a finite subset of C
with cardinality n. Choose a base point * in C' —S. When n is arbitrary, the weight
filtration on m; = m(C — S,*) is defined as follows. Let N be the kernel of the
canonical surjection

T (C — Sa*) — m1(C, %)

which is a normal subgroup of 7, generated by the homotopy classes which correspond
to the puncture.

We set W_; () = 71 the whole group, and W_5(m1) = [r1, 71]N. Then the weight
filtration {W_p(71)}n>1 is defined as the fastest decreasing central filtration.

Note that the quotient group m(C — S,*)/W_y(m1) is isomorphic to the 1-st ho-
mology group H,(C,Z).

1.2.2 The induced filtration.

Now we consider the induced filtration on the outer automorphism group of 7; and
its subgroup.

Let Autg m; be the subgroup of the automorphism group Aut m1(C—S, *) consisting
elements which preserve the normal subgroup N. Also by Aut&m; the subgroup of
Autg 71 given as the kernel of the composition of the canonical homomorphisms

Autg m(C — S, %) — Autni(C) — Aut Hy(m1(C), 7).

When g = 0, Autjg"m = Autg m, and when g > 1, Aut}"m is an index 2 subgroup of
Auts 7.
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Notation 1.1 We denote by f‘g,n the group Aut&my, and by Ty ,, the group Outd ;.

Remark 1.2
By a classical theorem of Nielsen, I'y ,, is isomorphic to a mapping class group or a

Teichmiller group (cf. [ZV C], §§5.7).

The weight filtration on 7;(C — S, *) canonically induces a filtration on T, by
Ty nlk] = {0 €Ty for any I > 1, and any z € W_i(m), o(z)z™" € W_r_i(m1)}.

Passing to the quotient Ty, = Ty ,/Inn(m;(C — S, %)), we can define the induced
filtration on I'y ,, by the image of the canonical homomorphism:

Tynlk] = Image(fg)n[k] —Tyn)

for each k. Then we have the following
Proposition (1.4).
(1) Pg)n[O] = FQ»"" a'nd

[Ly,nlk],Dg,nlll] C Ty,nlk +1] for any k, 1 2> 0;

(2) The quotient 'y »/T'y n[1] is isomorphic to the Siegel modular group Sp(g;Z);
(3) For any m (m > 1), the quotient group I'y ,[m]/T'; n[m + 1] is a free abelian
group of finite rank.

Proof. The statements (1) and (2) are well-known. When n = 0, (3) is proved by
Asada [A]. In the case of n > 0, a pro-l analogy is proved by Kaneko [K]. Although
the discrete case can be treated almost in the same way, we shall give a proof for the
sake of completeness. Also the case of m = 2 is not explicitly stated in [K].

For simplicity, we write I' and T’ instead of fg’n and I'y ,,, respectively. And for
each m > 0, we write I'[m] and I'[m] for T, ,[m] and T, ,,[m], respectively. We write
grm(m) = W_(m1)/W_p—1(my) for each m > 1.

First, we define a group homomorphism

ham : D[m)/T[m + 1] = grme1(m1)® x grp(m )@Y

as follows. For o € T, put ;(0) = o(a)a;?, s,4:(0) = a(B:)B* (1 <4 < g), and
let ¢; be an element of 7 such that o(y;) = tj'yjt]-_l (1 <j<n-—1). Since m is
a free group of rank 2g +n — 1 > 1, the centralizer of v; is an infinite cyclic group
generated by v;. Hence, if m # 2, ; is uniquely determined. If m = 2, we normalize
t; as follows. Since gra(m1) is a free Z-module with a basis :

[ai, 5], [Bi, B5] (1<i1<j<g);
[i, 8] (1<4,5 <9, (1,3)#(9,9)); v (1<j<n-1)
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we can normalize ¢; uniquely in such a way that the coefficients of ~; is 0 when {¢;
mod W_3(my)} is expressed as a Z-linear combination of this basis. Now, for o € I'[m],
we define

him () = (si(0) mod W_m_a(m1))1<i<zg X (£j(0) mod W_pm_1(m1)h1<j<n

(o denotes the class of o). The fact that f‘[m] acts trivially on grpy41(71) and the
formula

si(o) = 7(si(0))si(r) o, TET
implies that hp, is a homomorphism. Obviously, A, is injective.
For each positive integer m, set

Inty,(W_pn(m1)) = { 0 € Int(m1) | 0 = Int(g) with g € W_,,(m1) }.

Here Int(g) is the inner automorphism of 7 induced from the transform by ¢ :
Int(g)(z) = gzg~! (z € m1). Let us consider the following two homomorphisms:

¢ grm(1) = Tty (W n(13) Tty (W (10));
t — the class of Int(t)

Bz grm(m) = (grme1(m))®2 x (grm(m))®70.

t— ([t, zi))1<i<zg X (Fj)1<i<n—1

Then, since the Lie algebra gr'V(m) = @%_,grm(m1) has trivial center, it follows
that ¢ is an isomorphism, h is injective, and

I'[m] N Int(7y) = Inty, (W_ (7)) forallm > 1
[A, Lemma 4]. Hence we have the following commutative diagram:
0 — Intey(W_pum1)/Intp,(W_m_ym1) = L[m]/T[m+1] — T[m]/T[m+1] — 0(exact)

al LA
grm(71) KA (grmy1(m1)®29 x (grm(ﬂ'l))@(n"l).

Since hqy, is injective, to prove Proposition, it suffices to show that the cokernel of & is
a free Z-module of finite rank. Now, grp,(71) and gr,4+1(m1) are both free Z-module
of finite rank, h is injective, and h ®z F, is also injective for all prime number p since
gr% () ®z F, has trivial center. Therefore, by Lemma 4 in [A], the cokernel of A is
a free Z-module of finite rank. (q.e.d)
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1.3 The non-abelian monodromy homomorphism.

Let (Cy,Sy) = (C, S) be a most degenerate stable n-pointed curve of genus g with
the graph Y. Consider the local universal deformation of (Cp, Sp). For each geometric
edge e = |y| (y € Edge(Y)), let

uv, =0  (in (ue,v,) € C?)
be the local defining equation of the singularity associated with e. Let
UeVe = te (in (te,ve,to) € C?)

be the local universal deformation of the above singularity [DM, §1] [Kn, §2|. For
each e, we can associate a small complex disk D, = { t. € C | |te|] < ¢ }. Then over
the polydisk D = HeeEdge(Y)geom D., we have a local universal family

f:C—=D, S:{l,...,n} xD —=C.

Ift = (tc)ecEdge(Y),e0nm Satisfies t # 0 for any e € Edge(Y)geom, the fiber f~1(t) =
C is a smooth proper curve of genus g, and S(t) = S is a set of n distinct points on
Ci. Let D° be the open subset of D consisting of such points. Choose such a point
to in D°. Let '

m1(Ceo — Sto, %)

be the fundamental group of the n-punctured Riemann surface Cy, — Si, with a base
point *. Then we have the non-abelian monodromy homomorphism

P(Co,S0) - Wl(DO,to) &~ 7397347, Out 71(Cty — Stos *)-

By using a transcendental result, we can assure that the monodromy homomor-
phism p(¢,. s,) is injective [BLM].

Now we want to see the fact that this monodromy homomorphism is compatible
with the weight filtration. In fact,

Proposition (1.5). The monodromy homomorphism p(c,, s,) preserves the weight
filtration on m1(Cy, — St,, *). In particular, for any o of m1(D°, t¢), we haveo(N) = N,
where N is the kernel of the canonical surjective homomorphism )

7T1(Ct0 fd Sto,*) — Wl(cto,*).

The proof of above proposition is given in Subsection 3.4.
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1.4 Bridges, cut systems, and invariants S1, Sz in a graph.

Definition 1.4

(1) An edge y is called a bridge , if the subgraph Y — {]y|} is not connected.
(2) A pair {|y1], |yz2|} of geometric edges is called a cut pasr, if neither |y1| nor |y2]
" is a bridge, and the subgraph Y — {|y1| U |y2|} is not connected.

The following is easy to prove.
Lemma (1.6). Let {|y1], |y2|} be a cut pair, and {|yz|, |ys|} (lys| # |y1|) be another
cut pair. Then {|yi1|, |ys|} is also a cut pair.
Definition 1.5. We call a set E of geometric edges a mazimal cut system, if

(1) it contains at least two distinct geometric edges;
(2) any pair of two distinct geometric edges |y, |y'| in E is a cut pair;
and no edge y" outside E makes a cut pair with an edge in E.
3) and no edge y" outside E mak t pair with an edge in E

Now we define two invariants of a graph Y which is used to describe the main result
of this paper.
Definition 1.6

(1) Let s2(Y) be the number of bridges in the graph Y.
(2) Put s1(Y) = > g{|E| — 1}, where E runs over the maximal cut systems in Y.
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1.5 Main results.
Let (Y,v) be a graph of a most degenerate n-pointed stable curve of genus g. Recall
the monodromy homomorphism p(¢, s,y in Subsection 1.3.

Definition 1.7 We denote by Iy the image of the monodromy homomorphism
p(co,So) : Wl(DO,to) = Z3g—3+n — Out 7T1(Ct0 — Sto,*).

in Ty, = Outf(m).
Since p(c,,s,) 18 injective, Iy is a free abelian subgroup of rank 3g — 3 + n. Let
Ig,m) = Iy NT [m] for each m > 1, and define the numbers {7 (Y)}m>0 by

rm(Y) = rankZIg,m) /Ig,m-l_l') for each m > 0.

Note here each Ig,m)/Ig,m+1) C Ty n[m]/Ty n[m + 1] is a free abelian group of finite

rank by Proposition 1.4, if m > 1. We will see later that Igf)/Igj) is also a free
Z-module (Subsection *.*).

Here is the main result of this paper.

Theorem (1.7). LetY be an associated graph with a most degenerate stable pointed
curve of type (g,n). Then

(1) ro(Y) =39 =3 +n —s1(Y) — s2(Y);
(2) m(Y) =s1(Y);

(3) r2(Y) = s2(Y);

(4) I{ ={0}.

Remark 1.3 The first statement (1) is due to Brylinski [Br, Prop. 5].

Corollary (1.8).
(1) When n = 0 , the naturally induced homomorphism

P(Co,50)(mod 3) : Ty (D°,tg) 2 Z37°F" — Out(m1(Cy — Sto, %)/ Wo-am1)

1s 1njective;
(2) When n > 0, the homomorphism

P(Co,S0)(mod 4) : wl(DO,to) o~ 739—3+n _, Out(m1(Cy, — Sty, %)/ W_5smy)

is injective.
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2. Graph of groups and edge twists.

In this section, we give a preparatory result for a combinatorial description of Dehn
twist. In the next section, we specialize the results of this section to the graph of
surface groups, and apply them to describe the local monodromy for the fundamental
group associated with a given degenerate stable n-pointed curve. We recall the basic
contents of Serre’s book [S] in Subsection 2.1. The notion of edge twist does not seem
to be found in the literature.

As in the previous section, Y denotes a connected non-empty graph, with oriented
edges. For each y € Edge(Y'), y € Edge(Y) is the inverse edge of y, o(y) and t(y) are
the origin and the terminus of y, respectively.

2.1 The fundamental groupoid of a graph of groups.
Definition 2.1 (graph of groups)
A graph of groups (G,Y) is
(1) a group Gp assigned for each vertex P € Vert(Y).
(2) a group G, assigned for each edge y € Edge(Y'), with a monomorphism
Gy — Gy(y), denoted by a— a¥.

We impose Gy = Gy for any y € Edge(Y).

Let (G,Y) be a graph of groups. Then Serre [S,§5] defines an auxiliary group
F(G,Y). Let us recall its definition. Let Fy be the free group generated over
Edge(Y). Then F(G,Y) is the quotient group of the free product

Fy *( * Gp)
PeVert(Y)

by the subgroup normally generated by the relations:
yg=1 (yeY); ya’yg=d’, fory e Edge(Y), a € G,.
Here * is the product symbol for free product.
Words of F(G,Y).
Let ¢ be a path in Y whose origin is a vertex Py. We let y1,...,y, denote the edges
of ¢, where n = I(c) is the length of ¢, and put

P; = o(yi+1) = t(yi)-

Definition 2.2 A word of type ¢ in F(G,Y) is a pair (¢, p) where g = (ro,...,75)
is a sequence of elements r; € Gp,. The element

le, ul = royiriya .. . Ynrn of F(G,Y)

is said to be associated with the word (¢, ). When n = 0, we have |¢, | = ro. An

element of Fy * (P X (Y)Gp) is admissible if it has the form of |¢, p| for some ¢, u.
€Vert

One says that (¢, p) is reduced if it satisfies the following condition: if n = 0 then one
has rg # 1; if n > 1 then one has r; ¢ Gg for each index ¢ such that y;4+1 = §;, where
GY: denotes the image of the monomorphism Gy, — Gy(y,)-
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Fundamental groupoid. :

Let us consider composable paths ¢i,cq, i.e. #(c1) = o(cz). Let ¢1 * c2 be the
concatenation of ¢; and ¢;. Two words (¢1, p1), (2, pt2) are said composable, if ¢1, g
are composable. We define the concatenation (cy, 1) * (g, t2) by

(c1 % ¢o, fig * f1o), where [(cq)-th element in py * po is given by rsll)'r(gz) € Gy(ey)-

We write 71 (G,Y; Py, Py) for the set of elements of FI(G,Y") of the form |¢, p| with
o(c) = Py, t(c) = P;. The sets { m(G,Y,; Py, P1) | Po,Pr € Vert(Y) } form a

groupoid. In particular,
™(G,Y; Po, o) = m(G,Y; Ry)

is the fundamental group of the graph of groups (G,Y) with the base point Py.

Another realization of the fundamental group

Let us recall another realization of the fundamental group of a graph of groups, i.e.
realization as a quotient group of the ambient group F(G,Y).

Let us choose a spanning (or maximal) tree T in Y. Then we define the group
71(G,Y,T) as the quotient group of F(G,Y’) by the subgroup normally generated by
the elements

y (y € Edge(T)).
It is shown in Serre[S] (Chap. I, §5, Prop. 20) that this group is isomorphic to the

fundamental group 71 (G, Y, Py) by the composition of the canonical homomorphisms

m(G,Y, Py) = F(G,Y) - m(G, Y, T).

2.2 Edge Tunst.

We choose an edge y € FEdge(Y'), and an element d in the center Z(G,) of the |

group Gy. Let D, 4 be the endomorphism of Fy * (P V* ('Y)G p) defined by
‘ : cVert

Dy,d(y) ‘Z yd?j’ Dy,d(g) = g(dg)_‘la
Dya(y)=1v for other edges y' & {y,7}

and
D rT)=2x for any element z c * Gp.
y,d( ) © er PeVert(Y) il

Then, since Dy 4Dy ¢ = 1, D, 4 is an automorphism of Fy * (Pevjrt(Y)GP)'
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Lemma (2.2). D, 4 induces an automorphism of F(G,Y).
Proéf. We have to check that the defining relation is preserved under the map D, 4.
In fact, the relation yg = 1 is mapped to
yd'g(d) = {udgH () = d (@) =1,
Also ya¥y = a¥ is mapped to

(yd")a?(gd") = y(da)?§(d") ™" = (da)?(d")™" = (dad™")?,

and since d belongs to the center of G, dad™' = a. Here we use the assumption that
d belongs to the center of G. Since the other relators are preserved trivially by D, 4,
this settles the proof of our proposition.

Definition 2.3 By an abuse of notation, we denote by the same symbol D, 4 the

automorphism of F(G,Y) induced from D, 4 € Aut(Fy * (P X (Y)Gp)), and call it
eVert

the edge twist associated with (y, d).
The following is immediate from the above lemma.
Proposition (2.3).

(1) The automorphism D, 4(w) induces a bijection
7T1(G7Y7 POa Pl);ﬂ'{'l(G,Y; PO) Pl)

for each Py and Py, compatible with composition of groupoid. In other words,
Dy 4 defines an automorphism of the fundamental groupoid of (G,Y). In par-
ticular, Dy 4 defines an automorphism of the fundamental group m1(G,Y; Py).
(2) For any paird € Z(Gy) and d' € Z(Gy), the twists D, 4 and Dy ¢ commute.

Thus we can define a homomorphism

H Z(Gy) — Aut m(G,Y; ).
yEEdge(Y)

Applying the above construction to a graph of surface groups, we can obtain an
algebraic description of Dehn twists in the next section.
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3. Non-abelian Picard-Lefschetz formula.

3.1 Graph of surface groups.

For each graph of a stable n-pointed curve of genus ¢, we can assign a graph of
groups naturally, and recover the fundamental group of an n-punctured Riemann
surface of genus ¢ as the fundamental group of the graph of groups.

Let (Y,v) be the graph of a stable n-pointed curve of genus ¢g. For such a graph,
we consider the following more specialized version of graph of groups.

Definition 3.1 (graph of surface groups)

(1) For each vertex P, Gp is the fundamental group of Cp — Cp N (Csing U S).
(2) For each edge y, G, is an infinite cyclic group with an assigned generator ¢,.

We put (5 = L;l. The monomorphism
Gy — Gyy)

is defined by mapping ¢y to = in Gy) which is free-homotopically equivalent to a
closed path encircling the deleted point g, in counter-clockwise.

Choose one vertex P of Y. If v(P) = (gp,np) and let Yp be the subset of edges y
in Y such that t(y) = P. We fix some order on the set Yp. Then the group Gp has
a presentation:

< al)ﬂl’--'aagpaﬂgpa7l7”' s Ynpsy Yy (ye YP) |

[al’ﬂl]"'[aép>ﬂgp]71 " Ynp H Yy = 1>.
yeYp

For y € Yp, the image of the generator ¢y of G, is an element v, which is conjugate
to Yy in Gt(y) - GP.

Remark 3.1 In the above definition of graph of surface groups, the choice of ¢,
T € Gy(y) has ambiguity, since only the conjugacy class of = is specified. However,
this ambiguity does not affect the definition in the following sense.

Let (G,Y) be a graph of groups. Let (G,Y') be a graph of groups obtained from
(G,Y) by “changing the choice of z in the same conjugacy class in Gy(,)”. Then,
there is an isomorphism between F(G,Y) and F(G,Y") compatible with edge twists.

To be precise, let us fix s, € Gy, for each y € Edge(Y'). Let (G,Y") be the graph of
groups defined as follows. The graph Y is isomorphic to Y, with Vert(Y") = Vert(Y")
and Edge(Y) = Edge(Y') by y — y'. The groups Gp on P € Vert(Y') are identical
with the ones in (G,Y), and Gy = G. We define the monomorphisms Gy — Gy(yr)
by

1

!
a— a¥ = syaysy .
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The isomorphism F(G,Y) — F(G,Y") is defined on generators by g +— ¢ forg € Gp
and
—1,
Y Sy Y sy

for y € Edge(Y). Then relators are mapped as
yy =1~ sgly'sysy_ly'sg =1,

and

Y~ -1 -1 =1 0y 1§ g
ya'y o sy y'syals, ysy =s5yal Ysg =s5 a¥ sy =ad’.

This isomorphism is compatible with D, 4 +— D, 4, since we have
Dy.a(y) = yd¥ Sgly'sydy = S;le'dy Sy = Dy’,d(sglylsy)
and
Dya(y) = y(d¥)™" — Sglﬂ'sy(d‘ﬂ)_l = s, ¥ sy(s51d¥ s5)7! = Dy',d(sy_l’glsy)-
Hence, we do not specify the image of ¢, but specify its conjugacy class only.

3.2 Recovery of surface groups, or Seifert-van Kampen theorem.
~ In this section, we confirm that the fundamental group of a graph of surface groups
gives the fundamental group of the generic punctured Riemann surface.

Theorem (3.1). (Seifert-van Kampen) Let (G,Y") be a graph of surface groups of a
stable n-pointed curve of genus g. Then the fundamental group of (G,Y") is isomorphic
to the fundamental group of an n-punctured Riemann surface of genus g.

Remark 3.2 Moreover, we can describe an algorithm to obtain a canonical system
of generators. The algorithmic part of the above theorem is discussed in the next
section.

Proof. For each vertex P of Y, let C}% be a closed subset of the puncture Riemann
surface Cp — Cp N S, obtained from Cp — Cp N S by deleting a very small open disk
D, around each point z in Cp N Cs;ny. Then the Riemann surface with boundary
C}p is a deformation retract of Cp — Cp N (Cgpg U S). Hence m1(Cp,b) = Gp, with b
b—eing a base point in C%. The 1_1nion U 2€CPNCrin, 8D, is the boundary of C'}, where
D, is the closure of D, and 8D, its boundary.

Let I be the unit interval [0, 1] and S the 1-dimensional circle. Put 4, = Sy x I for
each edge y, and identify it with Ay via a mapping (6,t) — (6,1 —1¢) (6 € Sy, t € I).
Fix an orientation on S; X I, and induce it to A,.

Consider the disjoint union (Upevyerivy Cp) U (Upyjepage(v),eom Av)» and patch

each boundary {(6,1)|60 € S1} of A, with 8D, such that the orientation of 4, and
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C are compatible. Then we obtain a Riemann surface R with no boundary of genus
g and n punctures.

We have to show my(R,*) & 71(G,Y, P) which is nothing but a variant of van
Kampen theorem. Since we could not find a good reference, we discuss how to reduce
our claim to a simpler well-known case. '

Choose a maximal tree T in Y, and consider the surface Rr which is the image
of (Upeveriy) Cp) U (U|y|€Edge(T)geom Ay), in R with respect to the natural map.
Let G|7 be the restriction of G to T'. Then the usual van Kampen theorem implies
Gr = lim_(G|r,T) is isomorphic to 7y (R, *).

Let Y' = Y/T be the graph obtained from Y by contracting every edges in T to a
point. Then Y is a graph with a unique vertex P’'. Define a function v’ on Vert(Y")
by v'(P') = (g,n). Then setting Gpr = Gp = m(Rr, *), we obtain a graph of surface
groups (G', Y"). |

By the definition of the fundamental group of a graph of groups, it is easy to check
that there is a canonical isomorphism 7;(G,Y, P) & 71 (G',Y', P"). The surface R is
obtained from Rt by attaching ¢ handles 4, (|y| € Edge(Y)geom — Edge(T)geom)-
Meanwhile 1 (G',Y’, P') is g times iterated H N N-extension of Gp:. It is well known
that the isomorphism Gpr 2 71 (Rr, *) implies m1(G',Y', P') 2 m (R, *). (q.e.d)
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3.3 Non-abelian Picard-Lefschetz formula.

Let Y be a graph of a stable n-pointed curve (Cy, Sy) of genus ¢g. Then we consider
the graph of surface groups G, naturally associated to Y:a free group of rank 2 with a
set of three assigned generators for each vertex, and an infinite cyclic group for each
edge.

There are n-generators corresponding to the n-assigned points in S. The fundamen-
tal group of (G,Y) is isomorphic to the fundamental group of an n-punctured Rie-
mann surface of genus g. Then n-generators of assigned points are free-homotopically
equivalent to the simple curves which bound small disks centered at n punctures,
respectively.

Let Py be a vertex of Y, and 71(G,Y, Py) be the fundamental group of the graph
of groups with base point Py. Then for each edge y of Y, we can associate the edge

twist D, ,, , where i, is a canonical generator of the free cyclic group G,

Remark 3.3 Let g be the inverse edge of y. Then we put 5 = L;l with respect to
the identification Gy = G,. Then we have D, , = Dy ,..

Hence we may consider D, ,, depends only on geometric edge |y|. Thus we denote
it by D)y, and call it the edge twist associated to |y|. We also denote by the same

symbol Dy, the induced element in Qut m,(G,Y, B).

Let us consider the local universal deformation of (Cp, Sp) in the category of stable
n-pointed curves f : C — D, where the base space D is a 3¢ — 3 + n dimensional
polydisk with coordinates {(t;)}1<i<3g—3+n. Moreover for the parameters ¢;, we may
assume that the first #(Edge(Y )geom )-parameters are the parameters of the local
universal deformation of the singularities on Cj.

Let D, be the complex disk associated to a geometric edge e of Y with coordinates
te. Put Dy = HeeEdge(Y)geom D.. Then D has a product decomposition Dy X D'
(non-canonical). Here D' is a polydisk of dimension 3g — 3 +n — #(Edge(Y )geom)-
For each punctured disk D? = { t € C| |[t| < ¢, t # 0}, we denote by «, the associated
generator of m1(D?,te0) (teo # 0), which encircle the origin in counter-clockwise. Then
for DY =] D., m1(DY, ty) is generated by {7, | e € Edge(Y )geom }-

Let D° be the open subset of D consisting of points whose fibers are smooth. Then
DO = Dg/ X DI and Wl(DO,to) = ®e€Edge(Y)geomZ

ecEdge(Y)geom

The following result plays a crucial role to reduce the proof of the main result to a
combinatorial problem for graph of groups.

Theorem (3.2). (non-abelian Picard-Lefschetz formula) We have a commutative
diagram
Wl(DO,tg) ———f—) Out W](Cto - Sto,*)

L l

Heeragev,eom) LPe ——  Out m(G,Y, Fy)
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Here the left vertical arrow is defined by mapping each -y, to the corrésponding edge
twist D., and the right vertical arrow is induced from w1 (Cyy — Sy, *) = m1(G, Y, Py)
obtained in the previous theorem, which is unique up to inner automorphisms.

Proof. Assume that n =0, i.e. Sy is empty. Then the proof is a generalization of
Main Lemma (1.7) of the transcendental part of the previous paper [O].
Let m: Cy — C, be the normalization of Cy. Then

Co= |J c©p (disjoint)
peVert(y)

and we can number the singularities of Cy by {p.}, cEdge(y), -

Let f : C — D be the local universal deformation of Cy. Let {P, Q} be two vertices
of an edge e. Then using the parameter of deformation t. of each double point p. of
Cy, the local defining equation of the smooth analytic space C at p. is written as

UpeUQe — te in (te>uP,6’uQ7€) € C3

with certain local coordinates up. and ug .. Moreover at t, = 0, we may assume
that up, = 0 is the local defining equation of the component Cp at p., and ug, =0
the local defining equation of Cg at p..

For each edge e, choose a sufficiently small positive real number e.. For any e €
(0,¢e.) we define a chart

Ue(e) = {(upe,uq,e) € C%lupe| < e, lug.e < e}

of a neighbourhood of p, in C, which is identified with that neighbourhood in C.

Let t = (te)eeEdge(Y)Jr be a point in D?. Set € = &./2 and put A ¢ = Ue(e/2) N
f71(t) for each e € Edge(Y)+. Then each A, ¢ is an annulus in the Riemann surface
Ci = f~1(t), and the complement By = Ct"'UeeEdge(Y)+ A, ¢ consists of #(Vert(Y))
connected components, each of them corresponding to a unique vertex P of Y, and
a deformation retract of C% = Cp — {double point}. We denote this component by
Bp for each vertex P € V(Y). '

Put .

Bpy=BpeU () {(upesuoe) € Uelee/2) N Cus lupe| > n}
e€St(P)

- for a sufficiently small positive real number 7, smaller than |t.|'/? for each e. Here
St(P) is the set of edges with vertex P.
Then Bp ; has #(St(P)) boundary components. The curve Cy is written as a union

Ce= |J Bp,U U A

peVert(y) ecEdge(Y)geom
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Each Bp; is a deformation retract of Bpg, which is homotopically equivalent to
CY%. Therefore, the C*-fibration UtepoBpy — D° is homotopically equivalent to a
product prg : C?) x DY — DY Thus in order to describe the Deck transformation
with respect to e, it suffices to see its action on A, +’s and the change of the patching
condition with Bp,.

Choose a point tg. For each P, we choose a base point bp in By, , and for each
tube A, t,, we fix a base point b.. When the vertex P is on the edge e, we connect
the base points bp and b, by an oriented arc cp. emanating from bp. If we consider
the graph with vertices bp’s and b.’s and with edges cp., then this is canonically
identified with the barycentric subdivision of the geometric graph Ygeom.

For each oriented edge y with o(y) = P and t(y) = Q, we associate an oriented arc
Cy = cP,IylcEg,l|y| starting from bp and ending at bg.

Let us choose a vertex Py of Y and a base point bp in B;,to‘ Then we can regard
bp as a point on Cy,. If we fix the arcs cp, once for all, then we have a canonical
isomorphism

7(1(01;0, bp) = 7T1(G,Y,AP0).

Via the above isomorphism of the fundamental groups, any element of 71(Cy,, bp)
is written as a product
UpCy, U Cyy - - - Up_—1Cy, Unp.

Here yq,...,yn is a loop of the graph Y, such that
o(y1) = t(yn) = Po; t(yi) = o(yit1) foreachs (1<i<n-—1).

Foreachi (0 <: < n), u; is an element of 7T1(B}k3i7t0,bpi), with P; = #(y;) for1 <¢ < n.

Let t, = r.e2™0e be the polar coordinates of ¢, for each geometric edge e of Y. We
may assume that to = (re)eeEdge(Y)ge,,m' Then by the relation up ug, = ree?Tile
By and B ; are patched along the two annuli

: r T
{upe € Cln < fup.| < 2°} and {uge € Cly < Jug.e[ < 7°
in A.t. The increase of 8, from 0 to 1 rotates the patching condition of two an-
nuli. Hence the arc ¢, = CP,eCEz}e is transformed to dc,, where d is an element of
m (B;,to’b p) which is free-homotopically equivalent to the generator of m; (A ¢, *).
Thus the proof is completed for the case n = 0.

Now let us discuss the general case. Let f:C — Dand s:{1,2,...,n} xD = C
be the local universal deformation of (Cy, Sp). Similarly to the case n = 0, we can
define A, ¢ and Bp, for each edge e and vertex P. Define a subset Sy = ur_;s(s,t)
in Cy for each point t. Then B}B,t — S¢ is homotopically equivalent to Cp — Cp N Sy.
The rest of the proof proceeds completely similarly as the case n = 0. (q.e.d)
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3.4 Proof of Proposition (1.5).

Since the weight filtration {W_p(71)} m> is determined by N and the characteristic
subgroups I'y, 7y, it suffices to show that ¢(N) = N for any ¢ € Im p(c,,s,) = Iy-

Let v be an element in 7y (Cy — St, *), free-homotopically equivalent to a small circle
around a point s € Sg. Then via the isomorphism 71 (Cy — S, *) & 71(G, Y, Py) of the
previous subsection, «y is represented by an element which is conjugate to the image
of some element 7" in G p, corresponding to a puncture in the graph of groups (G,Y).

Therefore, there exists some path ¢ from Py to P; such that v is identified with
wy"w™! for some element w = |¢,u| € 7(G,Y; Py, P;). Then for any edge e, the
twist D, maps v to its conjugation D, (wy"w ™) = D(w)y" D.(w)™*. This completes

- the proof of proposition (1.5), because N is normally generated by the elements of

the form « for various s € Sg.
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4. An algorithm to compute Dehn twists and examples for the case of low
genus. v

The purpose of this section is twofold: one is to describe an algorithm to compute
Dehn twists explicitly using the theorems of the previous section; another is to calcu-
late some examples for the case when genus is 2 or 3, which also gives the starter of
the inductive proof of the main result.

4.1 Description of the algorithm.

For simplicity, we consider the case when n = 0, and the curve Cy is most degener-
ate. Then the graph Y is tri-valent. When Y is most degenerate, G p is isomorphic to
a free group of rank 2 for any P € Vert Y. Let y1, y2, y3 be the three edges such that
t(yi) = P. Corresponding to each y;, we can consider the images zp,, = i€ Gp.
Changing zp,,, by its conjugate if necessary, we may assume that zp,, satisfy the
relation

TPy, TPy, TPys = 1.

Step 1 Search of canonical generators.

We choose a maximal tree T, and want to find a system of canonical generators
in the surface group m1(G,Y,T) of genus g. We restrict the graph of surface groups
G to T, and investigate the inductive limit Gr = lim_,(G|r,T) in the first place.
We want to show that G is isomorphic to a free group of rank 2¢g — 1. "In order

to prove the above fact by induction, we reformulate it for subtrees T of T. Put
GT/ = lim_,(G|T:,T'). -

Holes.
For each vertex P € Vert(T'), we can consider { y € Edge(Y) | t(y) = P }. We
call the pair (P,y) a hole. The set of total holes of the graph Y is given by

{ (Py) | P=1t(y), PeVert(Y), y € Edge(Y) }

When P € Vert(T') and y ¢ Edge(T"), then we call (P,y) is an open hole for
T'. We denote by h(T") the total number of open holes for T'. Then A(T') =
3#(Vert(T") — #(Edge(T")) = #(Vert(T")) + 2.

Lemma (4.1). G is isomorphic to a free group of rank h(1') — 1. The generators
are given by

H(T")={zp, | (P,y) open hole for T' }
with a relation
(4.1.1) I k=1
(Py)eH(T")

where the order of the product is considered appropriately. Here le,y are the images
of zpy viaGp — Grv.

The order of generators in the relation.
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If one wants to specify the order of the product of (4.1.1), we can do it as follows. For
each open hole (P, y), we can associate a dummy vertex Q(p ,) and an edge connecting
P and Q(p,). Let T’ be the extended tree. Then we can embed 7" in an oriented plane
II, so that the orientation of II is compatible with the order (P,y1), (P,y2), (P, y3) of
three holes of P. Namely, the direction of the edges y1, y2, y3 changes in a counter-
clockwise for the orientation on II for each P.

Tree-traversal search.

Let us start from a vertex Py, and choose an edge y with o(y) = P,.

(Case 1) If (P, §) is not an open hole, we move to the adjacent vertex Py = #(y).
Write y' = y.

(Case 2) If (P, y) is an open hole of T', we write z p, 5 first in the product (4.1.1).

Rotate the vector o(y)t(y) counter-clockwise with o(y) fixed until to meet another
edge y1 with o(y1) = Fo.

(Case 2-1) If (Py,7;) is also an open hole, then write zp, 5, after zp, ; in the
product (4.1.1). In this case, Py is a terminal vertex of T', and for the last edge v,
with o(y2) = Po, the hole (P, §2) is not open, unless T" consists of oee vertex Py, the
trivial case. We move to the adjacent vertex P, such that t(y2) = Py. Write y' = y».

(Case 2-2) If (Pp, 1) is not an open hole, we set Py = #(y1), and write y' = y;.

At Py, we start scanning an adjacent edge y” lying to the left of ¢, i.e. y" is the
first edge with o(y") = P; which is meet if we rotate small vector in counter-clockwise

starting from o(7')t(¢') = P, Ps.

Remark 4.1 The order of three generators zpy, ,2p,y,,Zpy, for each edge is not
essential. Even if we are given a relation of different order

xP7y1$Pyy3$Pyy2 = 1’

we can rewrite it as
-1 _
-'13P,y1$P,y2($p’y2$P,y3xP,y2) =1,

and replace the generator zp,, by its conjugate w;1y2:v PysTP,y,- Lhusin the above
determination of the order of elements in the relator (4.1.1) of Lemma (4. 1) the
embedding of T' into an oriented plane II is not essential.

Proof of Lemma.
We prove Lemma by induction on #(Vert(T")). If #(Vert(T')) = 1, it is trivial.
Choose a terminal vertex Py of T, and let {yo, %o} be the edges with ¢(yo) = Py,
and o(go) = Po. Let T be a tree

Vert(T") = Vert(T') —{P};

Edge(T") = Edge(T") — {yo, o }-
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Then
GT’ = GTH *Gyo Gpo.

Put Py = o(yo). Then (Py, %) is an open hole for T". Rearranging the position of
z'p , in the product (4.1.1) by a cyclic rotation if necessary, we may assume that 5 -
is the last element in the product (4.1.1). We take generators zp, yo, TPy y1s T Po,ys
satisfying

L Po,yoL Po,y1 T Po,ys — L.

Then

! 1 . :
mplangPanO - 1 n GT"

Thus the presentation of G is given by

< zp, | (P,y) open hole for T;

' ! ' _
( H 3:P;?,l)xpoy.'llmPo,yz =1>.
(P,y) open hole for T",(P,y)#(P1,¥o)

The group G7v is a free group of rank rank(Gr») + 1.

Construction of canonical generators.

We compute the quotient realization 71(G,Y,T) of the fundamental group of a
graph of groups (G,Y’) with respect to a maximal or spanning tree T in Y.

Since h(T) = #(Vert T) 4+ 2 = #(Vert Y) + 2 = 29, Gr is a free group of rank
2g — 1 with generators {zp ,[(P,y) € H(T)}. From now on we delete the “/ ” in the
symbol z’p, to simplify notation.

Consider the contracted graph Y' = Y/T', which has a unique vertex T'/T and g¢
geometric edges. Let yi,...,y, be g oriented edges which represent all g geometric
edges (i-e. |yi| # |y l, if ¢ # 7). Then for each edge yi, two open holes (o(y;),y:) and
(t(y:),y:) are associated. Now the ambient group F(G,Y) is generated by Gt and
Y1,---,Yy With relations

-1 __ . -1
yzxt(yi)ayiyi - xo(y,-),g,-'

Decompose the word H( P,y)eH(T) TP,y Into segments. Then it has a form

WETo(y1),5: WTt(yy),y1 Wt

or
WiTt(y1),y1 WTo(y1),51 We-
Reversing the orientation of the edge y; for the second case, we may discuss only the

first case. Then we put a; = z,(y,),5 and f; = y;' = 4. The original word is
written as

-1
wf[al 3 ﬂl]xt(yl),ylth(yl),y1 Wi,
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and changing the order of words cyclically, we may assume that the relator is of the
form

—1
[az, 61]wt(y1),y1 W4y, ),y WtW§-

Now for each 7 (2 <2 < y), we want to rewrite the generators z,(y,),5:> T1(y;),y; and
y; as follows. '

(1) If both 24(y,;),5; and Zy(y,)y, are contained in the segment wiwy, then we keep
them and y; the same.

(i) I both z,(y,) 5 )i
them and y; by their transforms with respect to

are contained in the segment w, then we replace
-1
t(y1),91

and z;,,
. In this case, the relation

—1 —1
YiZt(yi),w:Yi = To(yy),5:

1s still valid.
(iii) If one of z4(y;),5; and Ty(y,),; is contained in w and another in wswy, then

reversing the orientation of the edge y;, we may assume that x4,),; is contained in
—1

wywy. Then we transform z,(,,) 5, by Tyy),un

and replace y; by xt—(;l) v Yi- Then the
relation
T—1 -1
YiZTa(yi),piYi = xo(y.’),'y;

1s still valid. :

Thus the segment after [ay, 81] is a product of new z,(,,) 5, and Z,(y,) 5, (2 <2 < g).
We can apply the above process for this shorter word of length 2¢g — 2. Iterating this
process, we can reach the canonical relation

[ala/@l] cee [ag,,ﬁg] = 1.

Step 2

The algorithm to pass from the quotient realization 7;(G,Y,T) to a subgroup
realization 71(G,Y, P) is described in the book of Serre [S] (§5, Prop. 20). Under
this subgroup realization, apply the definition of edge twists in Section 2.



115

4.2 Ezamples in the case of genus 2. »
Proposition (4.2). The main theorem (1.5) is true when g = 2 and n = 0.

Proof. There are two graphs corresponding to the most degenerate stable curves of
genus 2. ‘

One of the two graphs consists of two vertices Py, P, with three edges y; (i = 1,2, 3)
so that t(y;) = P, and o(y;) = P; for any ¢ (¢ = 1,2,3). Other vertices are given by
{g: (1 =1,2,3)}. We denote this graph by Y.

In this case , 51(Y4) = s2(Y4) = 0. Therefore the part (1) of the main theorem for
n = 0, which is a result of [Br], implies that the homomorphism

Iy, — Aut 71(C%, *)“b = Out m1(Cy, *)/W_om;

is injective. This means Ig,l) = {0}. Hence Ig,?’) = {0} and r;(Y4) =0 for any 7 > 1.
Thus we can confirm the main theorem for the graph Yj,.

The other graph consists of two vertices P;, P, with three edges y; (: = 1,2,3) such
that o(y2) = t(y2) = P1; o(ys) = t(ys) = P2, and t(y1) = P2 and o(y1) = P;. Other
edges are given by {7; (i = 1,2,3)}. We denote this graph by Y.

In order to compute Dehn twists, from now on, we use the following abridged
convention to denote the elements in F(G,Y). In place to write zp; y;, we simply
write x;;, when t(y;) = P;. Similarly for zp, g, with o(y;) = P;, we write z,;.

4.2.1 Computation of the edge twists of the graph Yg.
Let us start with 9 generators:
T11, T13, T12, T21, T23, T23, Yi (1 =1,2,3)

with 5 relations:

T1i%13%12 = 15 T21223%23 = 1;
-1 _ -1, -1 _ -1, -1 _ -1
Y2Z12Yy = = Ty5; Y3T23Ys = Loz Y1Z21Yy = Tq7 -
If we choose a tree T = {|y1|}, then y3 = 1, 297 = :v;il, 77721 = 1. Hence

215T12%93%23 = 1 with relations:

[ R S G |
L12 = Y2245 Ya 3 T23 - Y3Toz Ys

which implies the canonical relation
| [xliagZ]{wZ?bg?»] =1
Thus we should set
a1 =213, P1=1Y; a2=293; P2=1s
in the group m(G,Ys,T).
Choose P, as a base point. Then, we have
a1 =zy3; Pr =102 02 =yiTasyr s Pr = yiPsy;

in m1(G,Yp, P1). We note here that z21 = (z93723)7 ! = ([a2, f2]) 7 -
Here is the computation of the Dehn twists Dy, (z = 1,2, 3).
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Computation (4.1). We write D; for D,,.

(1) Dy keeps ay and 31 invariant. Dq(asy) = 9321042:1:;11 = [ag, Bo] L as[aa, B2], and

D1(B2) = xa1 a5y = a2, Bo] 7 Baaz, Ba)-
(2) Dy keeps the canonical generators invariant except for 1, and Dy(f1) = froy.
(3) D3 keeps the canonical generators invariant except for B2, and D3(f2) = fraz.

It is clear that Dy and D5 act on 71(Cy, *)“b as mutually independent transvections.
Lemma (4.3). D, ¢ I%).

Proof. The proof is completely the same as that of [0, Lemma (1.12) |. We omit it.

Hence we have ro(Yp) = 2, r1(Yp) = 0, and ro(Yp) = 1. Meanwhile, we find
51(YB) = 0 and s2(Yp) = 2 by drawing the picture of Yp. Thus we have confirmed
the main theorem for Yp. (g.e.d) - ‘

4.3 One ezample of genus 3.

In order to complete the inductive proof in Section 5, we have to discuss the case
of graph Y¢ given as follows. It consists of four vertices P; (¢ = 1,2,3,4), and six
unoriented edges. The oriented edges y; (1 = 1,...,6) are defined by

O(yz) :Pla t(y2) :P27

o(ys) =t(ys) = Py, o(ys) =t(ys) = Pa,

The generators of the ambient group are

o(ys) = Py, t(ys) = Ps,

o(ys) = t(ys) = Ps.

o(y1) =t(y1) = P,

T13,T11,%11, T43,%T44,T43, T22,T26,T95, T33,T35,T35 and y; (2‘:1,---,6)

with relations:
T22T26T95 = 1, Z33T35%35 = 1

Z33211211 = 1, T43T44%43 = 1,

and

-1 _ -1
YiT11y; = 3,

-1 __ . —1
Y3T33Ys = Tu3,

-1 _ -1
Ys5T35Ys = Tog »

-1 _ _—1
Ya2Z22Yy = Tys5,

-1 _ -1
YaTaalYy ™ = Tyg s

-1 _ -1
YsT26Ys — T35 -

Choose T = {yi, y; (¢ = 2,3,5)} as a spanning tree. Then in the group =1 (G,Y,T),

we have
-1
L12 = Tog

T35 = Tog

R |
33 ——3743 .

Eliminating the above 6 z;; from the 4 relations between z;;, we have the relation

T11T17226T35T44T43 = 1,
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which in turn implies the canonical relation:

: [$11,y1][$26,y6][$44,?/4] =1.
Naturally we should set
ay = 211, B1 = Y1, ®2 = Tas, P2 = Y6, X3 = Ta4, B3 = ya.

Rewrite these in the fundamental group 7;(G,Y, P,) with base point P,. Then we

have
ap = yz_lcvuyz, B = y2—1y1y27 az = Tz, P2 = Ysys,

a3 = Ysys TaaYs¥s > B3 = Ysys 'yavsys -
We write only the result of the computation of the Dehn twists, which is easy to
check.
Computation (4.2). We write D; for D,,. Then D; (1 = 1,...,6) are given as
follows.

(1) Dy keeps canonical generators invariant except for 81. D1(f1) = fraa.
2) Dy keeps canonical generators invariant except for ay, (.
g

Dy(0y) = [o1, f1] " asfoa, B, Dy (B1) = [aa, B1]) 7 Bulas, Bu)-

(3) D3 keeps canonical generators invariant except for az, .

Ds3(a3) = [as, B3] azfas, B3], D3(Bs) = las, B3]~ Bsas, B3]

(4) D, keeps canonical generators invariant except for f83. Dy(B3) = fsas.”
(5) D5 keeps a1, f1, and ag invariant.

D5(B2) = [, B3] ' Baaz,
Ds(a3) = c3 'dyasdy tes,
Ds(Bs) = c3 'd2Bsdy ' cs,
where
cs = [0z, B3] and dy = Baonf; .
(6) D¢ keeps canonical generators invariant except for 2. De(f2) = Paras.

Obviously, we have Ds = Dg modulo Ig,lc)
Lemma (4.4). DsD;*' ¢ Ig,z).
Proof. Let us compute § = DsD;* € I§,}C) Then v
§lan)art =1, (BB =1, dlax)azt =1, 6(B2)B;" = [as, B3],
§(as)az’ = [ag, 3] modulo W_3(m),
and 6(B3)B5 " = [ag, B3] modulo W_s(7y).

Since there exists no element of weight —2 in 7y such that the associated inner au-
tomorphism is equal to § modulo I'y ,[2], § represents a non-zero element in Ig/lc) / Igc) .

(q.e.d)
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5. Proof of Main Result.
5.1 Restatiﬂg Mawn Theorem.

(5.1.1) Let (G,Y) be a graph of surface groups associated with a most degenerate
stable n-pointed curve of genus ¢ (see Definition 1.3 and Definition 3.1 if necessary).
By Lemma 1.3, the number of edges in Y is 3¢ — 3 +n. From now on, we simply write
D, for Dy, = Dy,.,. The terms bridges, cut pairs imply geometric edges.

For the ¢-th puncture of (G,Y), (¢ = 1,...,n), we denote by Q; the vertex on
which the puncture lies, and denote by z; the corresponding element of Gg,. It may
happen that Q; = Q; for distinct ¢, j.

We denote by 74, = m1(G,Y, P) the fundamental group with base point P €
Vert(Y'). This group is uniquely determined by ¢ and n up to isomorphism, that is,

Tg,n =< al)ﬂla"' 7ag’ﬂg7’)/1,'"’Yn”al:ﬂl]'“[ag?ﬂg]’h Y = 1>.

We shall omit subscripts ¢g,n in 7, , if they are clear.

Let us fix a spanning tree T in the graph Y as in Subsection 2.1. For each i,
(i=1,...,n), there exists a unique path from P to Q; in T and let us denote it by
¢;- Then, qiziqi—l is an element of 7, , := m(G,Y, P), corresponding to one of y; up
to conjugacy. We denote g;z;q; * by c;.

We equip 74, with the central filtration 7y, = 7y n(1),7g2(2),... that decreases

fastest with condition that ¢;,..., ¢, € 7y ,(2). In other words, we define
n(l):=m=
w(2) i=<< [m, 7], e1,. 0. 00 >>
7(3) i=<< [r(1),7(2)] >>
m(4) :=<< [r(1), 7(3)], [ (2), 7(2)] >>

*)

where <<>> denotes the subgroup normally generated by the elements inside. It
is easy to see that this filtration coincides with the one provided in 1.2.1; ie., we
have n(m) = W_,,m. We say as usual that v € 7 has weight —m if and only if
v € 7(m) — n(m + 1). It is known that NS_;7(m) = {1} holds, and we define the
weight of 1 as —oo(for a proof, see [K], in Wh1ch the pro-l case is proved and the above
follows immediately from the fact that m can be embedded into its pro-/ completion
preserving the weight.)
Let us recall the definition of the induced filtration on I'y , deﬁned in 1.2.2.

Definition 5.1 We define a subgroup T', ,, of Aut(w, ) by

Ty n = {0 € Aut(7, ,)|o : orientation preserving,o(c;) ~ ¢; fori = 1,... ,n},
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where ~ denotes conjugacy (see 1.2.2 for the meaning of orientation preserving). We
equip I'y , with a filtration I' ,,[m] by

Tynlm] = {o €Tyl .
o(n)n™ € mgu(m + k) for any k > 1 and any n € 74 (k)}.

We define T'y ,, Ty »[m] to be the image of Ty ,, Ty n[m] in Out(r,,,) respectively.

It is not difficult to see that this definition does not change if we restrict n to be
chosen from a fixed generating set of 7y 5.

Let Iy denote the subgroup of Out(m, ) generated by edge twists. It is known
that Iy is in fact a subgroup of I, ,, isomorphic to Z®*9=3+*[BLM](§3).

In Definition 1.7, we equipped [y with a filtration by

I™ = Iy T, . [m]

form=20,1,....
Let H denote the set of bridges in Y. We denote by BRG the subset

{Dyly € H}
of Iy, and denote by MCS the subset

{Dy.DMi=1...Lyl €S —{yi}}

of Iy, where Sy, ... ,S; are the maximal cut systems in Y and each y; is an arbitrarily
chosen element from S;. Observe that #BRG = s53(Y) and #MCS = 51(Y") hold (see
Definition 1.6 for s; and s2).

In this formulation, we shall prove the next theorem from which Main Theorem 1.7
immediately follows by applying Theorem 3.2.

Theorem 5.1. Let s, denote the number of bridges in Y and let sy denote the
summation Y {#(S) — 1} over all the maximal cut systems Sy, Ss,...,S;. Then we
have

(1

ra_nkz(Iy/IS)) =39g—3+n—s; — 39,

(2) BRG is a base of IV /I,
(3) MCS is a base ofIg,l)/Ig),

N N N N’

4) I¥ =o.

We shall prove this theorem in the following manner.

Step 1. Prove that BRG C I’ and that MCS C I\,
Step 2. Prove (1) of Theorem.
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Step 3. Prove that BRG is linearly independent modulo Ig' ) and that MCS is linearly
independent modulo I§,2 ),

When the above steps are completed, we have an inequality

39 — 3+ n =rankz(Ily)
> rankz (Iy /I + rankz (I /1) + rankg (182 /1))
=39g—3+n,

hence equality must hold. This implies that, when tensored with Q, BRG, MCS are
respectively bases of Ig)/Igf), Ig)/Ig’) and that Ii(}o’) = 0. Since each Ig,m)/Iém+1) is
a free Z-module, we have

I =Iy/IP o IP 1P o 1P /1D @ I

It is obvious that BRG U MCS can be extended to a base of Iy, hence their quotient
is torsion free. It follows that (2), (3), and (4) hold. '
The hardest part is Step 3. We shall treat this step in Section 6.
From now on, we shall use the following notation. For y € Edge(Y"), t, denotes the
element ¢} (see Definition 3.1). By definitions, we have the following

Lemma 5.2. For any edge y € Edge(Y'), We have
The edge twist D, maps
| yeyly, Y Yy
and leaves the other generators unchanged.
5.2 Step 1-A. BRG C I,

Proposition 5.3. Let y be a bridge of the graph Y. Then the Dehn twist D, asso-
~ ciated with the edge y belongs to I§,2 ). In particular, Dy acts trivially on the group

7 /7(2).
Proof. It is enough to show that D, € Ty »[2].

Put Y —|y| = Y;UY;, where Y; (i=1,2) are both connected. Let us fix the orientation
of y by t(y) € Vert Y2 and o(y) € Vert Y;. Choose P; € Vert Y; (i = 1,2), and form

Gi=m(GIY:,Y:,P)  (i=1,2).
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Let Y' =Y/(Y1UY3) be the graph obtained from Y by contracting both ¥; (i = 1, 2)
to a point Q; (1 = 1,2), respectively. Then Y’ is a graph with two vertices @1, Q2
and unique geometric edge {y, 7}.

There are canonically induced monomorphisms

Gy — Gg, and Gg - Gl.

Then G' = { G; (1 = 1,2), G, & Gy, and the above monomorphisms } is a graph of
groups over Y'. Then we have a canonical isomorphism

WI(G7Y7P1> = 7"-l(c"""’7Y"7Q1)'

By Theorem 3.1, each G; (¢ = 1,2) has the following presentation:

7
Gl =< al)ﬂl)' - '70‘1'7/81'770771-7' .- 77j|(H[akaﬂk])70’Yl Yy = 1 >3
k=1

g

Gy =< ai+17ﬂi+17 s >ag7ﬂg77j+17' .- 77n+1|( H [ak,ﬂk])7j+1 Yol = 1>
k=it+1

with 79 = t3 and y,41 = t,, and each of the other 4; corresponds to a puncture up
to conjugacy.

Consider the presentation of m(G',Y', Q1) with base point @;. This group is
generated by £ € Gy and € = yny~! for n € G,. It is enough to show that D, (£)¢7! €
7(2 4 1) for these £ with weight —I.

Dehn twist D, has the following description.

Dy(ﬁ) = 57 1f‘$ € Gl;
Dy(yny™") = ytynyty = t; 'yny~ 'ty for n € Gs.

Since t;' =75 =71 '7j(H2=1[0‘k, Bk]) € m(2), we have

1, lff c Gl; .
[t;l,ﬁ] em(2+10), if £ € yGyy™t.

Dy(f)"f—l = {

(q.e.d.)
5.3 Step 1-B. MCS C I{V.
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Proposition 5.4. If {|y1|,|y2|} is a cut pair of edges, then the actions of Dehn twists
Dy, and Dy, on the group = /mn(2) coincide.

Proof. Let Y — |y;| U |ya| have two connected components Y¥; and Y,. Contract
both Y; and Y; to points. Denote these points by Py and P,, respectively. Then, by
changing the orientation of edge if necessary, the quotient graph Y' = Y/(Y7,Y3) 1s
given by

Y'={ }.

The vertex groups are given by

GP1 =< al7ﬂ1a' o 7ai7ﬂi7717" . 77j7t§1’tg2|(n[ak7/8k])’yl . 7]t372tg1 =1>;
k=1

sz ,:< ai+27ﬁi+27 e 7ag7/8y:7j+17 s 77n7ty17t?/2]
g

( H [ak:ﬂk])7j+1 : "’Yntmtyz\: 1>

k=i+2
with each v; corresponding to a puncture up to conjugacy for [ = 1,... ,n. We also
have
ylt!hyl—l = ,tzil; thyzyi_l = t:l;zl'

Firstly, we choose y; as a spanning tree and consider 7 := 71(G,Y",T). Then, since
Y1 = 1, we have
t171 - t;ll and tﬂztyz = yZ[tgjzlvy;l]ygl'

Thus, the defining equation of m(G,Y’,T) is

i g
(H[aka ﬂk])’}/l e ,ij2[t;21’y;1]y2—1( H [O‘kavﬁk])’)/j—i-l Y = 17
k=1 k=i+2

and we have

T/m(2) 2 Loy @ - Lag®LB & --- 1B,

with a;41 = t;zl and Biy1 = y; '
Now we choose P; as a base point, and see the presentation of 7;(G,Y, P;). This
group is generated by elements of the following five types: :

(1) £E€Gp,

(2) £ =wyiny1, n € Gp,,
(3) 6 =Y2NY2, N € GP27
(4) f =yi1nyY2, N € GP27
(5) £ =yany1, n € Gp,.
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By symmetry it is enough to prove for the cases (1), (2), and (4) that
Dy, D, ()¢ € n(1+1),

where —[ is the weight of £.
The case (1) is trivial. In the case of (2), Dy, acts trivially, and

Dy, ()¢ = yatyty 5167 = [ty 31, €] € (14 1),

In the case of (4), observe that the weight of £ is —1 because in 7/7(2) we have

E=n+v2 =10+ PBit1,

and 7 does not contain B;;;-component under the canonical basis oy, 1, - , oy,
of an abelian group n/7(2), hence £ is not zero in m/7(2). Since

Dy, DO =t yingaty €7!
=t tg,, €]

and ‘
2
tgllty_gl = (H [aka ﬂk]71 e 7]')_17
' k=1 ‘

the right hand side is contained in 7(2) = 7(1 +1). (q.e.d.)
5.4 Step 2. I'aIlkz(Iy/Ié,l)) =3¢ —3+n—3; —32.

(5.4.1) The compact case of this equality was proved by Brylinski and Baclawski (see
Proposition 5 in [Br]).

Theorem 5.5. (Brylinski and Baclawski. )
Suppose that n = 0. Then the group Iy is a free abelian group of rank 3g — 3 and

ra,nkz(Iy/Ig,l)) =39g—3—5, — 89

holds, where s; denotes the number of bridges of Y and s; denotes the summation
> {#(S) — 1} over all the maximal cut systems Sy, Sa,... ,SI.

The non-compact cases are reduced to the compact cases as follows.

Theorem 5.6. The group Iy is a free abelian group of rank 3¢ — 3 + n and

rankz(Iy/I-E,-l)) =3¢g—3+n—351— 89
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holds.
In the rest of this subsection, we shall prove this theorem.

(5.4.2) Let (G*,Y ™) denote the graph of surface groups obtained by “compactification”
of (G,Y) as follows.

Let @, be a vertex with at least one puncture(see subsection 5.1). If ng, =1, then
we remove the vertex @ and replace the two incident edges with an edge connecting
the other ends of the two edges. If ng, = 2, then we remove the vertex @ and the
unique incident edge, and increase n p by one, where P is the other end of the removed
edge.

We denote by (G',Y"') the obtained graph. We also define a surjective partial map

+: Edge(Y) — Edge(Y'),y + y*

as follows. If ng, = 1, then the both two edges in Y incident to ¢, are mapped to
the new added edge. If ng, = 2, then the removed edge is removed from the defining
domain of *. Note that this definition does not change the genus. We iterate this
process as far as Y has at least two vertices, and denote by (G*,Y™*) the obtained
graph of surface groups. Let * : Edge(Y) — Edge(Y™) be the composition of all
the partial maps defined in each stage. Let s}, s5 be the numbers s;1(Y™*), s2(Y™),
respectively. Let n* denote the number of punctures in (G*,Y ™).
There are three cases:

(1) (G*,Y™) is compact; i.e., n* = 0.

(2) (G*,Y*) has ¢ = 0, n* = 3; i.e., consists of a unique vertex with three punc-
tures and no edge.
(3) (G*,Y*) has ¢ = 1, n* = 1; i.e., consists of a unique vertex with one puncture

and one loop.

The proof will be completed by showing three identities in

rankz (I(O)/I(l)) ranky (I(OB/I}(}B):39-3+n*—3;‘—s;:3g—3+n—31—32.

(5.4.3) First we shall treat the second identity. In the compact case (1), this is nothing
else but Theorem 5.5. In the case of (2), both sides are trivially zero. In the case of
(3), we have one edge twist. It is easy to compute that w1 (G*,Y ™) is a free group with
generators «, and the weight filtration coincides with the lower central filtration.
The edge twist acts on /{7, 7] by a + «, + a + B. This action has infinite order,
hence both sides of the second identity are one.

(5.4.4) Now we shall treat the first identity. Let P be a vertex of Y*. We denote by
the same P the inverse image of P in Y.

Definition 5.2 We say that a homomorphism : G — G’ between filtered groups
preserves the filtration if the image of G(m) is contained in G'(m) for every m.
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Lemma 5.7. There is a filtration preserving surjective homomorphism
¢ :m(G,Y) - m (G, Y™)

inducing

~

Fg)n - Fg’().

By passing to quotient, we have a filtration preserving homomorphism
Fyn— Ty

and by restricting to Iy we get

IY — IY*
Dy — Dy,

where Dy« is defined to be identity if y is not contained in the defining domain of *.

The kernel of ¢ is generated by << c¢i,...,¢; >> as a normal subgroup, where
each ¢; = ¢;ziq; ' corresponds to the removed puncture z;(see (5.1.1)) fori = 1,... ,j.
(Note that j = n,n —3,n — 1 according to the cases (1), (2), (3) above, respectively.)

Proof. It is enough to prove in each stage of compactification; i.e., for Y* =Y'. We

shall define a homomorphism F(G,Y) — F(G',Y'). Note that we can take

{y,tyly € Edge(Y)} U {z1,... ,2a}

as generators of F'(G,Y).

Case 1. ng, = 1.
Let y1,y2 be the two incident edges to Q1 with #(y1) = @1 = o(y2).- Let y be the
newly added edge in Y’ with o(y) = o(y1), t(y) = t(y2).
On generators, we define '

Y -y
U =y
Y2, 52 = 1
ty1 ? tyz = ty
tyg 1y
t??z = t.;_l
Z1 = 1,

and the other generators are left unchanged.

Case 2. ng, = 2.
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Let y; be the unique edge with #(y1) = Q1, and let P be o(y1). We may assume
71,22 € Gg, with t(y1)z122 = 1. We map

y1o+— 1
Z1 1
z3 = iy,

(Note that Gp in Y' is the same group with the one in Y, hence t3, € Gp in Y makes
sense. )

It is a tedious and simple task to prove that this map i1s a group homomorphism,
inducing a homomorphism even restricted to 7y, that the kernel is generated by
q1219; ! (and g122¢7 ! in the second case), that filtration is preserved, and that this
map is compatible with

IY — IY*
.Dy = Dy* .

The detailed proof goes in parallel with the proofs of Lemmas 6.7-6.12 in Subsec-
tion 6.5. Since this case is much simpler than these lemmas, we omit the proof.

(q.e.d.)

The map Iy — Iy« defined above is obviously surjective. For the first identity, it
is enough to prove that the kernel of

IY and IY* /I(l*)

coincides with Ig,l ). Trivially I}(,l ) is contained in this kernel. Conversely, if o € Iy is
mapped to an element in Ig,l*) , then

oMt e<< gk 4+ 1), ¢1,¢0,... ¢ >>

holds for any n € 7y (k). We want to prove that o € Ig). Since there is a generating

set of m, , consisting of elements in (7 n(1) — 7y n(2)) U {c1,... ,cn}, it is enough to
check the condition for n in this set.
If n ¢ my,,(2), then we have o(n)n™" € 7y ,(2) mod << e¢y,...,¢; >>, and since

¢k € Ty,(2) there is no problem. Otherwise n = ¢; for some 1 <7 < n. We have
o(c;) = sc;s™! for some s € 7y, by definition of T', and o(c;)e; ! = [s,¢;] € 74 n(3),
proving that o € I'y »[1]. *

(5.4.5) The third equality is easily obtained by induction on n. Note that filling up

one puncture decreases #BRG by one if the vertex containing the puncture is incident
to a bridge, and decreases #MCS by one otherwise.
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6. Linear independence of BRG and MCS.

First we shall establish the linear independence for compact cases, and next reduce
the non-compact cases to the compact one. In compact cases, the proof is induction
on #BRG and on #MCS. The induction depends on the graph reduction defined
below.

The merit to restrict to compact cases is that the weight filtration of 7y coincides
with the usual lower central series and hence any homomorphism between two fun-
damental groups is always filtration preserving. :

6.1 Graph Reduction.
In this subsection we assume n = 0. It is true that all results in this section are
valid for the cases n > 0, but we don’t use it here.

Definition 6.1 (Graph Reduction.)
Let (G,Y) be a graph of surface groups associated with a most degenerate stable
curve. Suppose that two distinct edges eq, ez in Y satisfy the following two conditions.

(1) The vertices t(e;) and o(e) belong to the same connected component of ¥ —

le1] — leal. |
(2) Let Yy denote the above connected component, and let ¥, denote ¥ — |e1| —
lea] — Ya( d for deletion and r for residue). Then, Y, contains both o(e;) and

t(eq).

Figure 1. Graph Reduction.

Then, we construct a new graph of surface groups (G',Y") called the reduced graph
of groups along the pair (e1,es) as follows. The graph Y’ is obtained from Y, by
adjoining one edge e from o(e;) to t(ez). The new groups G’ is the same one with G
restricted to Y;., equipped with a free group of one generator G, on e and injections
Ge — Go(e), Gy(e) induced from Ge, — Go(e,) and Ge, — Gy(e,)-

Note that the graph reduction along (ey,e;) is different from the one along (ez,e1).
Proposition 6.1. (Graph Reduction.)
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Let G,Y,G",Y' Y;, Yy, e1,e2 be as above. Choose a simple path {z1,... ,zx} in Yy
from o(ey) to t(ez) (thus we have z1 = e; and z, = e3). Let P be a vertexinY,. We
can define a group homomorphism

¢:m(G,Y,P)— m(G,Y', P)

using z;(see (6.5.1) for the precise definition).
The kernel of ¢ is stable under the action of Iy, and consequent]y, ¢ induces a
unique map

@ : Iy = Out(my(G',Y', P))

satisfying the condition
o(D,) - $(x) = (D, - z).

The image of ¢ is contained in Iy:; more precisely, @ maps the generator of Iy as
follows:

D, — D, ifye EdgeY,
D, — id ifyeEdgeYs— {|=1l,.-., 2|}
D, — D..

Also, ¢ preserves the filtration, and induces a homomorphism

@ Igfm)/Ii(,mvH) — Ig,T)/Ig,nH).

This proposition will be proved in Subsection 6.5.

6.2 Independence of BRG in compact cases.
In this subsection we assume n = 0.

Proposition 6.2. BRG is linearly independent in IX(E)/IS)’).
Proof. We proceed by induction on the cardinality of the set of the bridges H.
Suppose that H = {|y1[, |y2l,--- ,|yk]}- Let Ay, Aa,..., Ags1 be the connected com-

ponents of Y — H. It is clear that the graph obtamed from Y by contracting every
A; to a vertex P; is a tree. We call this tree the skeleton of Y.

The case #(H) = 1. We have H = {]y|} and there exist two connected components
Al,Az of Y — |y|

It is enough to prove that Dy is nonzero in I}(,Z)/Ig,‘a) for n > 0. The skeleton of Y’
is shown in Figure 2. Since Y is tri-valent, there are two other edges ey, e, incident
to t(y) other than y, with direction o(e1) = t(e2) = t(y). If e; = e, then A; consists
of a loop. Otherwise, using the graph reduction along (e, e2), we have a new graph
Y' with A} consisting of a loop, and a homomorphism

o 1D/ o 1D/
Dy — Dy.
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Figure 2.

Applying the same operation on A, again, we may assume that Y’ is the graph with
two loops and one bridge; that is, both A} and A), are loops. For this graph, g = 2
holds, and from Proposition 4.2 it follows that Dy is trivial in I§,2,) / Ig’,) if and only if
n = 0. Thus, we have n = 0 if D}’ = 0 in the original graph, by passing to Y.

The case #(H) > 1. Let A; be a leaf of YV; in other words, there exists only one
ly1| € H incident to A;. We may assume t(y;) € A;. There are two other edges
e1, ez incident to o(y; ) with direction t(e;) = o(ez) = o(yy). Since #(H) > 1, we have
e1 # eo(Figure 3).

Figure 3.

Case 1. |e;| is not contained in H. In this case, it is clear that |ez| is not contained
in H and that both o(e;) and t#(e2) belong to the same connected component of

—|e1|—|e2|- We apply the graph reduction along (eq, e3). Suppose that Hf , Dyi =
0 in I§,2)/I§/3). Then, by passage to Ig?,)/lg’,), we have Hl , Dyi =0in I§,2,)/I(3).
induction hypothesis, n; = 0 holds for ¢ > 1. Thus, we have DJ! = 0 in Ig,z)/Ig,g).
Again applying the graph reduction along (e3,e;) (i-e., Y, corresponds to A;U{o(y1)}),
we can reduce to the case #(H) = 1.
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Case 2. |e1| € H. In this case, it is obvious that |ez| € H. We may assume y2 = e; and
Y3 = €. Suppose again that Hf___l Dyi=0in Ig)/fgf). Then, by the graph reduction
along (y2,y3), we have Hle Dyi = 0in Ig},)/fg), that is, D72tns Hf=4 Dyi = 0in
Ig?,)/lgf’,), where e is the added edge to Y,(see Proposition 6.1). From induction
hypothesis, ny +n3 = 0 and n; = 0 for 7 > 3 follow. Similarly, by the graph reduction

along (y2,y1) and (91, ys), we have ny +ny = 0 and ny +ns = 0 respectively. (Observe
that Dy = D,.) Solving these three equations, we have n; = 0 for 7 = 1,2,3. (q.e.d.)

6.3 Independence of MCS in compact cases.
In this subsection we assume n = 0. From now on, a pair means a cut pair and a
system means a maximal cut system.

Lemma 6.3. Let (e1,€2), (es,e4) be two disjoint cut pairs of Y. Then, at least one
of the following holds.

(1) (e1,e2,€e3,e4) belong to one system. »
(2) Both es and e4 belong to one connected component of Y — |eq| — |es].

Proof. Let Y;1,Y> denote the connected components of Y — |e;| — |ea|. Suppose that
neither (1) nor (2) holds. We may assume that e; € Y7 and ey € Y;. Then, since (1)
does not hold, both Y; —|e3| and Y5 — |e4| are connected. Consequently, Y — |e3| — |e4|
is connected and this is a contradiction.

Lemma 6.4. Let S be a system of Y. Then, the graph obtained from Y by contract-
ing every connected component Y;, 1 =1,2,... ,n of Y — S is a cycle (see Figure 4).

Figure 4.

Proof. Clear.
By Lemma 6.3, for any system S’ # S, there exists a Y; which contains S’.
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Lemma 6.5. There exists a system S such that a connected component Y; of Y — S
contains all of the other systems. '

Proof. Take an arbitrary S, and decompose Y — S as in Lemma 6.4. Suppose that
a connected component Y; other than Y; yet contains a system S’. Then, decompose
Y — S5’ and let Y{ be the connected component of ¥ — S’ containing Y;. By iterating

this process, the size of Yl(k) strictly increases, and this process stops when Yl(k)
contains all systems other than S,

Figure 5. Y7 contains all systems other than S.
We now prove the independence of MCS by induction on #(MCS).
Proposition 6.6. MCS is linearly independent in Ig)/Ig).

Proof.

The case #(MCS) = 1. In this case, Y is a graph of the form shown on the left in
Figure 6.

Figure 6.
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Figure 7.

We want to prove that (D, D_')" = 0 in Ig})/lg,z) holds only if n = 0. It is known
that 71(G,Y, P) is canonically isomorphic to m1(G',Y"’,p1), where Y’ is the graph
shown on the right in Figure 6, G,, := m1(Gly;,Yi, ¢;) with ¢; € Y5, and Ge; — Gy,
is induced from the one in (G,Y).

As in Subsection 5.2, m1(Gly;,Y:, ¢:) is isomorphic to the fundamental group of a
Riemann surface of genus ¢g; > 1 with two punctures for ¢ = 1,2, and the edge twist
D., is compatible with this identification.

Thus, it is enough to prove the independence in the case that Y' is as above and

Gp1 =< al)ﬁlv"' 7ag17ﬂg1a$)yi[a1?ﬂl]' "[ag17ﬂgl]wy =1>

GPZ =< 0/17/8{7' . >a;27ﬂ;27x,,y,l[alpﬂﬂ o [a‘,(}l’ﬂ;h]x,y’ =1>".

We have a projection

GPl - ém =< alaﬂlrra y[[a17ﬂ1]xy =1>
sz - G71’2 =< a’17ﬂiaxlayli[a’l7ﬁi]xly, =1>
inducing a group homomorphism
7T1(G17Y17p1) - 71-1((7;17 Ylapl))
whose kernel is generated as a normal subgroup by
{n € m(G",Y',p1)ln € Ker{Gp, — G, }
or n = ynay ', ny € Ker{G,, — G,,},y = e; or &}.

It is easy to see that this kernel is stable under the action of D.,. (Skeptical readers
may first read Section 6, in particular, the proof of Lemmas 6.8-6.10 in Subsection
6.5 and next return here.)

Thus, similarly to the case of BRG, it is enough to show the mdependence of
{De, D'} in I(l)/ ) for (G,Y") the surface group of genus 3, as shown in Figure 7,
which was settled in Lemma 4.4.
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The case #(MCS) > 1. Fix a system S as in Lemma 6.5, and let Yj,e; for 1 <¢:<n
be as shown in Figure 5. Let Sy = S,S5,S3,...,5; be all the systems of Y. We
choose y; € S; as in the definition of MCS. We may assume that y; € S; equals e;
with ¢ # n, by changing the direction of each e; if it is necessary.

We may also assume yi = e;4;(note that 1 is a superscript, not a power). Suppose

that
I #(Si)-1
H H (DyiD?;_J:l)nij =0
i=1 j=1 '

in Iy (1) /Iy (2), Then, by applying the graph reduction along (ei,eit1) and calculating
the image of the LHS by ¢, we have

#(51)-1 1 #(Si)-1
H (DmD )™ H H (DyzD—l)n” =
=2 =2 j=1

(see Proposition 6.1). By induction hypothesis, n;; = 0 for ¢+ > 2 and ny; = 0 for
J > 2 hold.
Thus, we have
(Dylpﬁ)nu = (D, D} )" =0

in LE/] ) / I§,2 ). If S contains another edge e;_1 or €;42, then the induction hypothesis and
the graph reduction along (€;4+1,€i—1) or (eit2,e€;), respectively, imply that ny; = 0.
If S contains only e; and e;41, then Y7 contains another system S’, since #(MCS) > 1.
Choose €},e, € S' so that in the graph reduction along (e}, e}), Y, contains Y3(see
Figure 8.)

Figure 8.

By induction hypothesis in the reduced graph along (e},e}), we have ny; = 0.
(q.e.d.)
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6.4 Reducing non-compact cases to compact ones. In this subsection we assume n > 0.
Let (G,Y) be a graph of surface groups associated with a most degenerate stable n-
pointed curve of genus g. We introduce another kind of compactification. We equip
each puncture @}; with a new vertex P; with a loop L; and put one edge y; from Q); to
P;. Let Y' denote the obtained graph. The graph of groups (G',Y") corresponds to
the compact Riemann surface obtained from the original punctured Riemann surface
by filling up each puncture with a handle (Figure 9).

Figure 9.

There exists a canonical injective homomorphism
¢:mgn=m(GY)Em(Gy,Y) = mgpnp = (G, Y").
By mapping D, for y € EdgeY to D, € Iy/, we have a homomorphism
o : Iy — Iy,

since Y is a subgraph Y'. It is not difficult to see that ¢ preserves the filtration by
checking generators. In fact, the only problem is whether ¢; is mapped into 7(2) or
not, but this is trivial since ¢; = [@g4i, Bg+i] holds in 71 (G',Y'). It is easy to see that
o(0)(B(1)) = d(o(n)) for any @ € Iy, n € Ty

We claim that ¢ is filtration-preserving. To show this, it is enough to prove for any
o€ Ig,m) and for n of the form qiyidgiqfl with d €< Gp,, L; > (see Subsection 5.1
for ¢;) that ‘

(@)™ € Fyimalm +1),

since these n of weight —1 together with the image of 71(G,Y’) generate 71(G',Y").
Recall that ¢; = qiziqi—l. So we have
o(0)(es) = scis™!

and

e(a)(n) = sns™"
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with the same s = 0(g;)g;!. Thus, our claim is reduced to proving that s € 7, ,(m).
To prove this, we have to know the structure of the associated Lie algebra

L:=dgr, (mgn).

As mentioned in [K], we can embed £ into a free non-commutative associative
algebra A over Z with generators aq,B1,...,04,84,71,- .- ,¥Yn-1, and if we equip A
with a gradation by deg(ay) = --- = deg(8,) = 1 and deg(v1) = - - - = deg(yn-1) =2,
then this embedding preserves the gradation.

Let —I be the weight of s. If | > m including the case | = oo, we have s € 7y ,(m).
Assume [ < m. Then, [s,¢;] € mgn(m +2) C 7y n(l+ 2+ 1) holds since ¢ € Ig,m).
Interpreting this in A, we have s - ¢; — ¢; - s =0 in A. We may assume that ¢; is one
of 7;, hence one of the canonical generators of A. ,

Since A is free, s = k- ¢; in A holds for some integer k. However, we have s =
o(qi)q; ! and ¢; was a path chosen from a fixed spanning tree T. We have

7T1(G

4,9, P) C (G|, T, P) C m(G,Y, P).

Then s = o(g;)g; " is in the left group, hence contained in the middle one, and can
be written using only «;(see Subsection 4.1). Since A is free on «;, 8;,7;, this implies
s=k-c;=0in A, that is, s = 1, leading a contradiction.
We have proved that A '
@ : IY — Iy/

is filtration preserving. It is easy to see that bridges and maximal systems of cut pairs
in Y are mapped to ones in Y' respectively. Hence, the independence of BRG, MCS
in Y follows from the ones in Y’, which was proved previously. (gq.e.d.)

6.5 Details on graph reduction.
In this subsection we assume n = 0.

(6.5.1) Precise definition of graph reduction.
Let G,Y,G' Y'Y, Y4,ey = 21,22,... ,2r = €3, P be as in Proposition 6.1. We
shall define a homomorphism '

é: F(G,Y)— F(G,Y'"),

which restricts to

¢ : m(G,Y,P)— m(G,Y', P).

We may consider F(G,Y) as the group generated by

{y,tyly € Edge(Y)}
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with relations
yy = 1, ytyyty = 1, and ty, ty,ty, =1,

for three edges with a common terminal vertex yy,ys,ys in the fixed order(see Sub-
section 4.1).
The edge twist D, maps

Y = yty, Yy — Yl

and leaves the other generators unchanged.
On generators, ¢ is defined as follows:

if y € Edge(Y,) then
yvty =Y, ty;
if y € Edge(Yy) — {21,--- , 2k, Z1,-.. , 2k} then

y? ty = 17
if y=2z or z; thenfor: =1
21 —
2 — e
t,, +— te
tzl = té
and for 2 <1 <k,
Ziy 25 1
1y =t
tz, 11
We define
¢y : Vert(Y) — Vert(Y")
by

p — p if pe Vert(Y;)
p +— t(e) otherwise.

It is easy to see that ¢ maps G, into Gy, (p). It is a tedious but easy task to check
that the relations in F(G,Y) are compatible with the ones in F(G',Y") through ¢;

that is, ¢ : F(G,Y) — F(G',Y") is a group homomorphism. For this, it is enough to
check that
P(y)é(y) =1,
$(y)d(ty)(y~)d(ty) = 1,
¢(ty1)¢'(ty2 )¢(ty3) =1

for y1,y2,ys with the same target vertex. All are easy; for example, we check only
the third identity. Suppose p € Y,. If y1,y2,ys € Y;, then ¢(y;) = y; and there is no
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problem. Otherwise, p = o(ey) or t(ez). In the first case, suppose for example that
y; = €. Then

Bty )B(ty,)B(tys) = tetyty, = 1

holds. The latter case can be checked similarly. Next, suppose p € Y. If p is not
on the path {z,..., 2}, then ¢(¢,,) = 1 holds and no problem exists. If p is on the
path, suppose for example that y; = z; and y3 = Z;11. It is clear that ys is different
from any z;, and thus we have

¢(tyl)¢(ty2)¢(ty3) = tetgl -1 =1.
Now we shall check that
é(m1(G,Y, P)) C m(G',Y", P).

Let = be an element of 71(G,Y, P). Then, = can be represented by an admissible
word (see Definition 2.2)

W =ToYi1"1Y2 " Tn—-1YnTn,

where {y1,...,Yn} is a path from P to P, r; € Go(y,,,) for i = 0,...,n — 1, and
Tn € Gt(yn)- '

‘Regard ey, &> as left parentheses and e;, €; as right parentheses, and decompose w
with respect to these parentheses as follows. Since Y — |e;| — |e2| is not connected
and P € Y,, it is clear that w decomposes as

w= A1B1AyBy---A;BsAsy1,
where A; € F(Gly,,Y,) and B; is one of the following four types with z € F(Gly,, Y4):
(1) 612’51, (2) 62262, (3) €1%€9, (4) €qz€7.

We call this decomposition the decomposition of w along (e1,e2).

Lemma 6.7. Let B be an admissible word of one of the above four types. Let us
denote by s(B) the sum of the numbers of occurrence of t,; for 1 <¢ < k in B minus
the one of t3, for 1 <1 < k. Then we have for each type:

(1) ¢(B) = elte)Pe=t;"" € G,
(2) $(B) = (t)*®) € Gyo

(3) $(B) = e(te)*®

(4) ¢(B) = (t.)*Pe.
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Proof. Straightforward.

It is easy to see that for an admissible word w as above, its image

$(w) = A1¢(B1)A2¢(B2) - - - As¢(Bs)Ast1

is also admissible and belongs to 71(G’,Y", P) under the identification ¢z, = ¢z and
te, = t.. Thus, we have proved that

é(m1(G,Y,P)) C wl(G',Y', P).

(6.5.2) Stability of Ker(¢).

Lemma 6.8. Let w be an admissible word representing an element in m(G,Y, P).
Suppose that w contains only

tz, bz, 2i, %, and Y, Y, ty,ty fori =1---k andy € Edge(Y;).
Then, w # 1 in 71 (G,Y, P) implies ¢(w) # 1.

Proof. Let w be in the form of w = ToY1T1Y2 - - Tn_1YnTn and suppose that w # 1.
Suppose that this word is reducible; that is, this word contains a subword in the form

of
1
yi(ty:) gi-
If y; # Z; nor zy, we may replace this part of w with (¢5,)~' without influence on the

assumption on w. We reduce w in this way as far as possible. If w is still reducible,
then w contains

Eltlzl Z1
or

Zktlzk k-
In the former case, since Y — |21] — |2x| is not connected and back-tracking inside
{#1,...,2r} was already removed, w must contain the subword

- =l
Zomthm
which can be replaced with tz_kl. In the latter case, w contains
1 - _
Zl ... Zktzk Zk ... zl,

which can be replaced with t;ll. By iterating these operations, we may assume that w

is reduced and w # 1. We want to prove that ¢(w) = é(ro)d(y1) - - ¢(yn)d(ryn) # 1.
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Let us delete all the occurrence of ¢(z;) for ¢+ = 2,... ,k from the word ¢(w) since
they equal 1, and obtain a new word

¢'(w) == Aod(yi, ) A1(yi,) -+ H(yi, ) As
where {yi,..., ¥, } = {y1,.-- ,yn} —{22,22,... 2, Zr} and Aj = ¢(ri; - -74;,,-1)

for j = 0,...,s with 49 = 0 and 2543 = n + 1. Then we have y;; . ,...,¥i;;, -1 €
{#z2,--.,2r}. From the restriction on w that w contains only ¢; and ¢,, among
elements in the form t,, y € EdgeYy, it follows that r;; 1; =rj; 40 =--- =7y, 1 = 1;

that is, A; = ¢(rs;). It is enough to prove that the word ¢'(w) is reduced and not
equal to the word {1}. Suppose that this word is not reduced. Then it contains a
subword

¢(yz_, )AJ¢(y't, +1 )

Wlth A] € Gt((b(yij )) and 45(.%‘;4.1) = ¢(yl_v)
Case 1. y;; # z1 nor z;. In this case, we have gb(y,'j) = Yi;, ¢(yi,-+1) = Yijp = Yiso

and either i;41 = ¢; + 1 or y;;41 € {22,..., 2} holds. Suppose that 1;,; = ¢; + 1
holds. Since ¢ : Gt(y,-j) — Gt(y,-j) is an isomorphism and ’
¢(yi; )6 (ri; )b (yis+1)

is reducible,

Yi; Ti; Yi;+1
is also reducible, contradicting the assumption. Now we may assume ¢j4q1 # %; + 1.
It is easy to see that #(y;;) = t(zx) and y;;41 = % hold. Since Y — |z1| — |z¢| is not
connected and w contains only z;, Z; among Edge(Y) — Edge(Y:), {vi;4, - ¥i;js—1)
is a walk from #(zx) to t(zx) consists of only z;, z; for 2 <7 < k. The assumption on
w and irreducibility of w imply that this walk has no back-tracking. Thus, this walk
is empty, contradicting the fact that y;; 11 = 2.

Case 2. y;; = z; or z;. If y;; = 21, then similarly to Case 1, {yi; 41" ¥i;,,—1} must
be a path from #(z1) to t(z1). The corresponding part of w must be

21 ZRTREE 2
for some ry ¢ Image(G,, ). By passage by ¢, we have a reduced word
ere,
contradicting the assumption. If y;; = z;, then we have
Yi; Ti; Yi;+1 = 21745 21,

whose image by ¢ is also reduced.

Consequently, both cases are impossible and every y; must coincide with one of
zj for some 2 < j < k. This implies that P = t(z), and similarly to Case 1, the
irreducibility and the assumption on w imply that w = 1 holds. (q.e.d.)
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Lemma 6.9. The kernel of ¢
Ker{¢ : m(G,Y,P) — m(G")Y', P)}

is generated as a normal subgroup by the following four types of elements. Recall
that we decomposed a word of m1(G,Y, P) and defined four types in Definition 6.2,
and defined a function s in Lemma 6.7. Let U be a path from P to o(e;) and V be a
path from P to t(ey), which contain no edge in Edge(Yy) — {#1,%1,... ,2k,2r}. The
generators are: |

(1) UB(te,)*BXU~! for B of type 1,

(2) VB(te,) *BYV=1 for B of type 2, ‘

(3) Ults,)* BV Bz74_1 --- 5 U for B of type 3,

(4) VB(ts,)* P 2125 -+ 2,V for B of type 4.

Proof. It is easy to check that these elements belong to Ker(¢) by using Lemma 6.7..
Let  be an element of Ker(4). Take a reduced word w representing z, and decompose
1t into

w = AlBlAQBg tee A3B3A5+1
as in Definition 6.2. Suppose that B is of type 3 for example. Other cases can be
handled similarly. In this case,

w = Al(tgl)_s(Bl)U_lU(tél)s(Bl)Blkak_l s 21U~1U2122 s ZkAz . 'B3A8+1
holds. Thus, it is enough to prove that
wo = Al(tél)—s(3)21z2 ce2pAg - BsAsp

can be generated by the above four types of elements. Applying this operation on
Bs,. .., B in this order, we obtain w' satisfying the assumption of Lemma 6.8. Since
#(w') = 1, we have w' = 1 by Lemma 6.8. (q.e.d.)

Lemma 6.10. For any y € Edge(Y), the edge twist D, € Aut(m(G,Y, P)) stabilizes
Ker(¢).

Proof. It is enough to check that the image by D, of each generator of Ker(¢)
belongs to Ker(¢) again. This is straightforward; for example, let w be an element of
Ker(¢) of type 3 in Lemma 6.9. If y does not occur in BzxZk—1 - - - 1, then we have

¢ oD, (U(ts)* P Bzzg_y---5U™Y)
= ¢(Dy(U))$((tz,)* P Bzrzk—1 -+ 21)$(Dy(U™)) = ¢(Dy(UU ™)) = 1.
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Thus, we may assume that y occurs in BZrzZg_1 - - - Z1, and it follows that y does not
belong to Edge(Y;). If y is not any of z;, Z;, then we have

¢(Dy(v)) = ¢(v)
for any word v since ¢(ty) = ¢(ty) = 1, and consequently, ¢(Dy(w)) = ¢(w) =1
holds.

The rest case 1s y = z; or z; for some :. In this case, observe that the number
of occurrence of z; in BZypZr_1--- % is the same with that of z; for each 7. Since
Dy(zi) = zit,, and Dy(z;) = zitz, = t;lzi, it is easy to see that

¢o Dy(BZka_l <. 21) = é(BEkfk__l e 21)
holds; and consequently, we have ¢ o Dy(w) = ¢(w) = 1. The other types can be
checked similarly. (q.e.d.)
Now we can define
@ : Iy — Out(m (G, Y', P))
by
o(Dy) - ¢(z) = ¢(Dy - z),
since Dy stabilizes Ker(¢).

(6.5.3) Explicit description of ¢.

Lemma 6.11. The homomorphism ¢ maps an edge twist to an edge twist or identity
as follows:

D, — D, ify¢€ EdgeY,,

D, — id ifyeEdgeY;—{z,%1,.. 2k 2k},

D, — D, forl<i<n.
Proof. Let w be a word in 71(G,Y, P). Let D, denote the RHS of the above table.
It is enough to show that

¢(Dy - w) = D, - $(w)
for each case. If y € Edge(Y;), there is no problem.

If y € Edge(Ya) — {#1,%1,--- ,2k, Zt}, it is obvious that ¢(D, - w) = ¢(w) holds
since Dy -y = yty, Dy - § = yiy :,tgly, and ¢(t,) = 1. Suppose that y = z; or Z; for
some ¢. Decompose w into w = A1 B1AyBy -+ A;Bs A1 as shown in Definition 6.2.
Since Dy(A;) = A; and Dj(#(A:)) = ¢(Ai), it is enough to show that

¢(Dy - B) =D, - §(B) = D. - ¢(B)
for B of any one of four types in Definition 6.2. This can easily be checked; for
example, suppose that y = z; and B is of type 3. Then, it is easy to see that
4Dy - B) = e(t) P
and that
Dy ($(B)) = De(e(te)*™®) = e(te)* 1,

Other cases follow similarly. (q.e.d.)



142

Lemma 6.12. The homomorphism ¢ preserves the filtration.
Proof. Let a be an element of Igfm). Then,

p(a)(¢(z)) = d(al2))

and

(w(a)($(2))¢(e) " = ¢(a(z)2™") € $(m (G, Y, P)(m + 1))
c m(G,Y',P)(m+1)

hold for all z. Therefore we have p(a) € I;T). (q.e.d.)

We have proved all statements in Proposition 6.1.
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