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Application of the Effective Hamiltonian Method to

Relative Diffusion

BPE#REAIE JLHEE (Hideaki Kitauchi)
B 44 # (Tsutomu Imamura)

The interesting phenomenon that a pair of fluid particles, which
are subject to convection in steady, incompressible, statistically
isotropic turbulent flow, relatively diffuse toward the perpendicular
direction to the initial relative position vector between them
faster than toward the parallel direction at the start is found by
means of the effective Hamiltonian method. In addition, thé fact
that the mean square value of the relative distance between them
increases exponentially just before Richardson's four-thirds law is

satisfied is reported.

§1. Introduction

One of the most interesting features of turbulence is the
enhancement of transport processes. Relative diffﬁsion of a pair of
fluid particles has been discussed by many authors from various
points o©of view. These points of view are, for instance, the
similarity théory,lﬁ) the direct interaction approximation,4) the
vortex stretching model, 5 the scaling law® and the effective
Hamiltonian method.?-9)

The effective Hamiltonian method, a kind of calculus of variationé,
is mathematically clear about the applicable limit of its approximation
and we can easily develop the degree of its approximation. In

addition, this method has the reasonable contents: including the
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mechanism to suppress the contribution from the energy containing
range’) and the appearance of Richardson's four-thirds law.19 By
using this method, the fact that the mean square value of the

relative distance between two fluid particles increases in proportion
to the square of the diffusion time, 72, at the start,?) faster than

1? at the next,® £ during the intermediate time,® and r at last?) has
been reported. In those works,7? the trial function, the effective
Hamiltonian, has two parameters, and it is implicitly assumed that
all of three components of the relative position vector grows
equally. However, they will grow differently at the start, so we
consider the growth of the perpendicular component and the parallel
component to the initial relative position vector with four parameters.

We formulate that in $2 and obtain the set of nonlinear equations
to determine the parameters. In §3, we calculate those equations for
the concrete cases by Newton method. Finally, we summarizée the

results in §4.

§2. Formulation

We consider a pair of fluid particles which are subject to
convection in steady, incompressible, statistically isotropic turbulent
flow. If they are at the position x{ and x§ respeétively at the
initial time =0, the probability that we can find them at the
positions x! and x2 at the time #>0) is determined by the probability

density function

d)(x 1;x25t)=<X(x 19x2yt)>lb (2>1)

where

2
x(xL,x2,n=] 8 [x*-X x§,n]. 22
i=1
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Here { ), denotes the statistical average with respect to the

Eulerian velocity field u(x,f), d is the Dirac delta function in three
dimensionsg, and X(x{,) denotes the position of the i-th particle at

the time 7, which is at the position x§ at the initial time #=0. The

equations of motion are .
Xgn=ulXxhnll  (=1,2), 2.3)

By using this relation, the time evolution of the probability

density function is determined by

0 . ¢ i
[5 X utetor v]xe 22,020, @4)
i=1

where V' is the nabla operator with respect to xi. Eq.(2.4) can be
solved formally as

2 [f i,
X, x2,0=T [ & f armater ¥ Trerxzo, 2.5)

where T is the time ordered operator and (') denotes the temporal

position of the coperator., For example, if #<h<i,
T [Viu(x,tu(x,i)1=u(x,5)Va(x,i). (2.6)

If we assume that the distribution for the Eulerian velocity field
is statistically statiomary, statistically isotropic, and joint

Gaussian whose mean and variance are given by
u(x,0)=0, , (2.7
Srix i D-x ") 1 't = (et Yt Yy

N (2.8)
= ] dl St -t YA (Deils @Kk,

where

Aklmﬁk,-’l%’— (j=1,2; k,=1,2,3), 2.9)

then eqg. (2.1} becomes
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0

dxl,x2,0)= j dkidléfz T [ei}; k,i:I ! d'de " Splx e Yx Ke 0,0 "1 Vit '>Vkr”)]
@m 2.10)

2
i
xe i=

ki. (x_"-x&)

This is the formal expression of the probability density function
which gives the probability that a pair of fluid particles are at
the position x! and x2 respectively at the time £(>0).

In order to calculate furthermore, we employ the effective
Hamiltonian method, in which the probability density function is

approximated to

2
begr(x1,x2,0= [ g(l%{d)ig_z e kAngt L K- @hxd) Q.11)

where I(k',k2#) is determined such that the error

E(A)=A)<ADesy (2.12)
becomes minimum. Here {A) and (A),; are the statistical average of a
certain physical quantity A(xL,x2,/) with respect to Hx1,x2,) and

e (x 1, x2,f) respectively:

A)= ] dxldx? Alx1,x2,Hdp(x 1,x2,7), @13
Adegr= f dxldx? A(xL,x2,Hbesr(x 1, x2,0). (2.14)
The effective probability density function {p(x1,x2,7) satisfies
[g—t +H(-iVI,—iV2,t)]d)eﬂ(x Lx2,n=0, (2.15)
2
begr(x 1,x2,0)=]] 8 [xi-x4l, 2.16)
i=1

where H(—iVl,-iVZ,t) is the effective Hamiltonian, a trial function,

which is associated with k' k2, by
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I(k*,kz,r)=[ dr’ H(k',k%,t"). .17

According to the normalization condition of the effective probability
density function

dx'dx? degp(x1,x2,0=1, (2.18)

Itk!,k%,0 must satisfy
1{0,0,H=0. (2.19)

Substituting equations (2.13) and (2.14) into eqg.(2.12), using

equations (2.10) and (2,11), and neglecting the terms of order 05,

we can minimize the E(A) at the first approximation,

EA)= ] dg‘i)%zdxldxz A(xLx2p
. iy

7 3 o
x[l(k‘,kz,t)%g Z ] dr'dr”. ] dlS(z,t'fr")Ak,(l)eir<xf-xf>v;v§] (2.20)

k,i=1

, .
1472 . i i i
« e—I(k ¥ 1 ,t)ﬂ; ki (x 'x6)=0,

where eq.(2.8) and the incompressibility are used. It should be

mentioned that this is not a simple perturbation expansion with

respect to § but rather is a kind of Bethe-Salpeter treatment!l in

the sense that repeated part of higher order terms are included.
There is no obstacle to calculate the statistical averages of any

phys1cal gquantities that are assocw.ted with the relative diffusion.

We are interested in the relative distance between two fluid

particles, so we exchange the variables x!, x2, k!, k? into
r=x1-x2, ro=x$-x§, 2.21)

(2.22)

Tayp2
1oy2 xo+xd

R:x-x,Rao 2
)
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K=k ‘ékz, | (2.23)
K=k!+k2. : (2.24)

Considering the perpendicular component of r to rp, r;, and the
parallel one, ry, we assume the form of the Ik,K,1) as

1k K D=L, OK T+Lan0K 7180k LBk, (2.25)
where K| is the projection of K toward the perpendicular direction

to ry, K, the projection of K toward the parallel direction, and so

on. These o (1), oy(r), P, PB(f) are the unknown functions which are

determined by solving the equations,
ERY)=0, E(R7)=0, (2.26)
E(r})=0, E(r})=0. 2.27)

Substituting eq. (2.25) into eq.(2.11) and integrating it with respect

to k and K, we obtain the effective probability density function,
degr(r, R, D)= i

Cuyay OBV oy DBAD) (2.28)

% ¢ -(R1-Ra)) 20 ()-(Ri-Rony*120y8yr 2 28 0} u-ro) 1 2Bin(e)

Therefore, we obtain

<l‘ l)“(" J_)eﬁ’ "‘26_1.(’) s (2 29)
(rf)“<r;2>eﬁ= rg+Bi0), (2.30)
RHSRD=R2, +20,(8), (2.31)
RADHRDer=RE o /0) .32)

by means of eqg.(2.14). We make use of eq.(2.20) and eq. (2.25) so as

to calculate eq.(2.27). Then the first of eq.(2.27) becomes

E(ri):.— [ ik;d_lgdrdu ri [I(k,K - ] dr (t-‘t)[ dl 5,7

K- k-1
{% 2+4k2+[%(K2 ( 1) CSURPTE ( )]e‘l r}] (2.33)

x eIk K ty+ik- (r-ro)+iK- (R-Ro)=(),

By integrating with respect to R, K, and r, eq.(2.33) becomes
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E(@r)= [ dk [‘(%mki’f%ﬁukf/)l\klﬁ(k)- [ dr (t-r)[dl (XS]
| ’ (2.34)

kD
x { - %k zAklﬁ(k)*'Z(kZ- 7 )Akia(k"'l)} ] e-ﬁik_%/z-ﬁ//klem-ik//’b:(),

where Ay denotes the Laplacian with respect to k;. Finally, integrating

with respect to k, we obtain

! 2
B1= ] dt (1) f dl 8d,7) [% -(4- %)e—ﬁdf/2-ﬂ~lﬁ/2+il~m] : (2.35)

Similarly, the second of eq.(2.27) becomes

' 2
B~ ] dr (m)[ df S¢,1) [% -(4- 41_’211)e-ﬁuf/z~ﬁ,/tﬁ/z+it,,ro] _ (2.36)

Equations (2.35) and (2.36) are the set of nonlinear eqguations with

respect to PB; and fy. Same procedure can be used for calculating

eqg.(2.26), but we are only interested in the relative distance

between two fluid particles.

§3. Numerical Calculation

In order to calculate P; and Py concretely, we assume the form of

the two-time correlation function as

S(k,n=Ak)e* " 1"12, 3.1
where c
— s <
SIS (Oskska
Alk)= , (3.2)
0 (ka<k) .

or
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c (0k<k,)
(kg P+r1U3)k /4 +i%)

AR)= ' 3.
®)= 0 <) (3.3)

Here C is determined such that ?),=1 from eq.(2.8) and k¢ is the

inverse of the typical length of turbulence. Both equations (3.2)

and (3.3) satisfy Kolmogorov's five-thirds law because of the energy
spectrum Ek)=4nk2A(k).

Substituting eq.(3.1l) into equations (2.35) and (2.36), and

integrating them with respect to T, we obtain
k

kd
. 2
Bi=8n f dk kAR Tk,D] - f dky (1 + fé)e-ﬁﬂkZ-kﬁ>’2-ﬁ"kﬁf2cos(km)], (3.4)

0

2

kd k
ﬁ,Fusn] dkkA(k)T(k,t)[%k- { dky; (1 -%’ e-w2-kf%)/e-ﬁnkﬁfzcos(k,,ro)], (3.5)
0 fo

where ,
Ttk =4 [Vizectayve=1], (3.6)
kD2 3.7

We calculate the gset of nonlinear equations (3.4) and (3.5) by the

Newton method for the cases;

(i) ko=10%, ks=10%, rp=0.1, u?),=1, where A() is given by eq.(3.2),

(i1) ko=10"', k=102, k=105, r=0.1, @2),=1, where A(k) is given by

eq. (3.3),

(111) ko=10"!, k#=10%2, m=0.1, W2),=1, where A(k) is given by eq.(3.2).
Cases (j) are shown in Fig.l1l, (ii) in Fig.2, (ijij) in Fig.3. In

Fig.n. (d), where ﬁ=l,2,3, we can see that P, increases faster than B

does at the start. This means that the relative distance between two
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fluid particles grows toward the perpendicular direction to the

initial relative posgition vector faster than toward the parallel
direction at the start. We can also see that {(¢?) is proportional to
2 at first in Fig.n.(b), increases exponentially at the second place
in Fig.n.{(c), grows up to almost kf, the sqguare of the typical

length of turbulence, in proportion to # at the third place in

Fig.n.{a), and is proportional to ¢ at last.

§4. Summary

We consider the time evolution of the mean square value of the
relative position vector between two fluid particles, in which the
relative position vector is decomposed into the perpendicular component
and the parallel component to the initial relative position vector.
As a result, we understand that the relative distance between two
fluid particles grows toward the perpendicular direction to the
initial relative position vector faster than toward the parallel
direction at the start. Moreover, we find that the mean sqguare value
of the relative distance increases exponentially just before

Richardson's four-thirds law is satisfied, which is consistent with

Y.Inaba and M.Suzuki (1985).9
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