
Title A P-Complete Language Describable with Iterated Shuffle

Author(s) Shoudai, Takayoshi

Citation 数理解析研究所講究録 (1992), 796: 1-7

Issue Date 1992-07

URL http://hdl.handle.net/2433/82766

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39215001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science

Kyushu Institute of Technology
Iizuka 820, Japan

Abstract

We show that a P-complete language can be described as a single expression with the
shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite
alphabet.

1 Introduction

In this paper, we construct a P-complete language by using shuffle operator \triangle , iterated shuffle
f , union \cup , concatenation ., Kleene $star*and$ intersection \cap over a finite alphabet. The shuffle

operator was introduced by [10] to describe the class of flow expressions. Formal properties

of expressions with these operators have been extensively studied from various points in the

literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the

iterated shuffle operator. For example, there are two deterministic context-free languages L_{1} and
L_{2} such that $L_{1}\triangle L_{2}$ is NP-complete [9]. Moreover, by allowing the synchronization mechanisms,

any recursively enumerable set can be described $[1, 3]$.
$h[2,11]$, by using the shuffle and iterated shuffle operators together with $\cup,$

$\cdot,$ $*,$ \cap , an NP-
complete language is described. We employ the same set of operators to describe our P-complete

language. In the proof of P-completeness, the intersection operator plays an important role

to make the language polynomial-time recognizable. However, we do not know whether the
intersection operator is necessary to define a P-complete language as in the case with NP-complete
$[2, 11]$.

Recently, P-complete problems have received considerable attentions since they do not seem
to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new
kind, which is described by a single expression.

数理解析研究所講究録
第 796巻 1992年 1-7

2

2 Preliminaries

Let Σ be a finite alphabet and Σ^{*} be { $a_{1}\cdots a_{n}|a;\in\Sigma$ for $i=1,$ $\ldots,$
n and $n\geq 0$}. A subset of

Σ^{*} is called a language.

Definition 1 For languages $L,$ L_{1} and L_{2} , we define the shuffle operator \triangle , the iterated shuffle
\dagger and operators, $*,+as$ follows:

(1) $L_{1}\triangle L_{2}=\{x_{1}y_{1}x_{2}y_{2}\cdots x_{m}y_{m}|x=x_{1}x_{2}\cdots x_{m}\in L_{1},$$y=y_{1}y_{2}\cdots y_{m}\in L_{2}$ and $x_{i},y_{i}\in$

Σ^{*} for $i=1,$ $\ldots,$ m} (shuffle operator).

(2) $L^{\uparrow}=\{\epsilon\}\cup L\cup(L\triangle L)\cup(L\triangle L\triangle L)\cup\cdots$ (iterated shuffle).

(3) $L_{1}\cdot L_{2}=$ { $xy|x\in L_{1}$ and $y\in L_{2}$ } (abbreviated to $L_{1}L_{2}$).

(4) $L^{*}=\{\epsilon\}\cup L\cup(L\cdot L)\cup(L\cdot L\cdot L)\cdots$.
(5) $L^{+}=L\cdot L^{*}$.

We identify a language $\{w\}$ which consists of only one word with w . Thus, we will denote
$\{w\}^{*},$ $\{w\}^{+},$ $\{w\}\dagger,$

\ldots by $w^{*},$ $w^{+},$ w^{\uparrow} , respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown P-

complete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit $C=(C_{1}, \ldots, C_{m}, C_{m+1}, \ldots,C_{n})$, where each C_{i} is either (i) $C_{i}=true$ or

false $(1 \leq i\leq m)$, (ii) $C_{i}=NOR(C_{j},C_{k})$ ($m+1\leq i\leq n$ and $j,$ $k<i$).

PROBLEM: Decide whether the value of C_{n} is true.

In the following section, CVP represents the set of all circuits whose output is true.
Let Σ be a finite alphabet, $v_{1},$ $v_{2},$ \ldots,v_{m} be symbols where $v_{i}\in\Sigma$ for $i=1,$ $\ldots,$

m and
$w_{1},w_{2},$ \ldots,w_{m+1} be words on the alphabet $\Sigma-\{v_{1},v_{2}, \ldots,v_{m}\}$. By using the iterated shuffle
operator, the language $\{v_{1^{n}}v_{2}^{n}\cdots v_{m^{n}}|n\geq 1\}$ can be described as $(v_{1}v_{2}\cdots v_{m})\cap v_{1}v_{2}v_{m}$.
Moreover, we can represent $\{w_{1}v_{1^{n}}w_{2}v_{2^{n}}\cdots w_{m}v_{m^{n}}w_{m+1}|n\geq 1\}$ as

$(w_{1}w_{2}\cdots w_{m+1}\triangle(v_{1}v_{2}\cdots v_{m}))\cap w_{1}v_{1}^{+}w_{2}v_{2}^{+}\cdots w_{m}v_{m}w_{m+1}$.

We often use this form of languages to define our P-complete language. Whenever such languages
are used in the next section, we will not describe them explicitly by using the shuffle operator and
the iterated shuffle.

3

3 A P-complete language

The main result in this paper is the following theorem.

Theorem 1 A P-complete language can be described with operators $*,\cup,\cap,\triangle,\uparrow$.

3.1 Definition of the language

We will describe a P-complete language \mathcal{L} with the alphabet $\Sigma=\{0,1, a, b, u, v,x, y, z\}$. This
language is defined stepwise.

At first, a language L is defined as follows:

L_{a} $=$ $a^{+}0\cup a^{+}1=$ { $a^{i}\beta|i\geq 1$ and $\beta\in\{0,1\}$ }.
L_{bba} $=$ $(b^{+}1b^{+}1a^{+}0)\cup(b^{+}0b^{+}1a^{+}1)\cup(b^{+}1b^{+}0a^{+}1)\cup(b^{+}0b^{+}0a^{+}1)$

$=$ { $\dot{W}\beta’b^{k}\beta’’a^{i}\beta|i,j,$ $k\geq 1$ and $(\beta’,$ $\beta’’,$ $\beta)\in\{(1,1,0),$ $(0,1,1),$ $(1,0,1),$ $(0,0,1)\}$}
L_{b} $=$ $b^{+}1=\{b^{i}1|i\geq 1\}$.

L $=$ $L_{a}^{+}L_{bba}^{+}L_{b}$.

The following language T (resp. F) is used for a distribution of true (resp. false) value.

T_{x} $=$
$\{1zx_{*}^{i}.u^{i}|i_{1}\geq_{i}1\}$, $T_{y}=\{1y^{i}v^{i}|i\geq 1\}$.

T_{xy} $=$ $\{1zxu^{i}1yv|i\geq 1\}$, $T_{yy}=\{1y^{i}v^{i}1y^{i}v^{i}|i\geq 1\}$.

T_{odd} $=$
$T_{xy}T_{yy}^{*}T_{y}\cap T_{x}T_{yy}^{*}*=$ { $1zx^{i}u^{i}(1y^{i}v^{i})^{j}|i\geq 1,j\geq 1$ and j is odd.}.

T_{even} $=$ $T_{x}T_{yy}^{*}T_{y}\cap T_{xy}T_{yy}$ $=$ { $1zx^{i}u^{i}(1y^{i}v^{i})^{j}|i\geq 1,j\geq 1$ and j is even.}.

T $=$ $T_{x}\cup T_{odd}\cup T_{even}=$ { $1zx^{\dot{*}}u^{i}(1y^{i}v^{i})^{j}|i\geq 1$ and $j\geq 0$ }.

F is defined in a similar way by simply replacing a symbol with 0 in the definition of 1.

F $=$ { $0zx^{i}u^{i}(0y^{i}v^{i})^{j}|i\geq 1$ and $j\geq 0$ }.

Subwords $1y^{i}v^{i}$ (resp. $0y^{i}v^{i}$) of a word in T (resp. F) are combined with $b^{i}0$ (resp. $b^{i}1$) of
words in L and determines the value of the ith variable. These three languages $L,$ T and F are
combined one another by using the shuffle operator and the iterated shuffle.

$\mathcal{J}=L\triangle(T\cup F)^{\uparrow}$.

4

A language \mathcal{K} is used to make our language \mathcal{L} polynomial time decidable. We construct the

language \mathcal{K} stepwise as follows:

A_{11} $=$ $\{a^{i}11zx^{i}u^{i}|i\geq 1\}$.
A_{00} $=$ $\{a^{;_{00zx}:_{u^{i}}}|i\geq 1\}$.
A_{01} $=$ $\{a^{i}01zx^{i}u^{i}|i\geq 1\}$.

In a similar way, the following languages are defined:

B_{01} $=$ $\{b^{i}01y^{i}v^{i}|i\geq 1\}$.
B_{11} $=$ $\{b^{i}11y^{i}v^{i}|i\geq 1\}$.

M $=$ $(A_{11}UA_{00})^{+}(B_{01}B_{01}A_{01})^{+}B_{11}$.

The language M contains a word w in which $zx^{i}u^{i}$ occurs more than once in w for some i ,

where $zx^{i}u^{i}$ corresponds to the ith gate. We will remove such words w from M so that each $zx^{i}u^{i}$

occurs exactly once for all $1\leq i\leq n$.

N_{z} $=$ $(zxuzx^{2}u^{2}\triangle(xuxu)^{\dagger})\cap(zx^{+}u^{+}zx^{+}u^{+})=\{zx^{*}u^{:}zx^{i+1}u^{n+1}|i\geq 1\}$.

N_{odd} $=$ $zxuN_{z}^{*}\cap N_{z}^{*}zx^{+}u^{+}=$ {zxuzx2 $u^{2}\cdots zx^{i}u^{i}|i\geq 1$ and i is odd.}.
N_{even} $=$ $zxuN_{z}^{*}zx^{+}u^{+}\cap N_{z}^{*}=$ { $zxuzx^{2}u^{2}\cdots zx^{i}u^{:}|i\geq 1$ and i is even.}.

N $=$ $N_{odd}\cup N_{even}=$ {zxuzx2 $u^{2}\cdots zx^{j}u^{i}|i\geq 1$ }.

Then, we define the language \mathcal{K} which will be used for allowing a language \mathcal{J} to be in P.

$\mathcal{K}=M\cap(N\triangle\Sigma’*)$, where $\Sigma’=\Sigma-\{u,x, z\}$.

Finally, we defined the language \mathcal{L} as follows:

$\mathcal{L}=\mathcal{J}\cap \mathcal{K}$.

3.2 Proof of the P-completeness

Theorem 1 follows from the next lemma.

Lemma 1 \mathcal{L} is log-space equivalent to CVP, i.e., \mathcal{L} is log-space reducible from CVP and CVP is

log-space reducible from \mathcal{L} .

5

w $=$ $a11zxua^{2}11zx^{2}u^{2}a^{3}00zx^{3}u^{3}b01yvb^{2}01y^{2}v^{2}a^{4}01zx^{4}u^{4}$

$b^{2}01y^{2}v^{2}b^{3}01y^{3}v^{3}a^{5}01zx^{5}u^{5}b^{4}01y^{4}v^{4}b^{5}01y^{5}v^{5}a^{6}01zx^{6}u^{6}b^{6}11y^{6}v^{6}$.

Figure 1: This above circuit is transformed to the word w .

Proof. We will define a function f from CVP to Σ^{*} . f is a function which transforms $C=$

$(C_{1}, \ldots,C_{n})\in$ CVP to $f(C)=w_{1}\cdots w_{n}w_{n+1}\in\Sigma^{*}$, where

$w_{i}=\{\begin{array}{l}a_{i}^{i}11zxua.00zx^{|}u_{b^{i}01y^{k}v^{k}a^{i}01zx^{i}u^{i}}^{i_{k}}b01y^{j}v^{i_{j}}(C^{i}=NOR(C_{j},C_{k}))(C_{i}=true)(C_{|}.=false)b^{n}11y^{n}v^{n}(i=n+1)\end{array}$

It is easy to see that this function is computable in log-space.
We show following two claims.

Claim 1. $f(C)\in \mathcal{L}$ for every $C\in$ CVP.

Proof. Let $w=w_{1}\cdots w_{m}w_{m+1}\cdots w_{n}w_{n+1}$ be a word transformed from some n-gates instance
$C=(C_{1}, \ldots,C_{m}, C_{m+1}, \ldots,C_{n})$ where C_{i} is an input gate for $1\leq i\leq m$, an NOR gate for
$m+1\leq i\leq n$ and an output of this circuit is true. Let $\beta_{i}=1$ (resp. $\beta_{i}=0$) if the value of C_{i} is
true (resp. false) for $1\leq i\leq n$.

According to $B=(\beta_{1}, \ldots,\beta_{n})$, we divide w_{i} into two words $w_{i’}$ and $w_{i’’}$ as follows:
(1) For $i=1,$ $\ldots,$ $m,$ $w_{i’}=a^{i}\beta_{i},$ $w_{i}^{u}=\beta_{i}zx^{i}u^{i}$.
(2) For $i=m+1,$ $\ldots,$ $n,$ $w_{i’}=\dot{\mathcal{U}}\overline{\beta}_{j}b^{k}\overline{\beta}_{k}a^{i}\overline{\beta}_{i},$ $w_{i}^{n}=\beta_{j}y^{j}v^{j}\beta_{k}y^{k}v^{k}\beta_{i}zx^{i}u^{i}$.
We note that $w_{i’}$ is in L_{bba} since $C_{i}=NOR(C_{j}, C_{k})$.
(3) $w_{n+1’}=b^{n}1,$ $w_{n+1}^{n}=1y^{n}v^{n}$.

6

It is easy to see that a word $w’=w_{1’}\cdots w_{n+1’}$ is in $L=L_{a}^{+}L_{bba}+L_{b}$.
On the other hand, since $w^{n}=w_{1}^{n}\cdots w_{n+1’’}$ is constructed with subwords of the form $\beta_{i}zx^{i}u^{i}$

or $\beta_{i}y^{i}v^{i}$ and for each NOR gate, input gate numbers of this gate are always smaller than its num-
ber, we can describe the word $w”$ as word in $t_{1}\triangle t_{2}\triangle\cdots\triangle t_{n}$, where $t_{i}=\beta_{i^{Zx^{i}u^{i}\beta_{iy^{i}v^{i}\cdots\beta_{iy^{i}v^{i}}}}}$.
Since $t_{i}\in T$ or F for $i=1,$ $\ldots,$ $n,$ $f(C)=w_{1}\cdots w_{m}w_{m+1}\cdots w_{n}w_{n+1}$ is in $w’\triangle t_{1}\triangle\cdots\triangle t_{n}\subset$

$L\triangle(T\cup F)\dagger=\mathcal{L}$. \square

Since every word w of \mathcal{L} is contained in $M,$ w is of the form $w=w_{1}\cdots w_{m}w_{m+1}\cdots w_{n}w_{n+1}$,

where, for $i=1,$ $\ldots,$ $n+1$,

$w_{i}=\{\begin{array}{l}a_{\ell^{\ell}.\prime}\beta\beta.\cdot zx^{\ell}\cdot u_{b^{1’’}\cdot 01y^{\ell_{i’’}}v^{\ell’’}\cdot a^{\ell_{i}}01zx^{\ell_{j}}u^{\ell}}^{\ell}b0^{i}1y^{l}\cdot v^{\ell’}\cdot\cdot(1\leq_{+^{i_{1}\leq_{\leq^{m_{i’}}\leq^{\beta}n^{\in\{0,1\})}}}}(m)b^{\ell_{n+1}}11y^{\ell_{n+1}}v^{l_{n+1}}(i=n+1)\end{array}$

We transform a word $w\in \mathcal{L}$ to a circuit $C=(C_{1}, \ldots, C_{m}, C_{m+1}, \ldots,C_{n})$ as follows:

(1) For $i=1,$ \ldots,m , if $\beta_{i}=1$ then $C_{i}=true$ else $C_{i}=false$.
(2) For $i=m+1,$ $\ldots,n,$ $C_{i}=NOR(C_{j}, C_{k})$ where $j=\ell_{i’}$ and $k=\ell_{i}^{u}$.

It is easy to see that this transformation, say g , is a weU-defined function computable in

log-space.

Claim 2. $g(w)\in CVP$ for every $w\in \mathcal{L}$.
Proof. For $w\in \mathcal{L}$, let w^{n} be the word obtained by dropping off the contribution from L . Then w^{u} is
in $(T\cup F)\dagger$ and has the form $c_{1}c_{2}\cdots c_{3n-2m+1}$ where $c_{r}=\beta_{r}zx^{p_{r}}u^{p_{r}}$ or $\beta_{r}y^{Pr}v^{p_{r}}(\beta_{r}\in\{0,1\},p_{r}\geq$

1 and $1\leq r\leq 3n-2m+1$). Since $w”$ contains $nz’ s$, there exist n words $t_{1},$ $t_{2},$ $\ldots,t_{n}\in L\cup F$ such

that $w”$ is in $t_{1}\triangle t_{2}\triangle\cdots\triangle t_{n}$. It is easy to see that each $c_{r}(1\leq r\leq 3n-2m+1)$ is a subword of

some $t_{i}(1\leq i\leq n)$. Thus, without loss of generality, we may assume that for each $i=1,$ $\ldots,$ $n,$ t_{i}

is of the form $\beta_{i}zx^{i}u^{i}\beta_{i}y^{i}v^{i}\cdots\beta_{i}y^{i}v^{i}(\beta_{i}\in\{0,1\})$. Since $w”$ is also in $N\triangle\Sigma’*$ and for $1\leq i\leq n$,
a subword $\beta_{i}y^{i}v^{i}$ of $w”$ does not occur before a subword $\beta_{i}zx^{i}u^{i}$ of w^{n} , we have $j,$ $k<i$.

We claim that for $i=1,$ $\ldots,n,$ $t_{i}\in T$ if and only if the value of C_{i} is true. This is shown by the

induction. For $i=1,$ $\ldots,$
m , if $\beta_{i}=1$, then t_{i} must be in T . Thus, by definition of $g,$ $C_{i}=true$.

For $i\geq m+1$, suppose that for $j,$ $k<i$, this claim is true. We only discuss the case of $t_{j}\in T$

and $t_{k}\in T$. By the assumption, the values of C_{j} and C_{k} are true. We remove contributions of t_{j}

and t_{k} from w_{i} . The remaining word is $\dot{\mathcal{U}}0b^{k}0a^{i}01zx^{i}u^{i}$. Moreover, w_{i} must has a contribution
from L_{bba} . This contribution must be of the form $\dot{\mathcal{U}}0b^{k}0a^{i}1$. Thus, the remaining word after

removing this contribution is $0zx^{i}u^{i}$. Therefore, t_{i} must be in F . On the other hand, the value of
$C_{i}=NOR(C_{j}, C_{k})$ is false. Other case is shown in a similar way. Thus, this claim holds.

Since t_{n} must be in T , the value of C_{n} is true. Thus $g(w)\in CVP$. \square

By the discussion above, we can say that \mathcal{L} is log-space reducible to CVP via f and CVP has

a log-space reduction g (inverse of f) from \mathcal{L} . \square

7

References

[1] T. Araki and N. Tokura, Flow languages equal recursively enumerable languages, Acta In-

format. 15 (1978) 209-217.

[2] T. Hayashi and S. Miyano, Flow expressions and complexity analysis, Reports of WGSF
Meeting of Information Processing Society of Japan SF2-3 (1982) 1-10.

[3] M. Jantzen, The power of synchronizing operations on strings, Theoret. Comput. Sci. 14

(1981) 127-154.

[4] M. Jantzen, Extending regular expressions with iterated shuffle, Theoret. Comput. Sci. 38

(1985) 223-247.

[5] J. Jedrzejowicz, On the enlargement of the class of regular languages by the shuffle closure,

Inf. Process. Lett. 16 (1983) 51-54.

[6] R.E. Ladner, The circuit value problem is \log space complete for P, SIGACT News 7 (1975)

18-20.

[7] S. Miyano, S. Shiraishi and T. Shoudai, A list of P-complete problems, RIFIS-TR-CS-17,

Research Institute of Fundamental Information Science, Kyushu University, 1989 (revised in
December, 1990).

[8] M. Nivat, Behaviors of processes and synchronized systems of processes, Lecture note at

Marktoberdopf NATO Summer Schoo11981.

[9] W.F. Ogden, W.E. Riddle and W.C. Rounds, Complexity of expressions allowing concurrency,

Proc. 5th Annual ACM Symposium on Principles of Programming Languages (1978) 185-194.

[10] A.C. Shaw, Software descriptions with flow expressions, IEEE Trans. Software Engrg. SE-4(3)

(1978) 242-254.

[11] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle, J. Comput. Syst. Sci.

28 (1984) 345-358.

