

A P－Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
Iizuka 820，Japan

Abstract

We show that a P－complete language can be described as a single expression with the shuffle operator，shuffle closure，union，concatenation，Kleene star and intersection on a finite alphabet．

1 Introduction

In this paper，we construct a P －complete language by using shuffle operator Δ ，iterated shuffle \dagger ，union \cup ，concatenation \cdot ，Kleene star $*$ and intersection \cap over a finite alphabet．The shuffle operator was introduced by［10］to describe the class of flow expressions．Formal properties of expressions with these operators have been extensively studied from various points in the literatures $[2,3,4,5,8,9,10,11]$ ．

It is known that the complexity of almost classes of languages can be increased by using the iterated shuffle operator．For example，there are two deterministic context－free languages L_{1} and L_{2} such that $L_{1} \triangle L_{2}$ is NP－complete［9］．Moreover，by allowing the synchronization mechanisms， any recursively enumerable set can be described $[1,3]$ ．

In［2，11］，by using the shuffle and iterated shuffle operators together with $\cup, \cdot, *$ ，\cap ，an NP－ complete language is described．We employ the same set of operators to describe our P－complete language．In the proof of P －completeness，the intersection operator plays an important role to make the language polynomial－time recognizable．However，we do not know whether the intersection operator is necessary to define a P－complete language as in the case with NP－complete ［2，11］．

Recently，P－complete problems have received considerable attentions since they do not seem to allow any efficient parallel algorithms［7］．This paper gives a P－complete problem of a new kind，which is described by a single expression．

2 Preliminaries

Let Σ be a finite alphabet and Σ^{*} be $\left\{a_{1} \cdots a_{n} \mid a_{i} \in \Sigma\right.$ for $i=1, \ldots, n$ and $\left.n \geq 0\right\}$. A subset of Σ^{*} is called a language.

Definition 1 For languages L, L_{1} and L_{2}, we define the shuffle operator Δ, the iterated shuffle \dagger and operators, $\cdot, *,+$ as follows:
(1) $L_{1} \Delta L_{2}=\left\{x_{1} y_{1} x_{2} y_{2} \cdots x_{m} y_{m} \mid x=x_{1} x_{2} \cdots x_{m} \in L_{1}, y=y_{1} y_{2} \cdots y_{m} \in L_{2}\right.$ and $x_{i}, y_{i} \in$ Σ^{*} for $\left.i=1, \ldots, m\right\}$ (shuffle operator).
(2) $L^{\dagger}=\{\varepsilon\} \cup L \cup(L \Delta L) \cup(L \Delta L \Delta L) \cup \cdots$ (iterated shuffle).
(3) $L_{1} \cdot L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ (abbreviated to $L_{1} L_{2}$).
(4) $L^{*}=\{\varepsilon\} \cup L \cup(L \cdot L) \cup(L \cdot L \cdot L) \cdots$.
(5) $L^{+}=L \cdot L^{*}$.

We identify a language $\{w\}$ which consists of only one word with w. Thus, we will denote $\{w\}^{*},\{w\}^{\dagger},\{w\}^{\dagger}, \ldots$ by $w^{*}, w^{+}, w^{\dagger}$, respectively.

As the basis of our reduction, we use the circuit value problem (CVP) that was shown Pcomplete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

Instance: A circuit $C=\left(C_{1}, \ldots, C_{m}, C_{m+1}, \ldots, C_{n}\right)$, where each C_{i} is either (i) $C_{i}=$ true or false $(1 \leq i \leq m)$, (ii) $C_{i}=\operatorname{NOR}\left(C_{j}, C_{k}\right)(m+1 \leq i \leq n$ and $j, k<i)$.
Problem: Decide whether the value of C_{n} is true.

In the following section, CVP represents the set of all circuits whose output is true.
Let Σ be a finite alphabet, $v_{1}, v_{2}, \ldots, v_{m}$ be symbols where $v_{i} \in \Sigma$ for $i=1, \ldots, m$ and $w_{1}, w_{2}, \ldots, w_{m+1}$ be words on the alphabet $\Sigma-\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. By using the iterated shuffle operator, the language $\left\{v_{1}{ }^{n} v_{2}{ }^{n} \cdots v_{m}{ }^{n} \mid n \geq 1\right\}$ can be described as $\left(v_{1} v_{2} \cdots v_{m}\right)^{\dagger} \cap v_{1}{ }^{+} v_{2}{ }^{+} \cdots v_{m}{ }^{+}$. Moreover, we can represent $\left\{w_{1} v_{1}{ }^{n} w_{2} v_{2}{ }^{n} \cdots w_{m} v_{m}{ }^{n} w_{m+1} \mid n \geq 1\right\}$ as

$$
\left(w_{1} w_{2} \cdots w_{m+1} \Delta\left(v_{1} v_{2} \cdots v_{m}\right)^{\dagger}\right) \cap w_{1} v_{1}{ }^{+} w_{2} v_{2}{ }^{+} \cdots w_{m} v_{m}{ }^{+} w_{m+1}
$$

We often use this form of languages to define our P -complete language. Whenever such languages are used in the next section, we will not describe them explicitly by using the shuffle operator and the iterated shuffle.

3 A P-complete language

The main result in this paper is the following theorem.
Theorem 1 A P-complete language can be described with operators $\cdot, *, \cup, \cap, \Delta, \dagger$.

3.1 Definition of the language

We will describe a P -complete language \mathcal{L} with the alphabet $\Sigma=\{0,1, a, b, u, v, x, y, z\}$. This language is defined stepwise.

At first, a language L is defined as follows:

```
    \(L_{a}=a^{+} 0 \cup a^{+} 1=\left\{a^{i} \beta \mid i \geq 1\right.\) and \(\left.\beta \in\{0,1\}\right\}\).
\(L_{b b a}=\left(b^{+} 1 b^{+} 1 a^{+} 0\right) \cup\left(b^{+} 0 b^{+} 1 a^{+} 1\right) \cup\left(b^{+} 1 b^{+} 0 a^{+} 1\right) \cup\left(b^{+} 0 b^{+} 0 a^{+} 1\right)\)
    \(=\left\{b^{j} \beta^{\prime} b^{k} \beta^{\prime \prime} a^{i} \beta \mid i, j, k \geq 1\right.\) and \(\left.\left(\beta^{\prime}, \beta^{\prime \prime}, \beta\right) \in\{(1,1,0),(0,1,1),(1,0,1),(0,0,1)\}\right\}\)
    \(L_{b}=b^{+} 1=\left\{b^{i} 1 \mid i \geq 1\right\}\).
    \(L=L_{a}{ }^{+} L_{b b a}{ }^{+} L_{b}\).
```

The following language T (resp. F) is used for a distribution of true (resp. false) value.

$$
\begin{aligned}
T_{x} & =\left\{1 z x^{i} u^{i} \mid i \geq 1\right\}, \quad T_{y}=\left\{1 y^{i} v^{i} \mid i \geq 1\right\} . \\
T_{x y} & =\left\{1 z x^{i} u^{i} 1 y^{i} v^{i} \mid i \geq 1\right\}, \quad T_{y y}=\left\{1 y^{i} v^{i} 1 y^{i} v^{i} \mid i \geq 1\right\} . \\
\hline T_{\text {odd }} & =T_{x y} T_{y y}{ }^{*} T_{y} \cap T_{x} T_{y y}{ }^{*}=\left\{1 z x^{i} u^{i}\left(1 y^{i} v^{i}\right)^{j} \mid i \geq 1, j \geq 1 \text { and } j \text { is odd. }\right\} . \\
T_{\text {even }} & =T_{x} T_{y y}{ }^{*} T_{y} \cap T_{x y} T_{y y}{ }^{*}=\left\{1 z x^{i} u^{i}\left(1 y^{i} v^{i}\right)^{j} \mid i \geq 1, j \geq 1 \text { and } j \text { is even. }\right\} . \\
\hline T & =T_{x} \cup T_{\text {odd }} \cup T_{\text {even }}=\left\{1 z x^{i} u^{i}\left(1 y^{i} v^{i}\right)^{j} \mid i \geq 1 \text { and } j \geq 0\right\} .
\end{aligned}
$$

F is defined in a similar way by simply replacing a symbol with 0 in the definition of 1 .

$$
F=\left\{0 z x^{i} u^{i}\left(0 y^{i} v^{i}\right)^{j} \mid i \geq 1 \text { and } j \geq 0\right\} .
$$

Subwords $1 y^{i} v^{i}$ (resp. $0 y^{i} v^{i}$) of a word in T (resp. F) are combined with $b^{i} 0$ (resp. $b^{i} 1$) of words in L and determines the value of the i th variable. These three languages L, T and F are combined one another by using the shuffle operator and the iterated shuffle.

$$
\mathcal{J}=L \triangle(T \cup F)^{\dagger} .
$$

A language \mathcal{K} is used to make our language \mathcal{L} polynomial time decidable. We construct the language \mathcal{K} stepwise as follows:

$$
\begin{aligned}
& A_{11}=\left\{a^{i} 11 z x^{i} u^{i} \mid i \geq 1\right\} \\
& A_{00}=\left\{a^{i} 00 z x^{i} u^{i} \mid i \geq 1\right\} \\
& A_{01}=\left\{a^{i} 01 z x^{i} u^{i} \mid i \geq 1\right\}
\end{aligned}
$$

In a similar way, the following languages are defined:

$$
\begin{aligned}
B_{01} & =\left\{b^{i} 01 y^{i} v^{i} \mid i \geq 1\right\} \\
B_{11} & =\left\{b^{i} 11 y^{i} v^{i} \mid i \geq 1\right\} \\
M & =\left(A_{11} \cup A_{00}\right)^{+}\left(B_{01} B_{01} A_{01}\right)^{+} B_{11} .
\end{aligned}
$$

The language M contains a word w in which $z x^{i} u^{i}$ occurs more than once in w for some i, where $z x^{i} u^{i}$ corresponds to the i th gate. We will remove such words w from M so that each $z x^{i} u^{i}$ occurs exactly once for all $1 \leq i \leq n$.

$$
\begin{aligned}
N_{z} & =\left(z x u z x^{2} u^{2} \Delta(x u x u)^{\dagger}\right) \cap\left(z x^{+} u^{+} z x^{+} u^{+}\right)=\left\{z x^{i} u^{i} z x^{i+1} u^{n+1} \mid i \geq 1\right\} . \\
N_{\text {odd }} & =z x u N_{z}{ }^{*} \cap N_{z}{ }^{*} z x^{+} u^{+}=\left\{z x u z x^{2} u^{2} \cdots z x^{i} u^{i} \mid i \geq 1 \text { and } i \text { is odd. }\right\} . \\
N_{\text {even }} & =z x u N_{z}{ }^{*} z x^{+} u^{+} \cap N_{z}{ }^{*}=\left\{z x u z x^{2} u^{2} \cdots z x^{i} u^{i} \mid i \geq 1 \text { and } i \text { is even. }\right\} . \\
& \\
N & =N_{\text {odd }} \cup N_{\text {even }}=\left\{z x u z x^{2} u^{2} \cdots z x^{i} u^{i} \mid i \geq 1\right\} .
\end{aligned}
$$

Then, we define the language \mathcal{K} which will be used for allowing a language \mathcal{J} to be in P .

$$
\mathcal{K}=M \cap\left(N \triangle \Sigma^{\prime *}\right), \text { where } \Sigma^{\prime}=\Sigma-\{u, x, z\}
$$

Finally, we defined the language \mathcal{L} as follows:

$$
\mathcal{L}=\mathcal{J} \cap \mathcal{K} .
$$

3.2 Proof of the \mathbf{P}-completeness

Theorem 1 follows from the next lemma.

Lemma $1 \mathcal{L}$ is log-space equivalent to CVP, i.e., \mathcal{L} is log-space reducible from CVP and CVP is \log-space reducible from \mathcal{L}.

$$
\begin{aligned}
w= & a 11 z x u a^{2} 11 z x^{2} u^{2} a^{3} 00 z x^{3} u^{3} b 01 y v b^{2} 01 y^{2} v^{2} a^{4} 01 z x^{4} u^{4} \\
& b^{2} 01 y^{2} v^{2} b^{3} 01 y^{3} v^{3} a^{5} 01 z x^{5} u^{5} b^{4} 01 y^{4} v^{4} b^{5} 01 y^{5} v^{5} a^{6} 01 z x^{6} u^{6} b^{6} 11 y^{6} v^{6} .
\end{aligned}
$$

Figure 1: This above circuit is transformed to the word w.

Proof. We will define a function f from CVP to Σ^{*}. f is a function which transforms $C=$ $\left(C_{1}, \ldots, C_{n}\right) \in$ CVP to $f(C)=w_{1} \cdots w_{n} w_{n+1} \in \Sigma^{*}$, where

$$
w_{i}= \begin{cases}a^{i} 11 z x^{i} u^{i} & \left(C_{i}=\text { true }\right) \\ a^{i} 00 z x^{i} u^{i} & \left(C_{i}=\text { false }\right) \\ b^{j} 01 y^{j} v^{j} b^{k} 01 y^{k} v^{k} a^{i} 01 z x^{i} u^{i} & \left(C_{i}=\operatorname{NOR}\left(C_{j}, C_{k}\right)\right) \\ b^{n} 11 y^{n} v^{n} & (i=n+1) .\end{cases}
$$

It is easy to see that this function is computable in \log-space.
We show following two claims.
Claim 1. $f(C) \in \mathcal{L}$ for every $C \in$ CVP.
Proof. Let $w=w_{1} \cdots w_{m} w_{m+1} \cdots w_{n} w_{n+1}$ be a word transformed from some n-gates instance $C=\left(C_{1}, \ldots, C_{m}, C_{m+1}, \ldots, C_{n}\right)$ where C_{i} is an input gate for $1 \leq i \leq m$, an NOR gate for $m+1 \leq i \leq n$ and an output of this circuit is true. Let $\beta_{i}=1$ (resp. $\beta_{i}=0$) if the value of C_{i} is true (resp. false) for $1 \leq i \leq n$.

According to $B=\left(\beta_{1}, \ldots, \beta_{n}\right)$, we divide w_{i} into two words $w_{i}{ }^{\prime}$ and $w_{i}{ }^{\prime \prime}$ as follows:
(1) For $i=1, \ldots, m, w_{i}{ }^{\prime}=a^{i} \beta_{i}, w_{i}{ }^{\prime \prime}=\beta_{i} z x^{i} u^{i}$.
(2) For $i=m+1, \ldots, n, w_{i}^{\prime}=b^{j} \bar{\beta}_{j} b^{k} \bar{\beta}_{k} a^{i} \bar{\beta}_{i}, w_{i}^{\prime \prime}=\beta_{j} y^{j} v^{j} \beta_{k} y^{k} v^{k} \beta_{i} z x^{i} u^{i}$.

We note that $w_{i}{ }^{\prime}$ is in $L_{b b a}$ since $C_{i}=\operatorname{NOR}\left(C_{j}, C_{k}\right)$.
(3) $w_{n+1}{ }^{\prime}=b^{n} 1, w_{n+1}{ }^{\prime \prime}=1 y^{n} v^{n}$.

It is easy to see that a word $w^{\prime}=w_{1}{ }^{\prime} \cdots w_{n+1}{ }^{\prime}$ is in $L=L_{a}{ }^{+} L_{b b a}{ }^{+} L_{b}$.
On the other hand, since $w^{\prime \prime}=w_{1}{ }^{\prime \prime} \cdots w_{n+1}{ }^{\prime \prime}$ is constructed with subwords of the form $\beta_{i} z x^{i} u^{i}$ or $\beta_{i} y^{i} v^{i}$ and for each NOR gate, input gate numbers of this gate are always smaller than its number, we can describe the word $w^{\prime \prime}$ as word in $t_{1} \Delta t_{2} \Delta \cdots \Delta t_{n}$, where $t_{i}=\beta_{i} z x^{i} u^{i} \beta_{i} y^{i} v^{i} \cdots \beta_{i} y^{i} v^{i}$. Since $t_{i} \in T$ or F for $i=1, \ldots, n, f(C)=w_{1} \cdots w_{m} w_{m+1} \cdots w_{n} w_{n+1}$ is in $w^{\prime} \Delta t_{1} \Delta \cdots \Delta t_{n} \subset$ $L \Delta(T \cup F)^{\dagger}=\mathcal{L}$.

Since every word w of \mathcal{L} is contained in M, w is of the form $w=w_{1} \cdots w_{m} w_{m+1} \cdots w_{n} w_{n+1}$, where, for $i=1, \ldots, n+1$,

$$
w_{i}= \begin{cases}a^{\ell_{i}} \beta_{i} \beta_{i} z x^{\ell_{i}} u^{\ell_{i}} & \left(1 \leq i \leq m, \beta_{i} \in\{0,1\}\right) \\ b_{i}^{\ell_{i}} 01 y^{\ell_{i}^{\prime}} v^{\ell_{i}^{\prime}} b_{i}^{\ell_{i}^{\prime \prime}} 01 y^{\ell_{i}^{\prime \prime}} v^{\ell_{i}^{\prime \prime}} a^{\ell_{i}} 01 z x^{\ell_{i}} u^{\ell_{i}} & (m+1 \leq i \leq n) \\ b^{\ell_{n+1}} 11 y^{\ell_{n+1}} v^{\ell_{n+1}} & (i=n+1)\end{cases}
$$

We transform a word $w \in \mathcal{L}$ to a circuit $C=\left(C_{1}, \ldots, C_{m}, C_{m+1}, \ldots, C_{n}\right)$ as follows:
(1) For $i=1, \ldots, m$, if $\beta_{i}=1$ then $C_{i}=$ true else $C_{i}=$ false.
(2) For $i=m+1, \ldots, n, C_{i}=\operatorname{NOR}\left(C_{j}, C_{k}\right)$ where $j=\ell_{i}{ }^{\prime}$ and $k=\ell_{i}{ }^{\prime \prime}$.

It is easy to see that this transformation, say g, is a well-defined function computable in log-space.

Claim 2. $g(w) \in C V P$ for every $w \in \mathcal{L}$.
Proof. For $w \in \mathcal{L}$, let $w^{\prime \prime}$ be the word obtained by dropping off the contribution from L. Then $w^{\prime \prime}$ is in $(T \cup F)^{\dagger}$ and has the form $c_{1} c_{2} \cdots c_{3 n-2 m+1}$ where $c_{r}=\beta_{r} z x^{p_{r}} u^{p_{r}}$ or $\beta_{r} y^{p_{r}} v^{p_{r}}\left(\beta_{r} \in\{0,1\}, p_{r} \geq\right.$ 1 and $1 \leq r \leq 3 n-2 m+1)$. Since $w^{\prime \prime}$ contains $n z$'s, there exist n words $t_{1}, t_{2}, \ldots, t_{n} \in L \cup F$ such that $w^{\prime \prime}$ is in $t_{1} \Delta t_{2} \Delta \cdots \Delta t_{n}$. It is easy to see that each $c_{r}(1 \leq r \leq 3 n-2 m+1)$ is a subword of some $t_{i}(1 \leq i \leq n)$. Thus, without loss of generality, we may assume that for each $i=1, \ldots, n, t_{i}$ is of the form $\beta_{i} z x^{i} u^{i} \beta_{i} y^{i} v^{i} \cdots \beta_{i} y^{i} v^{i}\left(\beta_{i} \in\{0,1\}\right)$. Since $w^{\prime \prime}$ is also in $N \Delta \Sigma^{\prime *}$ and for $1 \leq i \leq n$, a subword $\beta_{i} y^{i} v^{i}$ of $w^{\prime \prime}$ does not occur before a subword $\beta_{i} z x^{i} u^{i}$ of $w^{\prime \prime}$, we have $j, k<i$.

We claim that for $i=1, \ldots, n, t_{i} \in T$ if and only if the value of C_{i} is $t r u e$. This is shown by the induction. For $i=1, \ldots, m$, if $\beta_{i}=1$, then t_{i} must be in T. Thus, by definition of $g, C_{i}=$ true. For $i \geq m+1$, suppose that for $j, k<i$, this claim is true. We only discuss the case of $t_{j} \in T$ and $t_{k} \in T$. By the assumption, the values of C_{j} and C_{k} are true. We remove contributions of t_{j} and t_{k} from w_{i}. The remaining word is $b^{j} 0 b^{k} 0 a^{i} 01 z x^{i} u^{i}$. Moreover, w_{i} must has a contribution from $L_{b b a}$. This contribution must be of the form $b^{j} 0 b^{k} 0 a^{i} 1$. Thus, the remaining word after removing this contribution is $0 z x^{i} u^{i}$. Therefore, t_{i} must be in F. On the other hand, the value of $C_{i}=\operatorname{NOR}\left(C_{j}, C_{k}\right)$ is false. Other case is shown in a similar way. Thus, this claim holds.

Since t_{n} must be in T, the value of C_{n} is true. Thus $g(w) \in C V P$.
By the discussion above, we can say that \mathcal{L} is \log-space reducible to CVP via f and CVP has a \log-space reduction g (inverse of f) from \mathcal{L}.

References

[1] T. Araki and N. Tokura, Flow languages equal recursively enumerable languages, Acta Informat. 15 (1978) 209-217.
[2] T. Hayashi and S. Miyano, Flow expressions and complexity analysis, Reports of WGSF Meeting of Information Processing Society of Japan SF2-3 (1982) 1-10.
[3] M. Jantzen, The power of synchronizing operations on strings, Theoret. Comput. Sci. 14 (1981) 127-154.
[4] M. Jantzen, Extending regular expressions with iterated shuffle, Theoret. Comput. Sci. 38 (1985) 223-247.
[5] J. Jedrzejowicz, On the enlargement of the class of regular languages by the shuffle closure, Inf. Process. Lett. 16 (1983) 51-54.
[6] R.E. Ladner, The circuit value problem is \log space complete for P, SIGACT News 7 (1975) 18-20.
[7] S. Miyano, S. Shiraishi and T. Shoudai, A list of P-complete problems, RIFIS-TR-CS-17, Research Institute of Fundamental Information Science, Kyushu University, 1989 (revised in December, 1990).
[8] M. Nivat, Behaviors of processes and synchronized systems of processes, Lecture note at Marktoberdopf NATO Summer School 1981.
[9] W.F. Ogden, W.E. Riddle and W.C. Rounds, Complexity of expressions allowing concurrency, Proc. 5th Annual ACM Symposium on Principles of Programming Languages (1978) 185-194.
[10] A.C. Shaw, Software descriptions with flow expressions, IEEE Trans. Software Engrg. SE-4(3) (1978) 242-254.
[11] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle, J. Comput. Syst. Sci. 28 (1984) 345-358.

