-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title A P-Complete Language Describable with Iterated Shuffle

Author(s) | Shoudai, Takayoshi

Citation Oo0o0oobooonoo (1992), 796: 1-7

Issue Date | 1992-07

URL http://hdl.handle.net/2433/82766

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39215001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooogn
g 7960 19920 1-7

A P-Complete Language Describable with Iterated Shuffle

Takayoshi Shoudai
Department of Control Engineering and Science
Kyushu Institute of Technology
lizuka 820, Japan

Abstract

We show that a P-complete language can be described as a single expression with the
shuffle operator, shuffle closure, union, concatenation, Kleene star and intersection on a finite
alphabet.

1 Introduction

In this paper, we construct a P-compiete language by using shuffle operator A, iterated shuffle
i, union U, concatenation -, Kleene star * and intersection N over a finite alphabet. The shuffle
operator was introduced by [10] to describe the class of flow expressions. Formal properties
of expressions with these operators have been extensively studied from various points in the
literatures [2, 3, 4, 5, 8, 9, 10, 11].

It is known that the complexity of almost classes of languages can be increased by using the
iterated shuffle operator. For example, there are two deterministic context-free languages L; and
Ly such that Ly AL, is NP-complete [9]. Moreover, by allowing the synchronization mechanisms,
any recursively enumerable set can be described [1, 3].

In [2, 11], by using the shuffle and iterated shuffle operators together with U, -, *,N, an NP-
complete language is described. We employ the same set of operators to describe our P-complete
language. In the proof of P-completeness, the intersection operator plays an important role
to make the language polynomial-time recognizable. However, we do not know whether the
intersection operator is necessary to define a P-complete language as in the case with NP-complete
[2, 11].

Recently, P-complete problems have received considerable attentions since they do not seem
to allow any efficient parallel algorithms [7]. This paper gives a P-complete problem of a new

kind, which is described by a single expression.

2 Preliminaries

Let X be a finite alphabet and £* be {a1---a, |a; € X for i = 1,...,n and n > 0}. A subset of
Y™ is called a language.

Definition 1 For languages L, L; and L,, we define the shuffle operator A, the iterated shuffle
1 and opérators, -%,+ as follows:

(1) LiAL, = {z1912292 - TmYm | & = 2182w € L1,y = Y1%2- - Ym € Lz and z;,4; €
¥* for i =1,...,m} (shuffle operator).

(2) Lt = {e}ULU(LAL)U(LALAL) U --- (iterated shuffle).

(3) L1 - Ly = {zy | z € L1 and y € Ly} (abbreviated to L1L3).

(4) L*={e}ULU(L-L)U(L-L-L)---.

(5) Lt =L-L*.

We identify a language {w} which consists of only one word with w. Thus, we will denote
{w}*, {w}t, {w}l,... by w*,wt, w!, respectively.
As the basis of our reduction, we use the circuit value problem (CVP) that was shown P-

complete [6]. Our definition in this paper slightly different from one in [6].

CIRCUIT VALUE PROBLEM (CVP)

INSTANCE: A circuit C = (Cy,...,Cn,Cmst1,y.-.,Cn), where each C; is either (i) C; = true or
false (1 < i< m), (ii) C; = NOR(C;,Cx) (m+ 1< i< nand j,k <i).

ProBLEM: Decide whether the value of C,, is true.

In the following section, CVP represents the set of all circuits whose output is true.

Let ¥ be a finite alphabet, v1,v2,...,v,, be symbols where v; € ¥ for 1 = 1,...,m and
W1, W2, ..., Wnt+1 be words on the alphabet ¥ — {v;,vs,...,v,,}. By using the iterated shuffle
operator, the language {v1"v2" - - v, | n > 1} can be described as (viv3 - -+ v,)TNV Y vt v, .

Moreover, we can represent {wqv1"wav2™ « - - Wi Uy " Wint1 | 7 > 1} as
(w1w2 cee wm+1A(v1v2 cee ’Um)*) n w1v1+w2v2+ cee wmvm+wm+1.

We often use this form of languages to define our P-complete language. Whenever such languages
are used in the next section, we will not describe them explicitly by using the shuffie operator and
the iterated shuffle.

3 A P-complete language
The main result in this paper is the following theorem.
Theorem 1 A P-complete language can be described with operators -,%,U,N,A,1.

3.1 Definition of the language

We will describe a P-complete language £ with the alphabet ¥ = {0,1,a,b,u,v,‘z‘,y, z}. This
language is defined stepwise.

At first, a language L is defined as follows:

Ls = atouatli={d'B|i>1and B €{0,1}}.
Lysa = (b*1b%1at0) U (b1 0b*1a*1) U (b+15*0a*1) U (b1 06T 0at1)
= (VB p"a'B 4,5,k > 1and (8,8",8) € {(1,1,0),(0,1,1),(1,0,1),(0,0,1)}}
Ly = br1={b1]i>1}.
L = Ly"LyatLs.

The following language T (resp. F’) is used for a distribution of true (resp. false) value.

T, = {lzz'v’' |i>1}, T, = {1y'v' | i > 1}
Tey = {lzziu’ly'e’ |i> 1}, Tyy = {1y'v'1y'v* | i > 1},
Todaa = TeyTyy Ty NToTyy* = {1zz*u’(1y*v') |i>1,5> 1 and j is odd.}.
Teven = TeTyy"TyNTeyTyy* = {lza*u’(ly*v') |i> 1,5 > 1 and j is even.}.
T = ToUTq4U Tepen = {1zxiui(1yivi)j |i>1 and j > 0}.

F is defined in a similar way by simply replacing a symbol with 0 in the definition of 1.

F = {0zz'u*(0y'v') |i>1 and j >0}

Subwords 1y*v' (tesp. Oy'v') of a word in T (resp. F) are combined with 50 (resp. b°1) of
words in L and determines the value of the ith variable. These three languages L, T and F are

combined one another by using the shuffle operator and the iterated shuffle.

J=LA(T U F)t.

A language K is used to make our language £ polynomial time decidable. We construct the

language K stepwise as follows:

Ay = {d'11zgd' |i> 1}
A = {a'00zz'u’ |i>1}.
Ao = {a'Olzziu’ |i>1}.

In a similar way, the following languages are defined:

Bgl = {bi()lyivi | i Z 1}
By = {b11y'v' |i>1}).
M = (A1 U A)t(Bo1Bo1don)t Bii.

The language M contains a word w in which zz*u* occurs more than once in w for some 1,

where zz'u® corresponds to the ith gate. We will remove such words w from M so that each zz'u’

occurs exactly once for all' 1 <1 < n.

N,

(zzuzz®u? A(zuzu)t) N (zztutzetut) = {zzful 22 a™H i > 1),

Nodd
Neven

zzuN,* N N, * 2zt ut = {zzuzz?u® ... 22’ | i > 1 and i is odd.}.

zzulN*zztut N N,* = {zzuzzu? ... zz'u’ | i > 1 and i is even.}.

Noda U Neyen = {zzuze?u? .. 22tu’ | i > 1}.

Then, we define the language K which will be used for allowing a language J to be in P.

K= Mn(NAY™), where ¥’ = ¥ — {u,z, z}.

Finally, we defined the language £ as follows:

L=JNK.

3.2 Proof of the P-completeness

Theorem 1 follows from the next lemma.

Lemma 1 £ is log-space equivalent to CVP, i.e., L is log-space reducible from CVP and CVP is

log-space reducible from L.

w = allzzua®llzz? u2a200223u3b01yvb201y2v2a?01 224 u?
b201y21)2b301y3v3a501z$5u5b401y4v4b501y5v5a6012x6u6b61 1y548.

Figure 1: This above circuit is transformed to the word w.

Proof. We will define a function f from CVP to X*. f is a function which transforms C =

(C15...,Cn) € CVP to f(C) = wy -+ wpnyq € L*, where

a‘l11lzziv? (Ci = true)
w = a'00zzu' (Ci = false)
P YolyivibFolykvkaiolzatu' (C; = NOR(C;, Cy))
b"11y™ o™ (i=n+1).

It is easy to see that this function is computable in log-space.

We show following two claims.

Claim 1. f(C) € L for every C € CVP.
Proof. Let w = wy - Wy W41+ WywWpe1 be a word transformed from some n-gates instance
C = (C1,-.+,Cm,Cpga,...,Cr) where C; is an input gate for 1 < i < m, an NOR gate for
m+1 <4< n and an output of this circuit is true. Let 8; = 1 (resp. §; = 0) if the value of C; is
true (resp. false) for 1 <i < n.

According to B = (f4,...,0,), we divide w; into two words w;’ and w;” as follows:

(1) Fori=1,...,m, wy = a'B;, w;" = B;zz'u’.

(2) Fori=m+1,...,n, w = bB;b*Bra' Bi, wi" = Biyiv Bry*o* Bizaiul.

We note that w;’ is in Ly, since C; = NOR(C}, Cy).

(3) wn+1' = bnl, wn+1” = lyn’lln.

It is easy to see that a word w’ = wy’ - wpyq’ is in L = L, ¥ Ly ¥ Ly

On the other hand, since w” = w;” - - - wn41" is constructed with subwords of the form 3;zz'u’
or B;y'v* and for each NOR gate, input gate numbers of this gate are always smaller than its num-
ber, we can describe the word w” as word in t1 At/ - - - At,,, where t; = Bizz*u!Biy'v* - - - iyt vt.
Since t; € T or F for i = 1,...,n, f(C) = Wy WnWmy1 "+ WaWpyy i in WAL A--- AL, C
LA(TUF)t =£. O

Since every word w of £ is contained in M, w is of the form w = wy + - - W W1+ ** Wn W1,

where, fort =1,...,n + 1,
ab B; B zabiub (1<i<m,Bi €{0,1})
w; = { b 01y vl b 018" 08" ab0122bub (m+ 1< i < n)
blnt111ytn+r pln (t=n+1)

We transform a word w € £ to a circuit C = (Cy,...,Cn, Cmt1,...,Cn) as follows:
(1) Fori=1,...,m,if ; = 1 then C; = true else C; = false.
(2) Fori =m+1,...,n, C; = NOR(C;,Cy) where j = ¢ and k = ¢;".
It is easy to see that this transformation, say g, is a well-defined function computable in

log-space.

Claim 2. g(w) €CVP for every w €L. ‘

Proof. For w €L, let w” be the word obtained by dropping off the contribution from L. Then w" is
in (TUF)! and has the form c¢yc; - - - ¢3p_2m+1 Where ¢, = B,zzPruPr or B,yPrvPr (B, € {0,1},p, >
1and 1 <r <3n—2m+1). Since w” contains n 2’s, there exist n words ty,12,...,t, € LUF such
that w” is in t1At2A - - - Aty,. It is easy to see that each ¢, (1 5 r < 3n—2m+1)is a subword of
some t; (1 < ¢ < n). Thus, without loss of generality, we may assume that for each i = 1,...,n,t;
is of the form B;zz*u'B;y'v* - - Biy*v' (B; € {0,1}). Since w” is also in NAX* and for 1 < i < m,
a subword B;y'v* of w” does not occur before a subword 3;zz*u' of w”, we have j,k < i.

We claim that forz = 1,...,n, t; € T if and only if the value of C; is true. This is shown by the
induction. For i = 1,...,m, if 8; = 1, then ¢; must be in T'. Thus, by definition of g, C; = true.
For ¢« > m + 1, suppose that for j,k < ¢, this claim is true. We only discuss the case of t; € T
and t; € T. By the assumption, the values of C; and Cj are true. We remove contributions of ¢;
and tx from w;. The remaining word is b'06%0a’012z*u*. Moreover, w; must has a contribution
from Lyp,. This contribution must be of the form »06¥0a’1. Thus, the remaining word after
removing this contribution is 0zz*u*. Therefore, t; must be in F. On the other hand, the value of
C; = NOR(Cj,Cy) is false. Other case is shown in a similar way. Thus, this claim holds.

Since t, must be in T', the value of C,, is true. Thus g(w) € CVP. O

By the discussion above, we can say that £ is log-space reducible to CVP via f and CVP has

a log-space reduction ¢ (inverse of f) from £. O

References

[1] T. Araki and N. Tokura, Flow languages equal recursively enumerable languages, Acta In-
format. 15 (1978) 209-217.

[2] T. Hayashi and S. Miyano, Flow expressions and complexity analysis, Reports of WGSF
Meeting of Information Processing Society of Japan SF2-3 (1982) 1-10.

[3] M. Jantzen, The power of synchronizing operations on strings, Theoret. Comput. Sci. 14
(1981) 127-154.

[4] M. Jantzen, Extending regular expressions with iterated shuffle, Theoret. Comput. Sci. 38
(1985) 223-247.

[5] J. Jedrzejowicz, On the enlargement of the class of regular languages by the shuffle closure,
Inf. Process. Lett. 16 (1983) 51-54.

[6] R.E. Ladner, The circuit value problem is log space complete for P, SIGACT News T (1975)
18-20.

[7] S. Miyano, S. Shiraishi and T. Shoudai, A list of P-complete problems, RIFIS-TR-CS-17,
Research Institute of Fundamental Information Science, Kyushu University, 1989 (revised in
December, 1990).

[8] M. Nivat, Behaviors of processes and synchronized systems of processes, Lecture note at
Marktoberdopf NATO Summer School 1981.

[9] W.F. Ogden, W.E. Riddle and W.C. Rounds, Complexity of expressions allowing concurrency,
Proc. 5th Annual ACM Symposium on Principles of Programming Languages (1978) 185-194.

[10] A.C. Shaw, Software descriptions with flow expressions, IEEFE Trans. Software Engrg. SE-4(3)
(1978) 242-254. |

[11] M.K. Warmuth and D. Haussler, On the complexity of iterated shuffle, J. Comput. Syst. Sci.
28 (1984) 345-358.

