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A Note on Hayden’s Theorem

Tsuyoshi Atsumi
厚見 寅司

The Case a finite Group $G$ acts on Code.

1. Dffinitions from Coding Theory

Yoshida [5] showed that there is a generalization of MacWilliams identity [3] to codes with
group action. We use ideas from [1] to give an elementary proof to Yoshida’s identity in a
special case.

Let $V$ be the vector space $F_{q}^{n}$ , where $F_{q}$ is the field with $q$ elements. From now on
we assume that $G$ is a finite permutation group on the coordinates of $V$ and $|G|$ is prime
to $q$ . Then we can define a natural action of $G$ on $V$ as follows: If $v=(v_{1}, \ldots, v_{n})$ and
$g\in G$ , we let $vg=(x_{1}, \ldots, x_{n})$ where for $i=1,$ $\ldots,$ $n,$ $x_{i}=v_{ig^{-1}}$ . In this way $V$ becomes
an FG-module. A G-code is an FG-submodule of $V$ . As in [1], the operator $\theta$ is defined
by

$\theta=\frac{1}{|G|}\sum_{g\in G}g$ .

Here we note that $C_{V}(G)=V\theta$ and $\theta^{T}=\theta$ (see [1]).
Let $C_{1},$

$\ldots,$
$C_{t}$ be the orbits of the coordinates of $V$ under the action of $G$ . Let $m_{i}$

be the orbit length of $C_{i}$ . Define $\overline{C}$; as the vector of $V$ which has 1 as its entry for every
point of $C_{i}$ and $0$ elsewhere. (This definition of the $\overline{C}_{i}’ s$ is slightly different from that in
the proof of Theorem 4.3 in [1]). Then each of $\overline{C}_{1},$ $\ldots\overline{C}_{t}$ is in $U=V\theta$ and every element
$u$ of $U=V\theta$ is of the form

$u=\sum_{i=1}^{t}x_{i}\overline{C}_{i}$ .

This basis $\{\overline{C}_{1}, \ldots, \overline{C}_{t}\}$ of $U$ is a key to our proof of Yoshida’s result. Yoshida weight of
a vector $u=\sum_{i=1}^{t}x_{i}\overline{C}_{i}\in U$ denoted $wy(u)$ is defined as the number of non-zero $x_{i}$ . So
if $G$ consists of the identity element, $e$ , alone, then Yoshida weight $wy(u)$ of a vector $u$ is
the ordinary weight $|u|$ . If $a=\sum_{i=1}^{t}a_{i}\overline{C}_{i}$ and $b=\sum_{i1}^{t_{=}}b_{i}\overline{C}_{i}$ are any two vectors in $U$ ,
then inner product $(a, b)_{G}$ of a and $b$ is defined by

$(a, b)_{G}=a_{1}b_{1}+\cdots+a_{t}b_{t}$ . (1)

Let $D$ be a vector subspace of $U=V\theta$ . $D_{G}^{\perp}$ is the dual of $D$ in $U$ with respect to the inner
product (1). (Notice that if $G$ consists of the identity element, $e$ , alone, then $D_{\{e\}}^{\perp}$ is the
ordinary dual $D^{\perp}$ of $D$ in $V.$ )
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We describe a weight enumerator of a vector subspace $D$ of $U=V\theta$ . The weight
enumerator $W_{D}(x, y)$ of $D$ is defined by

$W_{D}(x, y)= \sum_{u\in D}x^{t-wy(u)}y^{wy(u)}$
.

Clearly if $G$ is trivial, that is, $G=\{e\}$ , then this weight enumerator becomes the ordinary
weight enumerator. For notation and terminology, we will refer the following book and
paper: [3] for coding theory; [5] for codes with group action.

2. G-Codes

We have the following theorem which is a special case of Yoshida’s result [5].

Theorem 1. If $C$ is a G-code, then

$W_{C^{\perp}\theta}(x, y)= \frac{1}{|C\theta|}W_{C\theta}(x+(q-1)y, x-y)$ .

If $G$ is trivial, that is, $G=\{e\}$ , then our theorem is the ordinary MacWilliams theorem
$[3. pp146]$

In order to prove Theorem 1 we need the following proposition.

Proposition 1 (Hayden). Let $V$ be th$e$ vector space $F_{q}^{n}$ . Assume that $G$ is a finite
permutation group on the $co$ordinates of $V$ and $|G|$ is prime to $q$ . If $C$ is a G-code and

$\theta=\frac{1}{|G|}\sum_{g\in G}g$ ,

then
$(C\theta)^{\perp}=Ker\theta+C^{\perp}\theta$ .

Proof. See the proofs of Theorem 4.2 and Corollary 1 in [1]. 1

We will prove Theorem 1. If $x=\sum_{i}x_{i}\overline{C}_{i}\in C\theta$ and $y=\sum_{i}y_{i}\overline{C}_{i}\in C^{\perp}\theta$ , by
Proposition 1 we have

$0=( x, y)=\sum_{i}m_{i}x_{i}y_{i}=(x, y’)_{G}$ ,

where $y’=\sum_{i}m_{i}y_{i}\overline{C}_{i}$ . From this it follows that

$(C\theta)_{G}^{\perp}\supseteq(C^{\perp}\theta)M$ , (2)

where
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$M=diag(a_{1}, \ldots, a_{n})$ $i=1,$ $\ldots,$
$n$ ;

$a_{i}=m_{j}$ if $i\in C_{j}$ .

Next we will show that
$(C\theta)_{G}^{\perp}\subseteq(C^{\perp}\theta)M$ . (3)

If $x=\sum_{i}x_{i}\overline{C}_{i}\in(C\theta)_{G}^{\perp},$ $x’=\sum_{i}(x_{i}/m_{i})\overline{C}_{i}$ and $y=\sum_{i}y_{i}\overline{C}_{i}\in C\theta$ , we have

$( x’, y)=\sum_{i}m_{i}(x_{i}/m_{i})y_{i}=(x, y)_{G}=0$.

This shows that
$x’\in(C\theta)^{\perp}$ . (4)

Since $x’\in U=V\theta,$ (4) and Proposition 1 imply that $x’\in C^{\perp}\theta$ .
Hence, $x=x’M\in(C^{\perp}\theta)M$ . Now we proved that

$(C\theta)_{G}^{\perp}\subseteq(C^{\perp}\theta)M$ . (5)

From (2) and (5) it follows that

$(C\theta)_{G}^{\perp}=(C^{\perp}\theta)M$. (6)

Here notice that MacWilliams theorem [3. pp 146] for the ordinary weight enumerator
of the code $C\theta$ in $U(=V\theta)$ holds in this case, too.

MacWilliams theorem.

$W_{(C\theta)_{G}^{\perp}}(x, y)= \frac{1}{|C\theta|}W_{C\theta}(x+(q-1)y, x-y)$ .

Now we will finish the proof of Theorem 1. By the above MacWilliams theorem and
(6), we obtain the following.

$W_{(C^{\perp}\theta)M}(x, y)= \frac{1}{|C\theta|}W_{C\theta}(x+(q-1)y, x-y)$ . (7)

Since $W_{(C\theta)M}\perp(x, y)=W_{C\theta}\perp(x, y)$ , it follows from (7) that

$W_{C^{\perp}\theta}(x, y)= \frac{1}{|C\theta|}W_{C\theta}(x+(q-1)y, x-y)$ . I
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Remark. Generalizing a result of Thompson, Hayden [1] has proved the following propo-
sition.

Proposition 2. Using th$e$ notation of Proposition 1, then with an appropriate orthonor-
$mal$ base for $U$ , ($ext$ending $F_{q}$ if necessary) we have where $(C\theta)_{U}^{\perp}is$ the dual in terms of
this basis

$(C\theta)_{U}^{\perp}=C^{\perp}\theta$ .

So our result (6) is a generalization of Proposition 2 in a sense.

The Case a finite Group $G$ acts on Lattice

3. Definitions from Lattice Theory

$\ln[5]$ Yoshida raised the following problem.

Problem. What can we say about lattices with groups action ? Can we define the
equivariant version of theta functions?

He showed in [5] that there is a generalization of MacWilliams identity [3] to codes
with group action. In this paper we will prove that there is a lattice version of this result.
In order to state our theorem we introduce notation and terminology in lattice theory. Let
$V$ be the real n-dimensional space $R^{n}$ A lattice A [4] is a subgroup of $V$ satisfying one
of the following equivalent conditions:

i) $\Lambda$ is discrete and $V/\Lambda$ is compact;

ii) A is descrete and generates the R-vector space $V$ ;

iii) There exists an R-basis $(e_{1}, \ldots, e_{n})$ of $V$ which is a Z-basis of $\Lambda$ (i.e. $\Lambda=Ze_{1}\oplus\cdots\oplus$

$Ze_{n})$ .

Let the coordinates of the basis vectors be

$e_{1}=(e_{11}, \ldots, e_{1n})$ ,

$e_{2}=(e_{12}, \ldots, e_{2n})$ ,

:

$e_{n}=(e_{1n}, \ldots, e_{nn})$ .

The $n\cross n$ matrix $M$ with $(i, j)$-entry equal to $e_{ij}$ is called a generator matrix for A. The
determinant of $\Lambda$ is defined to be $\det$ A $=|\det M|$ . Given two vectors $u=(u_{1}, \ldots, u_{n})$ ,
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$v=(v_{1}, \ldots, v_{n})$ of $V$ , their inner product will be denoted by $u\cdot u$ or $(u, u)$ . The dual
lattice is defined by

$\Lambda^{\perp}=$ { $u\in R^{n}|u\cdot v=u_{1}v_{1}+\cdots+u_{n}v_{n}\in Z$ for all $v\in\Lambda$}.

The theta series $\Theta_{\Lambda}(z)$ of a lattice A is given by

$\Theta_{\Lambda}(z)=\sum_{u\in\Lambda}q^{u\cdot u}$
,

where $q=e^{\pi iz}$ . Jacobi’s formula for the theta series of the dual lattice:

$\Theta_{\Lambda^{\perp}}(z)=(\det\Lambda)(i/z)^{n/2}\Theta_{A}(-1/z)$ . (8)

The main purpose of this paper is to generalize equation (8) when a finite group $G$ acts
on $\Lambda$ . From now on we assume that $G$ is a finite permutation group on the coordinates of
V. Then we can define a natural action of $G$ on $V$ as follows: If $v=(v_{1}, \ldots, v_{n})\in V$ and
$g\in G$ , we let $vg=(x_{1}, \ldots, x_{n})$ where for $i=1,$ $\ldots,$ $n,$ $x_{i}=v_{ig^{-1}}$ . In this way $V$ becomes
an RG-module. A G-lattice is a lattice which is also an ZG-submodule of $V$ . As in [1],
the operator $\theta$ is defined by

$\theta=\frac{1}{|G|}\sum_{g\in G}g$ .

Here we note that $V\theta=$ {$v\in V|vg=v$ for all $g\in G$ } and $\theta^{T}=\theta$ (see [1]).
Let $C_{1},$

$\ldots,$
$C_{t}$ be the orbits of the coordinates of $V$ under the action of $G$ . Let $m_{i}$ be

the orbit length of $C_{i}$ . Define $\overline{C}_{i}$ as the vector of $V$ which has $1/\sqrt{m_{i}}$ as its entry for every
point of $C_{i}$ and $0$ elsewhere. (This definition of the $\overline{C}_{i}’ s$ is similar to that in the proof of
Theorem 4.3 in [1]). Then each of $\overline{C}_{1},$ $\ldots\overline{C}_{t}$ is in $V\theta$ and every element $u$ of $V\theta$ is of the
form

$u=\sum_{i=1}^{t}x_{i}\overline{C}_{i}$ .

If $a=\sum_{i=1}^{t}a_{i}\overline{C}_{i}$ and $b=\sum_{i1}^{t_{=}}b_{i}\overline{C}_{i}$ are any two vectors in $V\theta$ , then inner product a $ob$

of a and $b$ is defined by
a $ob=a_{1}b_{1}+\cdots+a_{t}b_{t}$ . (9)

Let $D$ be a lattice in $V\theta$ . $D_{G}^{\perp}$ is the dual of $D$ in $V\theta$ with respect to the inner product (9).
The norm of $u\in D$ is $uou$ .

We describe the theta series $\Theta_{D}(z)$ of a sublattice $D$ as follows:

$\Theta_{D}(z)=\sum_{u\in D}q^{uou}$
,
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where $q=e^{\pi iz}$ .

For notation and terminology, we will refer the following book and paper: [4] for
lattice theory; [5] for lattices with group action.

4. G-Lattices

We have the following:

Theorem 2. If A $is$ a G-lattice an$d\Lambda_{0}=\{r\in\Lambda|r\theta\in\Lambda\}$ , then

$\Theta_{\Lambda_{O}^{\perp}\theta}(z)=(\det\Lambda_{0}\theta)(i/z)^{n/2}\Theta_{\Lambda_{O}\theta}(-1/z)$.

Note that $\Lambda_{0}\theta=\Lambda\cap\Lambda\theta=$ { $v\in\Lambda$ I $vg=v$ for all $g\in G$}.

In order to prove Theorem 2 we need the following proposition.

Proposition 3. Let $V$ be the vector space $R^{n}$ . Assume that $G$ is a finite permutation
group on the coordinates of V. If A $is$ a G-lattice and $\Lambda_{0}=\{r\in\Lambda|r\theta\in\Lambda\}_{f}$ then

$(\Lambda_{0}\theta)^{\perp}=Ker\theta\oplus\Lambda_{0}^{\perp}\theta$ .

Proof. Our proof is similar to the proof of Theorem 4.2 in [1]. We note that $\Lambda_{0}$ is a
G-sublattice of G-lattice A. If $r\in\Lambda_{0},\hat{r}\in\Lambda_{0}^{\perp}$ and $y\in Ker\theta^{T}(=\theta)$ , we have

$(\hat{r}\theta^{T}, r\theta)=(\hat{r}, r\theta^{2})=(\hat{r}, r\theta)\in Z$,

since $r\theta\in\Lambda\cap\Lambda\theta\subseteq\Lambda_{0}$ and

$(y, r\theta)=(y\theta^{T}, r)=0\in Z$ .

This shows that
$Ker\theta+\Lambda_{0}^{\perp}\theta\subseteq(\Lambda_{0}\theta)^{\perp}$ . (10)

If $r\in\Lambda_{0},$ $y\in(\Lambda_{0}\theta)^{\perp}$ , we have

$(y\theta^{T}, r)=(y, r\theta)\in Z$ .

So
$y\theta^{T}=y\theta\in\Lambda_{0}^{\perp}$ .

Hence
$y=y-y\theta+(y\theta)\theta\in Ker\theta+\Lambda_{0}^{\perp}\theta$ .
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This implies that
$(\Lambda_{0}\theta)^{\perp}\subseteq Ker\theta+\Lambda_{0}^{\perp}\theta$ . (11)

(10) and (11) complete the proof of Proposition 3. 1

We will prove Theorem 2. If $x=\sum_{i}x_{i}\overline{C}_{i}\in\Lambda_{0}\theta$ and $y=\sum_{i}y_{i}\overline{C}_{i}\in\Lambda_{0}^{\perp}\theta$ , by
Proposition 3 we have

$x\circ y=(x, y)\in Z$ .

So
$\Lambda_{0}^{\perp}\theta\subseteq(\Lambda_{0}\theta)_{G}^{\perp}$ . (12)

Now take $x=\sum_{i}x_{i}\overline{C}_{i}\in(\Lambda_{0}\theta)_{G}^{\perp},$ $y=\sum_{i}y_{i}\overline{C}_{i}\in\Lambda_{0}\theta$ . and observe

$(x, y)=xoy\in Z$ .

This shows that
$x\in(\Lambda_{0}\theta)^{\perp}$ . (7)

Since $x\in V\theta,$ (13) and Proposition 3 imply that $x\in\Lambda_{0}^{\perp}\theta$ .
Now we proved that

$(\Lambda_{0}\theta)_{G}^{\perp}\subseteq\Lambda_{0}^{\perp}\theta$ . (14)

From (12) and (14) it follows that

$(\Lambda_{0}\theta)_{G}^{\perp}=\Lambda_{0}^{\perp}\theta$.

Now we will finish the proof of Theorem 2. Jacobi’s formula for the theta series of the
dual lattice $(\Lambda_{0}\theta)_{G}^{\perp}$ in $V\theta$ :

$\Theta_{(\Lambda_{0}\theta)_{G}^{\perp}}(z)=(\det\Lambda_{0}\theta)(i/z)^{n/2}\Theta_{A_{0}\theta}(-1/z)$ .

Hence $(\Lambda_{0}\theta)_{G}^{\perp}=\Lambda_{0}^{\perp}\theta$ establishes our theorem. I

Remark. It is easy to prove that

$\Lambda/\Lambda_{0}\cong\Lambda\theta/\Lambda\cap\Lambda\theta$ ,

$\Lambda_{0}=(\Lambda\cap Ker\theta)\oplus(\Lambda\cap\Lambda\theta)$ .
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