Title	Parabolic V ariational Inequality for the Cahn－Hilliard Equation with Constraint（Evolution Equations and Nonlinear Problems）
Author（s）	KENMOCHI，N．；NIEZGODKA，M．；PA WLOW，I．
Citation	数理解析研究所講究録（1992），785：166－175
Issue Date	1992－05
URL	http：／hdl．handle．net／2433／82568
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Parabolic Variational Inequality for the Cahn－Hilliard Equation with Constraint

N．KENMOCHI，M．NIEZGODKA
and

I．PAWLOW

1．Introduction

In this paper we study the Cahn－Hilliard equation with constraint by means of subdifferential operator techniques．Such a state constraint problem was resently proposed by Blowey－ Elliott［1］as a model of diffusive phase separation．The questions of the existence，uniqueness and asymptotic behaviour of solutions，treated in［1］for the special case of the deep quench limit，are considered in our paper without such a restriction．

The standard Cahn－Hilliard equation is a model of diffusive phase separation in isother－ mal binary systems，and in terms of the concentration u of one of the components it has the form

$$
\begin{equation*}
u_{t}+\nu \Delta^{2} u-\Delta f(u)=0 \quad \text { in } Q_{T}=(0, T) \times \Omega . \tag{1.1}
\end{equation*}
$$

Here Ω is a bounded domain in $\mathbf{R}^{N}, N \geq 1$ ，with a smooth boundary $\Gamma=\partial \Omega, \nu$ is a positive constant related to the surface tension，$f(u)$ corresponds to the volumetric part of the chemical potential difference between components and is given by

$$
\begin{equation*}
f(u)=F^{\prime}(u) \tag{1.2}
\end{equation*}
$$

where $F(u)$ is a homogeneous（volumetric）free energy parametrized by temperature θ ，with the characteristic double－well form for θ below the critical temperature θ_{c} ．Usually the free energy is approximated by polynomials $F: \mathbf{R} \rightarrow \mathbf{R}$ ，e．g．in the simplest case by quartic polynomial

$$
\begin{equation*}
F(u)=F_{o}(\theta)+\alpha_{2}\left(\theta-\theta_{c}\right) u^{2}+\alpha_{4} u^{4} \tag{1.3}
\end{equation*}
$$

with constants $\alpha_{2}, \alpha_{4}>0$ and a given function $F_{0}(\theta)$ of temperature．To preserve an explicit physical sense，the state variable u often is subject to some constraints，e．g．in the case of concentration natural limitation is

$$
\begin{equation*}
0 \leq u \leq 1 \tag{1.4}
\end{equation*}
$$

Then the free energy $F(u)$ can be assumed in the form of the so－called regular solution model

$$
\begin{equation*}
F(u)=F_{o}(\theta)+\alpha_{o} \theta[u \log u+(1-u) \log (1-u)]+\alpha_{1}\left(\theta-\theta_{c}\right) u(u-1) \tag{1.5}
\end{equation*}
$$

with a function $F_{0}(\theta)$ and positive constants α_{o}, α_{1} ．The corresponding form of the chemical potential $f(u)$ is shown in Fig．1．Moreover，as the deep quench limit of（1．5），i．e．as the

$$
\begin{gathered}
t X(t, v(t))+\int_{0}^{t} \tau\left|v^{\prime}(\tau)\right|_{V^{*}}^{2} d \tau \leq \int_{0}^{t}\left\{\tau\left|\alpha^{\prime}(\tau)\right|+X(\tau, v(\tau))\right\} d \tau \cdot \exp \left(\int_{0}^{t}\left|\alpha^{\prime}(\tau)\right| d \tau\right) \\
\text { for all } t>0
\end{gathered}
$$

and

$$
\begin{gather*}
X(t, v(t))+\int_{s}^{t}\left|v^{\prime}\right|_{v^{*}}^{2} d \tau \leq\left\{X(s, v(s))+\int_{s}^{t}\left|\alpha^{\prime}(\tau)\right| d \tau\right\} \cdot \exp \left(\int_{s}^{t}\left|\alpha^{\prime}(\tau)\right| d \tau\right) \tag{2.1}\\
\text { for all } 0<s<t .
\end{gather*}
$$

In particular, if $v_{0} \in D$, then (2.1) holds for $0=s<t$, too.
The third theorem is concerned with the large time behaviour of the solution $v(t)$ of (VI).
Theorem 2.3. In addition to the assumptions $(\varphi 1)-(\varphi 3)$ and (p) suppose that $\alpha^{\prime} \in L^{1}\left(\mathbf{R}_{+}\right)$, and
($\varphi 4$) φ^{t} converges to a proper l.s.c. convex function φ^{∞} on H in the sense of Mosco [11] as $t \rightarrow \infty$, i.e.
(M1) for any $z \in D\left(\varphi^{\infty}\right)$ there exists a function $w: \mathbf{R}_{+} \rightarrow H$ such that $w(t) \rightarrow z$ in H and $\varphi^{t}(w(t)) \rightarrow \varphi^{\infty}(z)$ as $t \rightarrow \infty$;
(M2) if $w: \mathbf{R}_{+} \rightarrow H$ and $w(t) \rightarrow z$ weakly in H as $t \rightarrow \infty$, then $\liminf _{t \rightarrow \infty} \varphi^{t}(w(t)) \geq$ $\varphi^{\infty}(z)$.
Let v be the solution of (VI) on \mathbf{R}_{+}associated with initial datum $v_{o} \in D_{\star}$, and denote by $\omega\left(v_{o}\right)$ the ω-limit set of $v(t)$ in H as $t \rightarrow \infty$, i.e. $\omega\left(v_{o}\right):=\left\{z \in H ; v\left(t_{n}\right) \rightarrow z\right.$ in H for some t_{n} with $\left.t_{n} \rightarrow \infty\right\}$. Then $\omega\left(v_{o}\right) \neq \emptyset$ and

$$
\partial \varphi^{\infty}\left(v_{\infty}\right)+p\left(v_{\infty}\right) \ni 0 \quad \text { for all } v_{\infty} \in \omega\left(v_{0}\right)
$$

Finally we give a result on the continuous dependence of solutions of (VI) upon the data $v_{0},\left\{\varphi^{t}\right\}$ and $p(\cdot)$.

Theorem 2.4. Let $\left\{\varphi_{n}^{t}\right\}$ be a sequence of families of proper l.s.c. convex functions on H such that conditions $(\varphi 1)-(\varphi 3)$ are satisfied for common positive constants C_{o}, C_{1} and a common function $\alpha \in W_{\text {loc }}^{1,1}\left(\mathbf{R}_{+}\right)$. Also, let p_{n} be a sequence of Lipschitz continuous operators in H such that condition (p) is satisfied for a common Lipschitz constant $L_{o}>0$ and a nonnegative C^{1}-function P_{n} on H. Suppose that for each $t \leq 0, \varphi_{n}^{t}$ converges to φ^{t} on H in the sense of Mosco as $n \rightarrow \infty$, i.e.
(m1) for any $z \in D$, there exists $\left\{z_{n}\right\} \subset H$ such that $z_{n} \in D_{n}\left(=D\left(\varphi_{n}^{t}\right)\right)$, $z_{n} \rightarrow z$ in H and $\varphi_{n}^{t}\left(z_{n}\right) \rightarrow \varphi^{t}(z)$ as $n \rightarrow \infty ;$
(m2) if $z_{n} \in H$ and $z_{n} \rightarrow z$ weakly in H as $n \rightarrow \infty$, then $\liminf _{n \rightarrow \infty} \varphi_{n}^{t}\left(z_{n}\right) \geq \varphi^{t}(z)$.
Furthermore suppose that for each $z \in H$,

$$
p_{n}(z) \rightarrow p(z) \quad \text { in } H, \quad P_{n}(z) \rightarrow P(z) \quad \text { as } n \rightarrow \infty .
$$

The cases (1.3),(1.5) and (1.6) of free energies can be written in the form (1.7) with appropriate functions $\hat{\beta}$ and \hat{g}, and these special cases have been studied by Blowey-Elliott [1] and Elliott-Luckhaus [5].

2. Abstract results

We shall study evolution system (1.8)-(1.10) in an abstract framework.
Let H and V be (real) Hilbert spaces such that V is densely and compactly embedded in $H . V^{*}$ will be the dual of V. Then, identifying H with its dual, we have

$$
V \subset H \subset V^{\star}
$$

with dense and compact injections. Further, let J^{\star} be the duality mapping from V^{\star} onto V, and for $t \in \mathbf{R}_{+}=[0, \infty)$, let $\varphi^{t}(\cdot)$ be a proper, l.s.c., non-negative and convex function on H. We shall consider the following problem (VI):

$$
\left\{\begin{array}{l}
J^{\star}\left(v^{\prime}(t)\right)+\partial \varphi^{t}(v(t))+p(v(t)) \ni 0 \quad \text { in } H, t>0, \\
v(0)=v_{0}
\end{array}\right.
$$

where $v^{\prime}=\left(\frac{d}{d t}\right) v, \partial \varphi^{t}$ is the subdifferential of φ^{t} in $H ; p(\cdot): H \cdot \rightarrow H$ is a Lipschitz continuous operator and v_{o} a given initial datum.

When it is necessary to indicate the data φ^{t}, p and v_{o} explicitly, (VI) is denoted by (VI; φ^{t}, p, v_{0}).

Throughout this paper we use the following notations:
(\cdot, \cdot) : the inner product in H;
$\langle\cdot, \cdot)$: the duality pairing between V^{\star} and V;
$|\cdot|_{W}$: the norm in W for any normed space W;
J : the duality mapping from V onto V^{\star}, hence $J^{\star}=J^{-1}$.
We use some basic notions and results about monotone operators and subdifferentials of convex functions; for details we refer to Brézis [2] and Lions [10].

We shall discuss (VI$)=\left(\mathrm{VI} ; \varphi^{t}, p, v_{o}\right)$ under the following additional hypotheses:
($\varphi 1$) The effective domain $D\left(\varphi^{t}\right)\left(=\left\{z \in H ; \varphi^{t}(z)<\infty\right\}\right)$ of φ^{t} is independent of $t \in$ $\mathbf{R}_{+}, D:=D\left(\varphi^{t}\right) \subset V$ and

$$
\varphi^{t}(z) \geq C_{o}|z|_{V}^{2} \quad \text { for all } z \in V \text { and all } t \in \mathbf{R}_{+},
$$

where C_{0} is a positive constant.
(φ 2) $\left(z_{1}^{\star}-z_{2}^{\star}, z_{1}-z_{2}\right) \geq C_{1}\left|z_{1}-z_{2}\right|_{V}^{2}$ for all $z_{i} \in D, z_{i}^{\star} \in \partial \varphi^{t}\left(z_{i}\right), i=1,2$, and all $t \in \mathbf{R}_{+}$, where C_{1} is a positive constant.
($\varphi 3$) There is a function $\alpha \in W_{l o c}^{1,1}\left(\mathbf{R}_{+}\right)$such that

$$
\varphi^{t}(z)-\varphi^{s}(z) \leq|\alpha(t)-\alpha(s)|\left(1+\varphi^{s}(z)\right)
$$

for all $z \in D$ and $s, t \in \mathbf{R}_{+}$with $s \leq t$.
(p) p is a Lipschitz continuous operator in H and there is a non-negative C^{1}-function $P: H \rightarrow \mathbf{R}$ whose gradient coincides with p, i.e. $p=\nabla P$; hence

$$
\left.\frac{d}{d t} P(w(t))=\left(p(w(t)), w^{\prime}(t)\right) \quad \text { for a.e. } t \in \mathbf{R}, \text { if. } w \in W_{l o c}^{1,2} \mathbf{R}_{+} ; H\right)
$$

We now introduce a notion of the solution in a weak sense to problem (VI).
Definition 2.1. (i) Let $0<T<\infty$. Then a function $v:[0, T] \rightarrow H$ is called a solution of (VI) on $[0, T]$, if $v \in L^{2}(0, T ; V) \cap C\left([0, T] ; V^{\star}\right), v^{\prime} \in L_{l o c}^{2}\left((0, T] ; V^{\star}\right), v(0)=v_{o}, \varphi^{(\cdot)}(v) \in$ $L^{1}(0, T)$ and

$$
-J^{\star}\left(v^{\prime}(t)\right)-p(v(t)) \in \partial \varphi^{t}(v(t)) \quad \text { for a.e. } t \in[0, T] .
$$

(ii) A function $v: \mathbf{R}_{+} \rightarrow H$ is called a solution of (VI) on \mathbf{R}_{+}, if the restriction of v to $[0, T]$ is a solution of (VI) on $[0, T]$ for every finite $T>0$.

Our results for (VI) are given as follows.
Theorem 2.1. Assume that $(\varphi 1)-(\varphi 3)$ and (p) are satisfied. Let T be any positive number. Then the following two statements (a) and (b) hold:
(a) If v_{o} is given in the closure D_{\star} of D in V^{\star}, then (VI) has one and only one solution v on $[0, T]$ such that

$$
t^{\frac{1}{2}} v^{\prime} \in L^{2}\left(0, T ; V^{\star}\right), \sup _{0<t \leq T} t \varphi^{t}(v(t))<\infty .
$$

(b) If $v_{0} \in D$, then the solution v of (VI) on $[0, T]$ satisfies that

$$
v^{\prime} \in L^{2}\left(0, T ; V^{\star}\right), \quad \sup _{0 \leq \leq \leq T} \varphi^{t}(v(t))<\infty ;
$$

hence $v \in C([0, T] ; H)$.
The second theorem is concerned with the energy inequality for (VI).
Theorem 2.2. Assume that $(\varphi 1)-(\varphi 3)$ and (p) hold. Let v be the solution of (VI) on \mathbf{R}_{+} associated with initial datum $v_{0} \in D_{\star}$. Define

$$
X(t, z)=\varphi^{t}(z)+P(z) \quad \text { for } z \in D \text { and } t \in \mathbf{R}_{+}
$$

Then: (a)

$$
\begin{gathered}
\sup _{0 \leq r \leq t}|v(\tau)|_{V^{\star}}^{2}+\int_{0}^{t} \varphi^{\tau}(v(\tau)) d \tau \leq M_{o}\left\{\left|v_{o}\right|_{V^{\star}}^{2}+\int_{0}^{t} \varphi^{\tau}(z) d \tau+\left(|z|_{H}^{2}+1\right)\right\} e^{M_{o} t} \\
\text { for all } z \in D \text { and } t>0,
\end{gathered}
$$

where M_{o} is a positive constant dependent only on C_{o} in $(\varphi 1)$, the Lipschitz constant L_{p} of $p(\cdot)$ and the value $|p(0)|_{H}$.
limit of (1.5) as $\theta \rightarrow 0$, the non-smooth free energy

$$
F(u)= \begin{cases}F_{o}(\theta)+\alpha_{1} \theta_{c} u(1-u) & \text { if } 0 \leq u \leq 1 \tag{1.6}\\ \infty & \text { otherwise }\end{cases}
$$

is obtained (see Fig. 2); the constraint (1.4) is included in formula (1.6). This type of free energy (1.6) was introduced by Oono-Puri [12], and the corresponding Cahn-Hilliard equation was numerically studied by them; subsequently this model was analized theoretically, too, by Blowey-Elliott [1].

For generality we propose in this paper the representation of (possibly non-smooth) free energy in the form

$$
\begin{equation*}
F(u)=\hat{\beta}(u)+\hat{g}(u) \tag{1.7}
\end{equation*}
$$

where $\hat{\beta}$ is a proper, l.s.c. and convex function on \mathbf{R} and \hat{g} is a non-negative function of C^{1}-class on \mathbf{R} with Lipschitz continuous derivative $g=\hat{g}^{\prime}$ on \mathbf{R}. In such a non-smooth case of free energy functionals, the formula (1.2), giving the volumetric part $f(u)$ of the chemical potential difference, does not make sense any longer. Therefore, following the idea in [1], we introduce a generalized notion of chemical potential which is represented in terms of the multivalued function

$$
F(u)=\{\xi+g(u) ; \xi \in \beta(u)\}
$$

where β is the subdifferential of $\hat{\beta}$ in \mathbf{R}. Then the Cahn-Hilliard equation (1.1) is extended to the general form

$$
\begin{equation*}
u_{\mathbf{t}}+\nu \Delta^{2} u-\Delta(\xi+g(u))=0, \quad \xi \in \beta(u) \quad \text { in } Q_{T} . \tag{1.8}
\end{equation*}
$$

Equation (1.8) is to be satisfied together with boundary conditions

$$
\begin{equation*}
\frac{\partial u}{\partial n}=0, \quad \frac{\partial}{\partial n}(\nu \Delta u+\xi+g(u))=0 \quad \text { on } \Sigma_{T}:=(0, T) \times \gamma \tag{1.9}
\end{equation*}
$$

and initial condition

$$
\begin{equation*}
u(0, \cdot)=u_{o} \quad \text { in } \Omega \tag{1.10}
\end{equation*}
$$

where u_{0} is a given initial datum, and $\frac{\partial}{\partial n}$ denotes the outward normal derivative on Γ.

Let $\left\{v_{o n}\right\}$ be a sequence in V^{\star} such that $v_{o n} \in D_{n \star}\left(=\right.$ the closure of D_{n} in $\left.V^{\star}\right), v_{o} \in D_{\star}$ and $v_{o n} \rightarrow v_{0}$ in V^{*} as $n \rightarrow \infty$. Then the solution v_{n} of $(V I)_{n}:=\left(V I ; \varphi_{n}^{t}, p_{n}, v_{o n}\right)$ converges to the solution v of $(V I):=\left(V I ; \varphi^{t}, p, v_{o}\right)$ as $n \rightarrow \infty$ in the following sense: for every finite $T>0$ and every $0<\delta<T$,

$$
\begin{gathered}
v_{n} \rightarrow v \quad \text { in } C\left([0, T] ; V^{\star}\right), \\
v_{n} \rightarrow v \quad \\
t^{\frac{1}{2}} v_{n}^{\prime} \rightarrow t^{\frac{1}{2}} v^{\prime} \\
\text { in } C([\delta, T] ; H) \text { and weakly in } L^{2}\left(0, T ; V^{\star}\right), \\
\text { in } L^{\infty}(\delta, T ; V),
\end{gathered}
$$

as $n \rightarrow \infty$.

3. Sketch of the proofs

We sketch the proofs of the main theorems.
(1) (Uniqueness) Let $v_{i}, i=1,2$, be two solutions of (VI) on $[0, T]$ and put $v:=v_{1}-v_{2}$. Multiply the difference of two equations, which v_{1} and v_{2} satisfy, by v, and then use the inequality

$$
|z|_{H}^{2} \leq \varepsilon|z|_{V}^{2}+C(\varepsilon)|z|_{V^{\star}}^{2} \quad \text { for all } z \in V
$$

where ε is an arbitrary positive number and $C(\varepsilon)$ is a suitable positive constant dependent only on ε. Then we have an inequality of the form

$$
\frac{1}{2} \frac{d}{d t}|v(t)|_{V^{\star}}^{2}+k_{1}|v(t)|_{V}^{2} \leq k_{2}|v(t)|_{V^{\star}}^{2} \quad \text { for a.e. } t \in[0, T]
$$

where k_{1} and k_{2} are some positive constants. Therefore, Gronwall's lemma implies that $v=0$.
(2) (Approximate problems) Let $v_{o} \in D$ and μ be any parameter in (0,1$]$. Consider the following approximate problem $(V I)_{\mu}$ for $(V I)$:

$$
\left\{\begin{array}{l}
\left(J^{\star}+\mu I\right)\left(v_{\mu}^{\prime}(t)\right)+\partial \varphi^{t}\left(v_{\mu}(t)\right)+p\left(v_{\mu}(t)\right) \ni 0 \quad \text { in } H, \quad 0<t<T, \\
v_{\mu}(0)=v_{0} .
\end{array}\right.
$$

By making use of the results in [9] this problem $(V I)_{\mu}$ has one only one solution $v_{\mu} \in$ $W^{1,2}(0, T ; H) \cap L^{\infty}(0, T ; V)$. Also, multiplying the equation of $(V I)_{\mu}$ by $v_{\mu}, v_{\mu}^{\prime}$ and $t v_{\mu}^{\prime}$, we have similar estimates as those in Theorem 2.2.
(3) (Existence and estimates for (VI)) In the case when $v_{0} \in D$, by the standard monotonicity and compactness methods we can prove that the solution v_{μ} tends to the solution v of (VI) as $\mu \rightarrow 0$ in the sense that

$$
\begin{gathered}
v_{\mu} \rightarrow v \quad \text { in } C([0, T] ; H) \text { and weakly in } L^{\infty}(0, T ; V), \\
v_{\mu}^{\prime} \rightarrow v^{\prime} \quad \text { weakly in } L^{2}\left(0, T ; V^{\star}\right), \\
\mu v_{\mu}^{\prime} \rightarrow 0 \quad \text { in } L^{2}(0, T ; H) .
\end{gathered}
$$

Moreover we have the estimates in Theorem 2.2 for v. In the case when $v_{o} \in D_{\star}$, it is enough to approximate v_{o} by a sequence $\left\{v_{o n}\right\} \subset D$ and to see the convergence of the solution v_{n} associated with initial datum $v_{o n}$.
(4) (Proof of Theorem 2.3) From the energy estimates which were obtained in Theorem 2.2, it follows that $v^{\prime} \in L^{2}\left(1, \infty ; V^{\star}\right)$ and $v \in L^{\infty}(1, \infty ; V)$; hence Theorem 2.3 holds.
(5) (Proof of Theorem 2.4) Under the assumptions of Theorem 2.4, we see from the energy estimates for v_{n} that $\left\{v_{n}\right\}$ is bounded in $C([0, T] ; H) \cap L^{2}(0, T ; V) \cap L_{\text {loc }}^{\infty}((0, T] ; V) \cap$ $W_{l o c}^{1,2}\left((0, T] ; V^{\star}\right)$. Hence by the usual monotonicity and compactness argument we have the assertions of Theorem 2.4.

4. Application to the Cahn-Hilliard equation with constraint

We denote by (CHC) the Cahn-Hilliard equation with constraint (1.8)-(1.10). Here we suppose that
(A1) $g: \mathbf{R} \rightarrow \mathbf{R}$ is a Lipschitz continuous function with a non-negative primitive \hat{g} on \mathbf{R}.
(A2) β is a maximal monotone graph in $\mathbf{R} \times \mathbf{R}$ such that $0 \in R(\beta)$ and $\operatorname{int} . D(\beta) \neq \emptyset$; we may assume that there is a non-negative proper l.s.c. convex function on \mathbf{R} such that its subdifferential $\partial \hat{\beta}$ coincides with β in R .
(A3) $u_{o} \in L^{2}(\Omega), u_{o}(x) \in \overline{D(\beta)}$ for a.e. $x \in \Omega$.

Definition 4.1. Let $0<T<\infty$. Then $u:[0, T] \rightarrow H$ is called a (weak) solution of (CHC) on $[0, T]$, if u satisfies the following properties (w1)-(w3):
(w1) $u \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \cap C\left([0, T] ;\left(H^{1}(\Omega)\right)^{\star}\right) \cap L_{\text {loc }}^{2}\left((0, T] ; H^{2}(\Omega)\right) \cap L_{\text {loc }}^{\infty}\left((0, T] ; H^{1}(\Omega)\right) \cap$ $W_{l o c}^{1,2}\left((0, T] ;\left(H^{1}(\Omega)\right)^{\star}\right)$ and $\hat{\beta}(u) \in L^{1}\left(Q_{T}\right) ;$
(w2) $u(0, \cdot)=u_{o}$ a.e. in Σ_{T};
(w3) there is a function $\xi:[0, T] \rightarrow L^{2}(\Omega)$ such that

$$
\xi \in L_{l o c}^{2}\left((0, T] ; L^{2}(\Omega)\right), \quad \xi \in \beta(u) \quad \text { a.e. in } Q_{T}
$$

and

$$
\frac{d}{d t}(u(t), \eta)+\nu(\Delta u(t), \Delta \eta)-(\xi(t)+g(u(t)), \Delta \eta)=0
$$

for all $\eta \in H^{2}(\Omega)$ with $\frac{\partial \eta}{\partial n}$ a.e. on Γ, and for a.e. $t \in[0, T]$.

Applying Theorems 2.1-2.4 to (CHC) we have:
Theorem 4.1. Assume that (A1)-(A3) hold and

$$
m:=\frac{1}{|\Omega|} \int_{\Omega} u_{o} d x \in \operatorname{int} . D(\beta) .
$$

Then for every finite $T>0$ problem (CHC) has one and only one solution u on $[0, T]$, and the following statements (a) and (b) hold:
(a) $u \in L^{\infty}\left(\delta, \infty ; H^{1}(\Omega)\right), u^{\prime}\left(\delta, \infty ;\left(H^{1}(\Omega)\right)^{\star}\right)$ for every. $\delta>0$, and hence the ω-limit set $\omega\left(u_{o}\right):=\left\{z \in L^{2}(\Omega) ; u\left(t_{n}\right) \rightarrow z\right.$ in $L^{2}(\Omega)$ for some t_{n} with $\left.t_{n} \rightarrow \infty\right\}$ is non-empty;
(b) $\omega\left(u_{o}\right) \subset H^{2}(\Omega)$, and any $u_{\infty} \in \omega\left(u_{o}\right)$ with some $\mu_{\infty} \in \mathbf{R}$ and $\xi_{\infty} \in L^{2}(\Omega)$ solves the following stationary problem

$$
\begin{gathered}
-\nu \Delta u_{\infty}+\xi_{\infty}+g\left(u_{\infty}\right)=\mu_{\infty} \quad \text { in. } \Omega, \quad \xi_{\infty} \in \beta\left(u_{\infty}\right) \quad \text { a.e. } \in \Omega \\
\frac{\partial u_{\infty}}{\partial n}=0 \quad \text { a.e. on } \Gamma, \quad \frac{1}{|\Omega|} \int_{\Omega} u_{\infty} d x=m
\end{gathered}
$$

Now, let us reformulate (CHC) as an evolution problem of the form (VI) in the space

$$
H:=\left\{z \in L^{2}(\Omega) ; ; \int_{\Omega} z d x=0\right\} \quad \text { with }|z|_{H}=|z|_{L^{2}(\Omega)}
$$

put also

$$
V:=H \cap H^{1}(\Omega) \quad \text { with }|z|_{V}=|\nabla z|_{L^{2}(\Omega)} .
$$

For this purpose we consider the data $\varphi^{t}=\varphi, p(\cdot)$ and v_{0} as follows:.

$$
\varphi(z):= \begin{cases}\frac{\nu}{2}|\nabla z|_{L^{2}(\Omega)}^{2}+\int_{\Omega} \hat{\beta}(z+m) d x & \text { if } z \in V \\ \infty & \text { otherwise }\end{cases}
$$

where $m=\frac{1}{|\Omega|} \int_{\Omega} u_{o} d x$;

$$
\begin{gathered}
p(z):=\pi(g(z+m)), \quad P(z):=\int_{\Omega} \hat{g}(z+m) d x, \quad z \in H \\
v_{0}:=u_{o}-m
\end{gathered}
$$

By virtue of the following lemma; problems (CHC) and (VI) associated with the data defined above are equivalent.

Lemma 4.1. Let $\ell \in L^{2}(\Omega)$. Then $\pi(\ell) \in \partial \varphi(z)$ if and only if $z_{m}=z+m$ satisfies that there are $\mu_{m} \in \mathbf{R}$ and $\xi_{m} \in L^{2}(\Omega)$ such that

$$
\begin{array}{rlrl}
-\nu \Delta z_{m}+\xi_{m} & =\ell+\mu_{m} & \quad \text { in } L^{2}(\Omega), & \xi_{m} \in \beta\left(z_{m}\right) \quad \text { a.e. in } \Omega \\
\frac{\partial z_{m}}{\partial n}=0 & \text { a.e. on } \Gamma, \quad \frac{1}{|\Omega|} \int_{\Omega} z_{m} d x=m
\end{array}
$$

hence $z_{m} \in H^{2}(\Omega)$. Moreover, μ_{m} can be chosen so that

$$
\left|\mu_{m}\right| \leq M\left(1+|\ell|_{L^{2}(\Omega)}\right),
$$

where $M>0$ is a certain constant dependent only upon β and m, and z_{m} satisfies that

$$
\nu\left|\Delta z_{m}\right|_{L^{2}(\Omega)} \leq|\ell|_{L^{2}(\Omega)}+\left|\mu_{m}\right||\Omega|^{\frac{1}{2}}
$$

By Theorem 2.1 problem (VI) has one and only one solution v. Moreover we see from the above lemma that the function $u:=v+m$ is the unique solution of (CHC), and from Theorems 2.2 and 2.3 that (a) and (b) hold.

When the state constraint $\xi \in \beta(u)$ is not imposed, the system (1.8)-(1.10) becomes the standard Cahn-Hilliard problem. For such a problem various existence, uniqueness and asymptotic results have been establised; see e.g. Elliott [3], Elliott-Zheng [6] and Zheng [15]. For related results in abstract setting we refer to Temam [13] and von Wahl [14]. For the Cahn-Hilliard models with non-smooth free energy functionals we refer to Elliott-Mikelic [4]. The structure of stationary solutions corresponding to the Cahn-Hilliard equation was studied by Gurtin-Matano [7]; their analysis covers also some cases of free energy $F(u)$ with infinite walls.

Finally we give examples of β and the corresponding Cahn-Hilliard equations.
Example 4.1. (i) (Logarithmic form) For constants $\alpha_{0}>0$ and $\theta>0, \theta$ being a parameter,

$$
\beta(u):=\beta^{\theta}(u)= \begin{cases}\left\{\alpha_{0} \theta \log \frac{u}{1-u}\right\} & \text { for } 0<u<1 \\ 0 & \text { otherwise }\end{cases}
$$

Gien any Lipschitz continuous function \bar{g} on $[0,1]$, we extend it to a Lipschitz continuous function g, with support in $[-1,2]$, on the whole line \mathbf{R}.
(ii) (The limit of β^{θ} as $\theta \rightarrow 0$)

$$
\beta(u):=\beta^{0}(u)= \begin{cases}{[0, \infty)} & \text { if } u=1 \\ \{0\} & \text { if } 0<u<1 \\ (-\infty, 0] & \text { if } u=0 \\ 0 & \text { otherwise }\end{cases}
$$

and g is the same as in (i).
Example 4.2. Denote by $(\mathrm{CHC})_{\theta}$ and $(\mathrm{CHC})_{0}$ the Cahn-Hilliard equations (CHC) associated with $\beta=\beta^{\theta}$ and $\beta=\beta^{0}$, respectibely. Then, by the theorems proved above, (CHC) ${ }_{\theta}$ and $(\mathrm{CHC})_{0}$ have the unique solutions u^{θ} and u^{0}, respectively, and moreover $u^{\theta} \rightarrow u^{0}$ as $\theta \rightarrow 0$ in the similar sense as Theorem 2.4.

References

[1] J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, Part I: Mathematical analysis, European J. Appl. Math. 2(1991), 233-280.
[2] H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.
[3] C. M. Elliott, The Cahn-Hilliard model for the kinetics of phase separation, in Mathematical Models for Phase Change Problems J. F. Rodrigues ed., ISNM 88, Birkhäuser, Basel, 1989, pp.35-73.
[4] C. M. Elliott and A. Mikelic, Existence for the Cahn-Hilliard phase separation model with a non-differentiable energy, Ann. Mat. pura appl. 158(1991), 181-203.
[5] C. M. Elliott and S. Luckhaus, A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy, preprint.
[6] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rat. Mech. Anal. 96(1986), 339-357.
[7] M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within the gradient theory of fluids, Quart. Appl. Math. 156(1988), 301-317.
[8] N. Kenmochi, M. Niezgódka and I. Pawlow, Subdifferential operator approach to the Cahn-Hilliard equation with constraint, preprint.
[9] N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with timedependent constraints, Nonlinear Anal. TMA 10(1986), 1181-1202.
[10] J. L. Lions, Quelques Méthodes de Résolution des Probなemes aux Limites Non Linéaires, Dunod Gauthier- Villars, Paris, 1969.
[11] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Avdances Math. 3(1969), 510-585.
[12] Y. Oono and S, Puri, Study of the phase separation dynamics by use of call dynamical systems, I. Modelling Phys. Rev. (A) 38(1988), 434-453.
[13] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,Springer Verlag, Berlin, 1988.
[14] W. von Wahl, On the Cahn-Hilliard equation $u^{\prime}+\Delta^{2} u-\Delta f(u)=0$, Delft Progress Report 10(1985), 291-310.
[15] S. Zheng, Asymptotic behaviour of the solution to the Cahn- Hilliard equation, Applic. Anal. 23(1986), 165-184.
N. Kenmochi: Department of Mathematics, Faculty of Education,Chiba University 1-33 Yayoi-chō, Chiba, 260 Japan
M. Niezgódka: Institute of Applied Mathematics and Mechanics, Warsaw University Banacha 2, 00-913 Warsaw, Poland
I. Pawlow: Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland

