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Nontrivial Solutions
of Semilinear Elliptic Equations

with Continuous or Discontinuous Nonlinearities

NORIKO MIZOGUCHI (#OLF (EIK- )

1 Introduction.

We begin this paper by considering the existence of nontrivial solutions of the boundary

value problem of the form
—Au=g(u) in®, ulse=0, (1)

where (1 is a bounded domain with smooth boundary 02 in R™ and g is a real-valued
continuous function on R such that g(0) = 0.

Let 0 < Ay < A3 £ -+« < XA £ --- denote the eigenvalues of the seif-adjoint realization
in L*(f2) of —A with the Dirichlet boundary condition. Many authors have studied the
existence of nontrivial solutions of the problem (1) when g(t)/t crosses finitely many
eigenvalues of —A as t varies from —o0o to +00. Amann and Zehnder [2] proved by
generalized Morse theory that (1) has at least one nontrivial solution if g € C?(R, R)
satisfies

sup |¢'(¢)| < oo
teR
and

M1 590 <A <A <a,.<a* <Apyy  for some m, k> 1



where

g(t)

and @' =limsup ——=.
[t}=o0 t |tl=>co

On the other hand, using Leray-Schauder deree, Hirano [6] established the existence of

one nontrivial solution of (1) under
A1 <0, << M <Ipn<a, L6 <Ay forsome k,m > 1,

where a, and a* are as above,

g(2) g(t)

b,.‘ = liminf —= and b = Lm sup —,
[tj—0 t |tj—0

without any assumptions of differentiability of g. Hirano’s result cannot be applied in
the case of resonance at 0. We obtain the existence of one nontrivial solution of (1)
under weaker conditions of g near 0 which contain the resonance case at 0 ( Theorem 1
). Moreover, there are no results for g with b, > a* in [6]. We deal with such a function
g in Theorem 2.

It is seen in §3, that the assertions of Theorem 1 and Theorem 2 remain valid in
the case that g is a piecewise continuous function on any bounded closed interval of R

( may be discontinuous at 0 ), that is,

—Au€fg(u)g(u)] nQ, ulan=0, (2)

where

g(t) = lim inf g(s) and g(t) = limsupg(s).
= st

2 The case that g is continuous.

Our purpose in this section is to prove the following two theorems.



Theorem 1. Let g: R — R be a continuous function with g(0) = 0. If g satisfies

the following condition

for some m > 1, where
: t . t
a, = liminf g_(t_)’ @ = sup 2(__) and b* = limsup -‘?Q,
[tlmoo 1 tz0 1 [t|~0

then the equation (1) has at least one nontrivial solution in H*(2) N H3(N) .

Theorem 2. Let g: R — R be a continuous function with g(0) = 0. If g satisfies
that
A1<a<a* <A <b, ’ (4)

for some k > 1, where

inf g_(t_)’ a" = limsup M and b, = liminf -‘?(—t),
#0 1 Jtj—o0 t tlmo ¢

then there exists at least one nontrivial solution of (1) in H%(Q) N H}(R).

In the following, we write H, H~! and L? instead of H}(R?), H~1(Q?) and L%(Q),
respectively. We denote by || - ||, || - ||« and |- | the norms of H, H-! and L?, respectively.
The notation |- | is often used for the absolute value of a real number without notice if
there is no possibility of their confusion. The pairing between H and H-! is denoted
by (-,-). We take k € Z%+ with b* < Ay < A, if g satisfies the condition (3), and
m € Z% with Ay < A < b, if g satisfies the condition (4). Let Hy, H; and Hj be
closed subspaces of H spanned by the eigenfunctions corresponding to the eigenvalues
{Am+1s Ama2s }s { ks o+ s Am } and {1, Az, - -+, Ak}, respectively ( We consider Ag = 0
and H;={0}ifk=1.).



Fori = 1,2, 3, P; means the projection from H onto H;. Define a real valued function
f on H by
1 2 u(z)
= - - 4
OE 2/0|Vu| dz /ﬂ[) g(t)dtdz for u € H. (5)
Then we have

(f'(u),v) = (—Au — g(u),v) for any u,v € H,

and hence weak solutions of (1) coincide with critical points of f.

We need the following two lemmas in order to prove our theorems.

Lemma 1. If g satisfies the conditions (3) or (4), then the Palais-Smale condition
holds for the function f defined by (5), that is, for any sequence {u,} in H such that

{f(un)} is bounded and ||f'(u,)|l. — O, there exists a convergent subsequence of {u,}.

Proof. Let {u,} in H satisfy that {f(u,)} is bounded and || f'(u.)|l« = || — Au —

g(u)lls — 0. For each u,, we put v, = Pyu,, w, = Pu, and z, = P3u,. Then

(—Aup — g(un), va — (W + 25))
= ol = n + 20l = [ 9(tn) (00 = (w0n + 22)da

Suppose that g satisfies the condition (3). Then there exist positive numbers a with
Am < a < a, and p such that asg-(t-t-)-safor all t € R with |t] > p. From the
continuity of g, for some constant K, we have |g(t)] < K for all ¢ with |t| < p. If
|ua(2)| = p, then

g(un(z)) _
S o) e = (6)

If jun(z)| < p, then

lon(z)[* = |wa(z) + 20 (2)[* 2 ~p(|va(2)| + lwa(z) + 2a(2)})-



We set

A = {z€Q:|va(2)] > |wa(z) + 2(2)]},
Al = {z€A:|us(z)| 2 p} and A2 = {z € A:|ua(z)| < p}.

By the second inequality in (6), we have

[ 9(un)(on = (w0 + 2))do
< [ allval = lwn + 2 Pda + [ K(loal + on + 2a])de
< ./A(T:ilv,,l2 — afwy, + 2,]*)dz + /A,(EP + K)(Jvn| + |wn + 2a])dz.

" Putting

B = {.’L‘ eN: |v,.(a:)| < lwn($) + 21&('7:)]}’

By, = {z€B:lus(z)|2p} and B; = {z€B:lua(z) <p},

it follows that
[, 9(un)(vn = (wn + z0))de
=t |2 _ 2\ 1, (=
S f@lenl’ = adon + 2Pz + [ (@p+ K)(lonl + lun + znl)do

from the first inequality in (6). Therfore we have

J s(a)(wn = (00 + 20))dz
< @loal* - alwa + zl* + 21Q"2@p + K)|unl.
Thus it holds that
(_Auﬂ - g(un)7 Up — (wn + zu))

a o N ’ ‘ _
2 (1= 5= leall® + (5= = Dllwa + zalf* - 2Q"(@p + K)|un|
m+1 m

> w|ua||? — wallun||




for some wy,w; > 0. The assumption || — Au, — g(u,)|l« — 0 and this inequality imply
the boundedness of {u,} in H and hence the existence of a subsequence {u,;} of {u.}

which converges weakly to some u in H. Then we have
("'A“n,' - g(uﬂj), Up; — u) — 0.

Since H is compactly embedded into L?, {us} strongly converges to u in L? and
(9(tn;)y tn; — u) — 0, s0 (—Auy;,u,; — u) — 0. Since {—Auy,;} weakly converges

to —Au in H™1, we have
il = Ji Sty — )+ Jim (A1) =

Thus we obtain the strong convergence of {un;} in H. The proof is similar in the case

that g satisfies the condition (4).

Lemma 2.  Under the assumption (3), there exist positive constants ¢; (i =

1,2,3,4),¢; ( = 1,2) and K such that
i) if ||Pyul] 2 e, || Pau|| £ ¢; and ||Psu|| < 3, then f(u) > ¢ ;
ii) if ||Paul| € ¢4 and ||Pau|| < K"Pg@“, then f(u) > || Pull®.

Proof. For simplicity, we set v = Pju,w = Pu and z = Psu. By @ < Ap41, We

have

1 1
) 2 sllv+w+z’-3av+w+z
1 s @ @
> - - g 2 _ ( 2 _ (2 2
2 3{@ Am“)llvll (/\I= 1)|lwl] (/\1 D|=]I°},

so there exist positive constants ¢; (i = 1,2,3) and &, for which the statement i) holds.

t
From b* < )i, we obtain positive constants § and a with a < \; such that g(z—)- < a for



all ¢ with |¢t| < §. In the case that |v(z) + w(z) + z(z)| < &, we have
2 Omaalol? + Al + dafof) - [ gty

> 5Ot = @)lol + 50 — @)l + 504 — lel? — a(ow + wz + 20)

> 2% - @)l + 504 — a)|=f = avw+ ws + 20).
Now, we choose d > 0 such that

(Amt1 — @)p* +2(An41 — @)pg + (@ — @)¢” < (Amy1 —T)8
for all p,q > 0 with p + ¢ < d. Moreover we can take ¢ > 0 such that
sup(|Pou(z)| + [Psu(z)]) < d
if || Pau + Psu|| < c. Let [|w + z]| < c. In the case that Iv(a:) +w(z) + 2(z)| > 6, we have
L[ gt < 5t + 0+ 2 - 5(a )8

and hence
1 vtw+tz
gOmnlol’+ Mol + M) - - [ st
2 50mia = Dbl + Lol + =)

ad—-a
"0 —7) {Ams1 — a)|w|2 + 2(/\m+1 - a)]w”z] + (@ - @)|z)* = (Am41 — @)6%}

+= (/\k - a)|w]? + (/\1 -a)z)* - a(vw + wz + 2v)
> -—(Ak — a)|w|® + (/\1 -a@)|z[* - a(vw + wz + 2v).

It follows that
flu) 2 /{ =(Amt1|v]? + Me|w]? + Mi|2)?) — / g(t )dt}dz
2 -(,\,, ~ a)lw|? + —()‘1 —a)|zf?
1 A a—A
2 {5 n 2 ~ ——1l=1I%}



if |lw + z|]| £ e. Taking K|, ¢4 and ¢; such that

Al(Ak-—a)
At 1% el 1 <
~ Q<K< W@ =)’ 0<(1+K)ey<c
and
Ak — Am(@— A
0<er< Mg gr2nl@=A))

2Am MMk —a)

the statement ii) holds.
We are now ready to prove Theorem 1.

Proof of Theorem 1. By A, < a. £ @ < A4, there exists r > 0 such that
flw+2)< uién}il'l f(v) for all w € H, and z € H3 with |Jw + z|| > r. We define
I ={AC H:Ais a compact set such that g(A) 3 0 for any
continuous mapping o : A — H,; @ Hj satisfying
o(u) =uforallu € AN S} (#0),

where

S={w+z:w€H,z€H; and |w+ 2| =r}

and

*=l}21£.ma‘xf (> mf f(v))

It is easily seen that if A € I'* and 5 : A —+ H is a continuous mapping such that n(u) = u
for all u € ANS, then n(A) € I'*. Since f satisfies the Palais-Smale condition by Lemma
1, ¢ is a critical value of f by a method similar to Rabinowitz’s saddle point theorem ( [9]
and {7} ). Assume that 0 is the only critical point of f. Let ¢; (i = 1,2,3,4),¢; ( = 1,2)

and K be positive numbers in Lemma 2. We set

U={ueH;||Pu| <al|Pul <b and ||Psul < -26-}



and

V={ueH:|Pu||<aq,|Pu| <b and ||Psu| <c},

where

a = ¢;,b=min{c;,c4} and ¢ = min{cs, Kb}.

We may suppose that r > /& + ¢? with no loss of generality. Putting ¥ = min{e;,e,8%},
it follows that f > y on {u € H : ||Pu|| > a,||Pufl < b and [|Puf| < cju{ue H:
|Piu]| € a,||Paull = b and ||Psu|| < ¢}. From ¢* = 0, for 0 < € < 4, there exists
A € T with mjxxf<a. Now, we define T : H — H by

u if ugV
T(u) =
(| Poul)(Pr+ P)u+ Py if u€el,
where ¢ : [0, +00) — [0, 1] is defined by
0 ifo<t<s
pt)=14 2t-1 if g<t<c
1 if e<t.

Then, T is continuous on {u € H : ||Pyu|| = a,||Pu|| £ b and ||Psu|| <c}*N{u€ H:

|Piu]| < a,||Peu]| = b and ||Psul|| < c}°. By dim H; # 0, we can choose wo € H; with
b .

0 < Jlwe]l < 3 Define T : T(A) — H by

frae. Pl 2 5
P+ Q((Pr+ Po)u) if | Poull < 5,

where Q((Pz + Ps)u) means the intersection bf the half-line {¢t(P; + P3)u + (1 — t)wp :
t > 0} and the relative boundary of {w+ z:w € Hy,z € H,||lw|| < b and ||z|| < —;—}
in Hy ® H3. Putting 0 = (P, + P;s)o T oT, o is a continuous mapping from A into
H, ® Hj such that o(u) = u forallu € ANS. Since f >y >¢con {u€H:|Pu|| >
a,||Paull <& and ||Psu|| < c}, we have o(A) F 0. This is contrary to A € I'*. This
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completes the proof.
Next we prove Theorem 2.

Proof of Theorem 2. From M1 < a < a* < A, we take r > 0 largely
enough such that f(2) <, inf - f(v+w) for all 2 € Hs with ||2]] > r. We set
B={z€H;: ||| <r} and S {z € Hj: ||z|| = r}. Define

I'={g: g is a continuous mapping from B into H such that g(2) = z
for all z € S} (#0)

and

e=infmax (o) (2 o, fo+w)).

Similarly to the proof of Theorem 1, ¢ is a critical value of f. Now, suppose that f does

not have any nonzero critical points in H. From g > As_;, if follows that

£2) < S - %A,,_llzr <0 forall z€ H

By b, > An, there exists & > 0 such tha.t g( ) 2 A for all t with [t| < 6. Then, we
obtain ¢; > 0 such that sup |w(z) + z(z)| S_& if we Hy,z € Hy and lw+ 2| < a.
€N

Therefore we have
1 2 1 2
flw+2z) < sllw+2|* - -2-Am|w +2°<0

for all w € H; and z € Hj with ||w + z}] £ ¢1. We may assume ¢; < r without loss of

generality. Choosing ¢; > 0 arbitrarily, we put
U={u€H:||Pul<c: and ||(P;+ Ps)ul < 921

Since dim H,; # 0, by an argument similar to the proof of Theorem 1, we can construct

a continuous mapping g : B — H such that g(2) = z forall 2z € S, g(B)NU = @ and



i1

f(g(2)) £ 0 for all z € B. From the well-known deformation lemma, for sufficiently
small &g > 0, there exist a continuous mapping  : H — H and a positive number

€ < &g satisfying the following conditions

i) n(u) = uif u & f~1([—eo,€0]);
ii) n(f((—00,e]) \U) C f}((—00 —¢]).

Putting § = nog, it is clear that § € I. On the other hand, max f(§(2)) £ —e since
g(B)NU = 0. This is contrary to ¢ = 0. This completes the proof.

3 The case that g is discontinuous.

In this section, we consider the existence of one nontrivial solution of the equation (2).
Let g : R — R be a piecewise continuous function on any bounded closed interval ( may
be discontinuous at 0) with 0 € [g(0),3(0)]. Then, it is easily seén that the functional
f defined by (5) is locally Lipschitz continuous if g satisfies the conditions (3) or (4).
Then, we cannot apply the usual critical point theory for differentiable functionals since
f may be nondifferentiable. In order to solve the problem (2), Chang [4] made use of the
generalized gradients for locally Lipschitz continuous functionals introduced by Clarke
[5]. In fact, it was shown that |

df(u) C —Au— [g(u),§(u)] for each u € H,

where 0f(u) means the generalized gradient of f at u.
Further, he proved in [4] that the deformation lemma holds in this case. On the
other hand, Mizoguchi [8] obtained the existence of one nontrivial solution of (2) under

the same conditions as Theorem 1 in [6].
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We remark that g is automatically continuous at 0 in [8]. According to the proofs
of Thoerem 1 and Theorem 2, we see that the equation (2) has at least one nontrivial

solution if the conditions (3) or (4) are assumed.

Theorem 3. Let g: R — R be a piecewise continuous function on any bounded

closed interval with 0 € (9(0),9(0)). If g satisfies the condition (3), then the equation
(2) has at least one nontrivial solution in H*(2) N H3(Q). |

Theorem 4. Let g : R — R be a piecewise continuous function on any bounded
closed interval with 0 € [g(0),3(0)]. If g satisfies the condition (4), then there exists at
least one nontrivial solution of (2) in H*(2) N H3(Q).
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