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On Some Quasilinear Elliptic Equations

Mitsuharu OTANI

Department of Applied Physics
School of Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo, Japan

1 Introduction

Let us consider the following Sobolev-Poincaré-type inequality :

(SP) Iuqu(Q) _<_ c lvulLP(Q) Vu € W::P(Q)

where Q is a bounded domain in R¥ with smooth boundary 8. Suppose that 1 < ¢ < p*
with p* =00 for p > N and p* = Np/(N —p) for p < N. Then Rellich’s theorem
assures that W2P(Q) is compactly embedded in L), so it is easy to construct an element
u, € W2?(€2)\{0} which attains the best possible constant for (SP). Furthermore it can
be shown that u, give a nontrivial solution of the equation :

-Apu o= A |uT%u (A > 0), A, = div (|Vulf~? Vu)

In this paper we consider the equations of more general form :

(E)a ~Bpu = Ag(z,u)

The case that p = 2,i.e., A, = A, has been studied by many peoples. However it
seems that the general case, p # 2, has not been investgated so vigorously. The purpose
of this paper is to discuss the existence of nontrivial solutions of (E), and the number of
solutions. Our argument will rely on a variant of the Ljusternik-Schnirelman theory due
to Clark [1] and follow the idea of Rabinowitz [7]. In carrying out this, it should be noted
that the Lagrangian derived from the Euler equation (E), is defined on W2#(§2) which is
not a Hilbert space, therefore we can not use the orthogonal decompositon or some nice
properties of eigenfunctions ; and since the solution of (E), does not always belong to
C?(f) (see [5]), we must always work in the framework of weak solutions. To get over
these difficulties, we need some delicate arguments based on the notion of Schauder basis,
the duality map and the convex analysis.
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2 Main Results and Basic Lemmas

2.1 Main Results

Our main results are stated in the following two theorems according to the behaviour of
g(-,u) at u = oo, roughly speaking, sub-principal case : g(-,z) = o(|z|P~!)(Theorem 1)
and super-principal case : g(+,z) = O(|z[*™*) (Theorem 2) .

Theorem 1 Assume the following (g.1)-(g.3) :
(g81)  g(z,2) is continuous in (z,z) €2 xR and odd in z € R,
(g2) 3¢ >0 st zg(é:,z) >0 Y(z,z) €0 x B(0,¢)\{0}.
(g-3) The following (a) or (b) holds:

(@ 3z >0 st g(z,2) <0 Yzel |

()  g(z,2) |7V = 0 as |z| = o0 um'fornily in z€Q.
Then for all k € N, there exists A > 0 such that for all X > Ay, |
(E)x has k distinct nontrivial solutions.
Theorem 2 Assume (g.1) and the following (g.4)-(g.7) :
(84) l9(z,2)] < Ci + Colo|*™! p<s<px  for p<N,

< C3 e with P(z) |2|MW¥-D - 0 (Jz] > ) for p=N.

(g5) g(z,2) = o(|z]P~!) uniformlyin z€Q atz=0. |

(g6) g(z,2) |z]7®D —= 00 as |z — o uniformly in z € Q.
G(z,z) 1 2
7 suplim sup <8< -, G(z,2z) = / z,t)dt.
@) splmep ol @) = [ ol

Then for all X > 0, (E) with g(:z:,u) replaced by a(z) |ulP~%u + g(z, u) has
infinitely many solutions {ur}ren with J(A,ux) = 400 as k — oo,
where a(-) € L*(Q), J(A\,u) = fn{%IVUP’ - %a(m)lul” - X G(z, u(z))}dz.

Remark 1 (1) There is no growth condition in Theorem 1, if we assume (a) in (g.2).
(2) Typical examples for g(z,z) are given by g¢1(z,z) = a(z) |2|77%z or go(z,2) =
a(z)|2|922eH”.  g1(z, z) satisfies (b) of (g.3) if 1<g<p and (g4) for p< N if
p<gq, and gy(z,z) satisfies (g.4) for p=N if p<q anda< N/(N -1).

(3) Let g(z,2z) = gi(z,2),1 < ¢ < p, and a(-) be continuous on Q. Then
Theorem 1 assures that for every k € N, (E), has k distinct solutions u;, (=1,2,---,k)
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for some A = . Since v; = AY/® Dy, gives asolution for  (E); -4, v = a(z) [v]",
it is proved that (£); has infinitely many solutions.

2.2 Genus and Basic Lemmas

In this paper we shall use a genus-version of the Lyusternik-Schnirelman theory. For topo-

logical spaces X and Y, we denote by C(X,Y’) and C*(X,Y) the space of continuous maps

and continuously differentiable maps from X to Y respectively. Let V be a real Banach

space and let &/(V) = L' denote the family of all closed symmetric subsets of V\{0}. We

define a mapping v: &' — N by v (4) = min {n € N | 3f € C(4,RM\{0}), f(=2) ="
—f(z) Yz € A}, and we put v (§) = 0, and v (A) = oo if the minimum does not exist.

Then we say that A has genus v (A). The properties of genus required later are listed

below:

Lemma 1 Let A,B € ¥

(1)  If there exists an odd f € C(A, B), then v (A4) < v (B).

(2) If ACB, then v(4) < v (B).

(3) If f is an odd homeomorphism of A onto B, then v (A) = v (B).
(4) ~v(AUB) < v (A) + v(B).

(5) If v(B) < oo, theny (A\B) > v (4) - v (B).

(6) If A is compact, then v (A) < oo and there ezists a § > 0 such that vy (Ns(A))
=y (A), where Ng(A) is the set of points in V whose distance from A 1is less
or equal to 6.

() If vy(A) = k,then forallj < k there exists A; C A such that v (4;) =j.

(8) If A is homeomorphic by an odd map to the boundary of a symmetric bounded open
neibourhood of 0 in R™, then v (A) = m.

For the proofs of these properties, see [1] and [6].
The fundamental tool for our argument is provied by the following result of Clark [1].

Lemma 2 Let J € CY(V,R') with J even and J (0) = 0. Suppose that J satisfies
the property

(PS)_ For every sequence {z,} in V such that J (z,) < 0, J (z,) is bounded below
and J' (z,) = 0in V*, then {z,} possesses a convergent subsequence in V.

Let

) dj = inf sup J (z)

A€, v(A)2; z€A

andlet Kg = {z€V|J(z) = d, J'(2) = 0}. If —o0<d; <0, then K4, is compact
and nonempty. Moreover if —oco<dj=:--=djy,=d <0, then v(Ks)>r+1
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Remark 2 (1) From the definition of d;, d; is a monotone increasing function of j.

(2) Lemma 2 remains valid with £’ replaced by £ = the family of all compact subsets of
¥'. (3) By virtue of (7) of Lemma 1, d; can be chara;ctenzed by (§) with v (4) >J
replaced by v (4) =

We can not apply the above result directly to the super-principal case. However, through
some finite-dimensional approximation, we can treat our problem within the same frame-
work. For this purpose, we need the following variant of Clark’s lemma :

Lemma 3 Let I € C*R™ R') be even with I (0)=0. Assume

(2.1) iR>0 st. I(z) <0 for |z] > R

Furthermore assume

(2.2) ~ Cy = sup min I (z) > 0

AES(R™),y(A)>m—k+1 €4
Then, for any j=k,---,m, C; is a critical value of I ji.e., Ko, ={z €R™ | I (z) =
C;,I' (z) = 0} # 0. Moreover, if Cy = Cyy1 =++-=Ciy, =C, then v (Kg) >r+1.

Proof. Take E = R™,J = —I. Then (2.1) implies (PS)_. Since C; > Cj for j > k,
(2.2) ensures that C; is also a critical point of I(-). Lemma 3 now follows from Lemma 2
and Remark 2. ' : [QED]

3 Proofs of Theorems

We begin with the proof of Theorem 1.
Proof of Theorem 1  Put V = W?(Q) and J(u) = A (u) — X B (u) with
A(w) = 3 f |Vulpdz, B (u) = [, G(z,u(z)) dz. Then it is easy to see that

Je CY(V,R'), J isevenand J(0) =0, and J'(u) = 0 is equivalent to (E),. In order
to apply Lemma 2, we are going to verify (PS)_ and give an estimate for d;.

Verification of (PS)_: First assume (b) of (g.3), then for any ¢ > 0, there exists M, such
that |g(z,2)] < €|z|P"? for |z] > M.. Hence, by Poincaré’s inequality, there exists a
constant C such that

(3.1) J(w) > |Vl - C  YuevV

Therefore J (u,) < 0 implies that u, is bounded in V and we can extract a subsequence
Uy, such that

(3.2) u,, —u weaklyin W2lr(Q),
(3.3) 9(z,us,) — g(z,u) stronglyin  LP/*-1(Q) and V™

where we used (g.1), (b) of (g.3) and Egorov’s theorem. On the other hand, making use of
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the definition of subdifferential, we get
A — A(u,) > <A (up),u—u, >=<J" (us), u—up, >+ < g(z,u),u — up >

whence follows limsup,_, . |Vu,|r» > |Vu|re. Since V is uniformly convex, this relation
and (3.2) assures that u,, converges to u strongly in V. Thus (PS)_ is verified.

Estimate for d;.  Take linearly independent functions ej,ez,-:-, e, € V1 L* and put
A= {u= Tk ae(z)]|]|lellgt = ¢ By virtue of (8) of Lemma 1, y (4) = k; and
by (g.2), B(u) > 0 forany u € A for a sufficiently small e. Since A is compact,
a1(k) = min,es B (u) > 0. Similarly, a,(k) = max,es A (u) < +oo. Then we derive

_ ao(k)

ay (k)
Furthermore, (3.1) assures that d; > —oco. Thus we can apply Lemma 2. -
Assume now (a) instead of (b) in (g.3). We set g(z,2) = g(z,z) |z| > Z;
9(z,2) 2>% —g(z,zZ) 2z < —2z. Since 7 satisfies conditions (g.1),(g.2) and (b) of (g.3),
the assertion of Theorem 1 holds true with (E), replaced by (E), —A,u = g(z,u).
Let u be a solution of (E), and put u, = Z, then

=D, u — =D, u, < Ag(z,u) — Mgz, u,)

Multiplying this by [u — u,]*(z) = maz(u(z) — u.(z),0) € V (see [2]), we obtain

mag J(u) < a.(k) —dak) <0 YX> N

— Py = Py = P2 - p=2 a1t :
/1;>u., |V (u — u,)|Pdz /Duol'Vul dz /ﬂ(]Vul Vu — |[Vu[f*Vu,) V[u — u,)"dz <0,

whence follows [u—u,]t =0 e, u(z) < Z aez€Q. Repeating the same argument
as above for —u, we get |u] < Z, that is to say, u turns out to be a solution of (E),.
This completes the proof. [QED]

Proof of Theorem 2 In what follows we consider only the case where A = 1. How-
ever exactly the same proof as below works for the general case. For the moment we also
assume that a = 0. Let {e;}%2, bea Schauder basis of W}*(Q) and V,, be the linear sub-
space of W1P(£2) generated by {e;,ez,--*,em}. Put J(u) = A(uv) — B (), ) = J|v,
with A (u) = %quP}J, and B (u) = fn{%a(m)|u|p+ G(z,u(z))}dz. Since u €V, has
the form v = Y™, 05€, @ = (a1, ++,0,) € R™ we define I, € C}(R™,R') by
I.(a) = Ju(Z o; e;). To prove the theorem we need several lemmas.

Lemma 3.1  J, has m distinct (modulo % ) critical points.

Proof. Note that o is a critical point of I,, if and only if u =} a;e; is a critical
point of J,,. We apply Lemma 3 with I = I,, to find out the critical points of I,,. First
of all, let us notice

(34) luly ~ lulzr ~ lalr ~ o] = |leflr=, Yr€[1,00],
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since the norms of every two m-dimensional Banach spaces are equivalent to each other.
Condition (g.6) says that for any large number K, there exists Mx > 0 such that
lg(z,2)] > K plulPf™* forall |ul > Mg. Therefore there exists a Cji such that
G(z,z) > K |zIP — Ci forall ze€R!. Then, for all unit vector @ € S™1,

(3.5) I.(Ra) < R % Val, — B K a5 + Gy |,

where @& = 3172, &; e;. By virtue of (3.4), there exist constants a;, a; such that
|Valr < a1]@| and |G|z > a3]@|. Thus we obtain ' '

. P
(3.6) I.(R&) < (f‘;} ~ Ka&) R |aP + Ci |9

Then taking K = 2 a}/pa} and R sufficiently large enough, we can assure (2.1). On
the other hand, (g.5) implies that for all ¢ > 0, there exists a § such that

(3.7 lg(z,2)] < €|zt forall |z]| <.

- Furthermore, using |ulze < aslaf, we get  G(z,u(z)) < flu(z)fP  for all o < 2.
Consequently, for a sufficiently small p > 0, we have

(3.8) In(e) > %wugg, - §|u|r,;, >0 forall 0<|o]<p

which assures that C; > 0, since v ({@ € R™ | |a|] = p}) = m. Thus C" =
SUDAes(R™)(A)>m—k+1 Milaca Im() are critical values of I, for all k = 1,2,---,m,

j.e., there exist off € R™ such that I, (af') = 0. Therefore u* = 7L, (0f); ¢;
satisfies J'(ul) =0, i.e.,

(3.9) /anu,’:‘[”"2Vu,’:‘ Vudz = /Qg(x,u;"(m)) v(z)dz YveV,
[QED]

Lemma32 CPM' <cCcr 1<V <m

Proof.  Forall A€ Z(R™!) withy(A4) > m—j+2, wesee v (ANVn) > m—j+1. In-
deed, since ANV, is also a compact set in V,,41, there exists a §-neibourhood Ns(ANV,,)
of ANVy in Vijuqy such that v (ANV,) = v (Ns(ANVi)) by (6) of Lemma 1. Here we
define the projection P from A \ Ns(ANV;,) into R \ {0} by z = (21, **, Ty Tms1)

P(z) = z,;41. Obviously P is odd and continuous, so y (A \ Ns(ANVw)) < 1. Then, by
(5) of Lemma 1, we get
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12> y(A\ Ns(ANVa)) 2 7(4) = v (Ns(ANV)) 2 m—j+2 — v (ANVa),
which gives v (ANVn) > m—j+ 1. Hence

C;’l""’l S supAEE(R”““ ):‘Y(A)Zm"J"'Z II]iIlaeAn Vin Im(a) S C;n. [QED]

Lemma 3.3 Let S = {veV\{0}||V|l, = [y 9(z,u) udz }. Then there exists
a constant p such that

(3.10) |Vo|ee 2p >0 YveES

Proof.  (Thecase p> N) Assume that there exists a sequence v, € S such that
|Vu|zr — 0 as n —» co. Since V is continuously embedded in L*($2), we have |v, [z — 0.
Then, by (3.7) and Poincaré’s inequality, |Vu,|[7, < € J;|va|Pdz < € K |Vu,[%,, which
implies v, = 0 for sufficiently large n. This is a contradiction.

(The case p < N) It follows from (g.4) and (3.7) that for any ¢ > 0, there exists C, such
that

(3.11) l9(z,2)] < €|zl + Ce|z|*? forallz€R!

Hence, by Poincaré’s inequality and Sobolev’s embedding theorem, we obtain
[Vollr < €lvlis + Cvlie < € K |Vull, + C|Vu|}s, whence follows (3.10).

(The case p= N) First of all, we recall Moser’s inequality (see [8]):  There exist con-
stants ay, Cy depending only on N such that

N
(3.12) 1 o] \ ¥ '
— s dz < C VoewdV
i /‘;exp ay ol z < Cy v € WM (Q)
On the other hand, (g.4) and (3.7) enssure that for any € > 0, there exists C, such that

(G13) o)l < el + Gl exp(SLel#T) Ve R

Thus we get
Vol < elolfy + C. [ ol exp (51o]™T)da

< €K |Vuf5, + C|Vo|% Cy 9] Yv € S with |Vl < 1,
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which assures (3.10). [QED]

Lemma 3.4  Theset S; = {ve€ S| J(v) < d} isboundedin V.

Proof. By condition (g.7), there exist numbers M and 8 > % such that
G(z,2) < 6 g(z,z) for all |z| > M. Then

‘ 1 - 1 -
> Z|Volf, — — L P
d > J() 2 Vol ~ /MZMg(a:,v)v ds ~ Cu 2 (5=0) Vol ~ Ou
Therefore |[Volf, < (Cu + d)/(; —0). [QED]

Lemma 3.5 y(Ss) < forall d > 0

Proof. Suppose that y (S;) = oco. Then there exist w, € S; (n=1,2,-- -) such that
(3.14) wp € N Nw3)()---N@W;_1)NS: k=23,

where w? = F(w,), F is the duality map from L9(Q) onto L¢ with te=1 p<g<yp
defined by F(w) = |w|*"? w/[w|$;?, and N(w}) = {w € V | < w},w >= 0}. If we can
not take w, satisfying (3.14), we deduce S; C @7Z; {w;} = La—y C V, since L4(Q) is
spanned by wy, wy,- -, Wy and N(w}_,). Hence v (S;) < n—1, which is a contradiction.
Noting that S; is bounded in V and V is compactly embedded in L9(Q2), we can extract
a subsequence w,, which converges to w strongly in LY(2). Then, by (3.14), < w},w >=
limg—oo < Wi, ws, >= 0 Y n € N. Furthermore, recalling that F' is a continuous map
from L9() onto L7(Q), we obtain |w|}, =

< Fw),w > = limgoe < w},,w>= 0,e,w = 0. Now, using Egorov’s theorem, we
can show that [, ¢(z, wn,) wn,dz — 0, whence follows |[Vw,,|r» — 0, which contradicts
Lemma 3.3. [QED]

Proof of Theorem 2 (contined)  Relation (3.9) with v = ul" implies uP € S and
moreover, by Lemma 3.2, J(v?*) = CP* < Cf for all m > k. Then Lemma 3.4 assures
that {ul*} is bounded in V. Therefore, by the same verification as for (3.2) and (3.3), we

see u’ — u, weakly in V ; g(z,up?) — g(z,ux) strongly in LP/®~1(Q) and in V™.
Hence

A@w) — A(w) > A @) - liminf A (v}?) > lim < g (z,w;”),v — v’ >
J~ro0 J—00 -

=< g(z,m),v — u > YweV, 'meN

Then the standard argument shows that uy is a solution of (E); and CP* = J(u}*) |
J(vx) = Cy. From the definition of C{*, Lemma 3.2 and Lemma 3.3, weget 0 < p <
C; £ -+ £ Ciy £ Cr < ---. We are now going to show that Cy T oo as k 1 oo.
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Suppose that Cy < C for all k, and put d = C + 1. In view of (g.5) and (g.6), we can
show that every continuous path in V,, which connects 0 with co must meet S V,,, which
means that SV, separates 0 and oo in V,,. Hence, by (8) of Lemma 1, v (SN V) = m.
Since Spa = SaNV,, is compact by Lemma 3.4 and there exists an integer k independent
of m such that v (S 4) < k by Lemma 3.5 , we can take a é-neibourhood Nj(Sp, 4) of

Sim,a satisfying 4 (Ns(Sma)) < k. Therefore v (SNViu \ Ns(Sma)) > m—k, by (5) of

w€S [\ Vin\N5(Sm,a) Jn(u) > d foralm>k+1.

Lemma 1. Thus we derive C}%; > min

Letting m — co, we have Ciy1 > d > C+1 > Cppy + 1. This is a contradiction.
As for the case where a(-) & 0, we rely on the following lemma.

Lemma 3.6 Let - -
Pk . v = Zaj €; > Zaj €5,

3=1 =k
then
[P vy € & |VPov|ze Y€V with klim & = 0
. ~—+00
Proof. Suppose that the assertion does not hold. Then there exist w,, = P,, v,, such
that |Vw,,|z» = 1and |w,,|rr > 6 > 0. Hence we can extract a subsequence of wy,,

denoted again by wy,, such that w,, — w weakly in V and w,, — w strongly in L?(f).
Furthermore, by virtue of Mazur’s theorem, we can choose convex combinations of w,,
staisfying u,, = 1™, Bk wn, — w strongly in V. Since {e,} is a Schauder basis, the
mapping e} : u = Y2 0 ¢, — a, becomes a bounded linear functional. Therefore
we find that < e}, w > = limyae < €h,un>= 0 forall n€N e, w = 0. This

contradicts the fact that |wy,, | — |w|r > 6 > 0. [QED]

For the general case, we work on V,,x = the linear subspace of V' generated by
{exs€k+1, - em} instead of V,. If we take k sufficiently large enough, Lemma 3.6 as-
sures that a(-) |u|P~2 u can be controled by € |Vul}, in V,, x. Thus we can repeat the same
argument as before. [QED]
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