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RECENT DEVELOPMENTS IN THE THEORY
OF GENERAL HYPERGEOMETRIC FUNCTIONS

I.M.Gelfand, M.I.Graev, V.S.Retakh'®

(Institute for System Analysis,
Avtozavodskaya 23, Moscow 109280, USSR)

0. This report is related to a series of papers [2-7] devoted to the theory of general
hypergeometric functions. Our aim is to describe briefly the results from [8,9]. First we
recall the definition of equations of hypergeometric type according to [4,5]. Let T™ be
an m-dimensional complex torus acting on an N-dimensional complex space W. We fix a
basis e;,---,en in W, in which all the transformations belonging to T™ are diagonal. Let
A1, -+, AN be characters of T™ such that te; = A;(t)e; for t € T™. We write vectorsw € W
in the form w = )’ z;e;. If we choose coordinates ¢1,--,ty in the group T™ ~ (C*)™,
then each \; has the form \; = [[T" ti:"", where (Ag;) is some n X N-matrix.

Let L = {a = (a1,---,an)} be the integer lattice of solutions of the system of equa-
tions Ef’ aidki = 0, 1 < k < m. For any multiparameter 8 = (f$1,---,0m) € C™ the
system of hypergeometric type on W is defined:

( E r\kizig—(p = [P 1<k<m (1)
1<i<N %

[H> (06)] °= [H«, (aa)_} 3, acl (@)

.

\

It is not hard to check that all the equations (2) are a cohsequence of a finite number of
them. In [4,5] the solutions of the system (1)-(2) as I'-series and in [7] as generalized Euler
integrals were described.

IMPORTANT EXAMPLE. Let G, be the Grassmanian of k-dimensional subspaces
of complex space C™ with the coordinates z;,---,z,. Suppose that such subspaces can be
written in the form z; = vz + - - +vgjor,J =k +1,---,n. Consider the coeflicients v;;
of these equations as local coordinates on Gi,n. Let V be the space of complex matrixes
(vij), ¢ =1,---,k,j = k+1,---,n. The action of torus T™ on V is generated by all possible
dilatations of the rows and columns of matrices: v;; — t:lvijtj. " The corresponding
equations on V can be written in the form:

0% ‘ .
Zvijavij=(a,'+1)@ t=1,---,k (3)

J

! The report is based on a joint work with I. M. Gelfand and M. I. Graev.



54

0d .
Divigyy =%® G =ktLon @
5*® 9*®

31),'_,' 6v,-:,-: - 8v.~:,~ 6v,-,-:

(5)

where parameters a; are connected by the formula Y «; = —k, because only (n — 1)-
dimensional torus acts effectively on V.

According to the [4,5,7] one can describe the hypergeometric functions on Gy n as
I'-series or Euler integrals depending of local coordinates. Here we want to describe the
solution of (3)-(5) as I'-series or Euler integrals depending of Pliicker coodinates which are
more natural for Grassmanians. This approach gives a possibility for studying hyperge-
ometric functions on strata in Gi . For example, our method gives the representation
of Gaussian function F' as a triple integral. We also obtain a generalization of classical
reduction formulas for hypergeometric series.

1. Euler integrals on A*C™. Let X = A*C™ and P; = P;,...;;, 1 <43 < --- < i < n,
be the coordinates in X with the base {e;, A---Ae;, |t < --- < ig}. Here {e;} is a standard
base in C™. We define also p;, ...;, for any unordered set ¢, - - - tx according to the standard
transposition rules.

This is a standard action of torus T™ = (C*)™ on X : {pr} — {t1pr}, where t1 =

 tiy oo +ti, I = {1, --,1x}. The corresponding system of hypergeometric type equations
for a = (ay,-+-,a,) € C"is:
0% .
pIa—-=a,-<I> 1=1,---,n (6)
> OPI
i 0%d

= 7
apIx ap[z ale asz ( )

where |I1| = || = |J1| = |J2| =k, |1 NJ1| = [N Jz| = k-1 (we give here only the basic
equations of the system.)
The solutions of this system will be called the hypergeometric functions on AFC™.

Definition . Let p = {pr}. The subset Xg = {p € X|pr # 0 & I € E} is called the
E-stratum in X, E = {I,---,I.}. If = consists of all I C [1,n],|I| = k, then Xz is called
the generic stratum. :

All the strata are T™-invariant. The stratum is called nondegenerate if every T™-orbit
on it is nondegenerate. A hypergeometric function on a stratum Xz is the restriction ¢| Xz
of a hypergeometric function ¢ on X.

Consider for every point p = {pr} the polynomial u(t,p) on C™:

u(t,p) = ijtj = Z Digeevip * iy o Tip -

1551 S"'Sih Sn
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Let # be a differential form

n
6 =u(t,p) [] 7 w(),
i=1
where w(t) = tidta A - Adty, —tadt; Adtg A---Adtp, +---,aa=(ag,---,a,) € C™
Suppose that Y, a; = —Fk, then one can consider the form 6 on a projective space
PC™. Set ' :

F(a,p) = / 9 (8)

where v C PC™ is a projectivization of ¥ = {t € C*|t; e R,t; > 0,7 =1,---,n}. Fora
stratum Xz set Uz = {p € Xg| Re pr > 0 for I € E}.

Theorem 1. For any nondegenerate stratum Xz C X there ezists a domain Oz C C™
such that for a € Oz the integral (8) absolutely converges for every p € Us, the function
F(a,p) is regular on Uz and F(a,p) is a hypergeometric function on Xz.

We define the integral F(o, p) for all a by the analytic continuation.

2. Euler integrals on Gg,,. Let Zi, be a space of k¥ X n-matrices. Consider a
map T : Zpn — X = AC", (|| zi5 ||) = {piyic = det || 2ri, |lrs=1,-k}- The
image m in X is denoted by P, we call P the Pliicker manifold. One can consider the
hypergeometric functions on Grassmanian G, as functions on P. So we will use the
terminology “hypergeometric functions on P” instead of “hypergeometric functions on
Gk,n”- '

For any A,p € X denote by A o p the vector in X with the coordinates {Arpr}.

Theorem 2. If ¢ is a hypergeometric function on X then for every A € P the function

¥(p) = (Ao p) 9)

18 a hypergeometric function on P. If 1 is a hypergeometric function on P and v is reqular
in a domain O C P then there ezists a hypergeometric function ¢ on X and a vector A € P
such that equality (9) is valid.

A (nondegenerate) stratum Pg in P is by definition the intersection Xz N P for a
(nondegenerate) stratum Xz in X. A hypergeometric function on Pg is by definition the
restriction of hypergeometric function on P. We use the theorem 2 for a description of
hypergeometric function on strata in P.

Theorem 3. a) Let Pz be a nondegenerate stratum and Oz the domain of multiparameter
a defined by the theorem 1. For any Py € Pz there ezists its neighbourhood V C P such
that for any A € V N Pz, a € Oz, the integral

B5(a,p) = w7t 3op) [ w0 (10)

absolutely converges on V. The function ®5 is a hypergeometric function on V.
b) The restrictions of integrals (10) on V N Pg for all A € V N Pz linearly generate
the space of hypergeometric functions on Pz regular on the neighbourhood V N Pg. '
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If {pi(a,;p)} is a base in a space of hypergeometric functions on Pg regular in a
neighbourhood V of a point py € Pz then according to the theorem 3

Bx(ep) = D cijwi(e, sl p), a,peV
i,

Here the matrix || ¢;; || is nondegenerate. It depends only of @. One can choose the
base {¢;} such that || ¢;; | will be a diagonal matrix. I want to mention that solutions of
a hypergeometric system are described here by varying the parameter A and integrating
over the fixed cycle 4. On the contrary, usually the solutions are described by integrating
over different cycles [7].

Example . ¥ =2,n = 4. If p, \ € P have the coordinates pj; = p13 = —paz = —pag =
1, p14 = 7; 12 = A13 = —A23 = —A24 = 1, A14 = p then the solution of Gaussian equation
z(l — z)y" + [c — (a + b+ 1)z]y' — aby = 0 according to the theorem 3 is given by the
formula ‘

Yp(z) = ///(tltz + ti1t3 + tat3 + a2ty + paisity

+ (1= p)(1 = 2)tsta) 0T T ST T (1)

0O poO  poO
= / / / (tz + t3 + t2t3 + t2t4 + p(l)t4
0 0 0

+ (1 = p)(1 — z)tsty) " t; %5 i~ dtodtsdty

From this formula one can represent the Gaussian function F as triple Euler integral.

4. Formulas of reduction and I'-series. Consider the space Z = Z; , of complexes
(k x n)-matrices. The action of torus T*+" on Z is generated by all possible dilatations
of the rows and columns of matrices z = (z;;). By the general theory we have the system
of hypergeometric equations on Z:

Op . :
Xi:zug;i;—aw j=1,+1,m (11)
Zzij—QE—:ﬂiSa i1=1,--,k (12)

7 0z;j ‘

o) &y

6z,-,-6z,-:,-: - c')z,-:,-(?z,-,-: (13)
where parameters aj, J; are connected by the formula ) a; = Y 6.

There exists a map x from Z to V - the space of local coordinates over Grassmanian
Gin. For z = (u,v), where u is k X k-matrix, xz = u~v. Then ¥ is a solution of (3)-(5)
if '

8(2) = (det ) (x2) W
and 8;=-1,i1=1,---,k.

According to [8] this means that the system (3-5) is subordinated to the system (11)-
(13).

We give now a combinatorical description of I'-series ® satisfying (14).
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Definition . A set I C [1,k] x [1,n] is a base if |I| = k + n — 1 and the manifold
{z € Z|zi; # 0 & (i,5) € I} is T**™-orbit.
Consider for every base the series

Z H mu +'Yt; H ZT"J.
®1(z) = —L (15)
m (i,j)el (m” D) Gaer

Here I' = [1,k] x [1,n] \ I; the sum is taken over all m;; > 0, (¢,j) € I'; the integers
msj,(i,5) € I are linear combinations of m;j, (i,5) € I' such that 3, m;; = 3 . m;; = 0.
The complex numbers v;j, (i,§) € I are defined from the formulas 3 ;v = ajr, j =
[1,n], Z Tij = Bi, i € [1,k]. Here 3 means the summation over (i,5) € I.

The series ®1(z) converge and give the complete system of solutions of the equations

(11)-(13).

Proposition 4. The function ®r for B; = —1, 1 € [1,k] satisfies (14) if and only if the
base I is admissible: i.e. for every i € [1,k] the base I contains at least two elements (i, 7)
and (3,7').

At least we pass to the formulas of reduction. Let Zyg = {z € Z|z;; = 0 for (3,7) € a},
where 2 C [1, k] x [1,n]. We call Zgy the general subspace of Z if xZg =V. H I Na = 0;
then the serie (14) for I' \ « instead of I’ gives us a hypergeometric function on Zy and
for this function the proposition 4 is valid.

Suppose a pair (I, %) is given such that I N a = @; the base I is admissible and Zy is
a general subspace of minimal dimension. In this case a = {(4,5)|j € Ji,4 € [1,k]} where

|Ji| =k — 1.

Theorem 5. There ezists a formula of reduction for every such pair. It connects I'-series
on Z and Zy:

Pjpgn 0 Pinda

Pjsa PixJe

145 +vij nij

| P P
2| 1 P(nij]i')’ij"*' 1) 11 J'J" (16)

n \(ij)el Gyer\a T

Here ®j is I'-serie on Z given by the formula (15), p;, ... ;, - the Plicker coordinate
of z. The sum is taken over n;; > 0, (¢,7) € I' \ o; the integers n;;, (i,j) € I are the
linear combinations of n;j, (i,j) € I’ \ 2, given by the formulas E nij = d;nij =0
where (¢,7) € 2. The formula (16) does not depend of the choice ji,--- ji € [1,n] "such that
Pjyin # 0-

The multiciplicities of the series from (16) are N = kn—(k+n—1) and N —k(k—1)
respectively. The restrictions of ®; on different coordinate subspaces in Z gives us many
reduction formulas for the series of other multiciplicities. :
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Example . Let k =2, n =4, I = {(2a1)a(2,2),(2a 3)a(1a3)a(134)};m = {(1’1), (2’4)}
Then (16) turns to

—a4—1_a4 . a1 oz —ay—oaz—1
%13 214 %31 %23 %23

o (222" (22) " (2

B Z21213 722713 214723

’ n
_ —as—1 artas+l a3, —aj—az-—1 p21p43)
P31~ Py P42 P43 Z (n) ( paipes)

where ¢71(ny,nz,n3) = nylnang!l(—ngy + a3 + DI(—nz + az + 1)I'(—n3 +ag +1) - T(ns —
ny —ng —ag)l(ny + ng —n3 —a; —az); ¢ (n) =T(ag + Dl ag + 1) - T(—n + az +
DI'(—n — ag)I'(n — a3 — az)n!.

Setting z; = %ﬁ-, To = %:—iﬁ, T3 = iﬁf:-: we obtain a reduction formula for Pondy

function Gpg [10]:

Zc(nl, n2,n3)z’1‘lxgzx;‘3 — (]_ _ .7:1)_0“_1 ) (1 _ x3)_a1_a2_1-

(1 = zy25)° o+ _ gpz4) . Zc(n) ((gl:;s))(gw-z—;zﬁc;a))) 17

Setting £3 = 0 we receive a classical formula of reduction for the Appel function Fj.
For z; = 0 or z; = 0 we obtain reduction formulas for the Horn function G,.
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